
Implementation of a 256-bit WideWord Processor for the Data-Intensive
Architecture (DIVA) Processing-In-Memory (PIM) Chip

Jeffrey Draper, Jeff Sondeen
USC Information Sciences Institute
draper@isi.edu, sondeen@isi.edu

Chang Woo Kang
University of Southern California

ckang@usc.edu

Abstract

The Data-Intensive Architecture (DIVA) system
incorporates Processing-In-Memory (PIM) chips as
smart-memory coprocessors to a microprocessor. This
architecture exploits inherent memory bandwidth both
on chip and across the system to target several classes of
bandwidth-limited applications, including multimedia,
pointer-based, and sparse-matrix applications. The
DIVA project is building a prototype workstation-class
system using PIM chips in place of standard DRAMs to
demonstrate these concepts.

A key component of this architecture is the WideWord
Processor, which is a 5-stage pipelined 256-bit
datapath, complete with register file and ALU blocks.
This component offers fine-grained data parallelism
resulting in significant speedups. This paper details the
design and implementation of this WideWord Processor
in TSMC 0.18µm technology.

1. Introduction

The increasing gap between processor and memory
speeds is a well-known problem in computer
architecture, with peak processor performance increasing
at a rate of 50-60% per year while memory access times
improve at merely 5-7%. Furthermore, techniques
designed to hide memory latency, such as multithreading
and prefetching, actually increase the memory bandwidth
requirements [3]. A recent VLSI technology trend,
embedded DRAM, offers a promising solution to
bridging the processor-memory gap [9]. One application
of this technology integrates logic with high-density
memory in a processing-in-memory (PIM) chip. Because
PIM internal processors can be directly connected to the
memory banks, the memory bandwidth is dramatically
increased (with hundreds of gigabit/second aggregate
bandwidth available on a chip--up to 2 orders of
magnitude over conventional DRAM). Latency to on-
chip logic is also reduced, down to as little as one half
that of a conventional memory system, because internal
memory accesses avoid the delays associated with
communicating off chip.

The Data-Intensive Architecture (DIVA) project uses
PIM technology to replace or augment the memory

system of a conventional workstation with "smart
memories" capable of very large amounts of processing.
System bandwidth limitations are thus overcome in three
ways: (1) tight coupling of a single PIM processor with
an on-chip memory bank; (2) distributing multiple
processor-memory "nodes" per PIM chip; and, (3)
utilizing a separate chip-to-chip interconnect, for direct
communication between nodes on different chips that
bypasses the host system bus. The system architecture of
DIVA is focused on achieving the following four goals:
(1) developing PIMs that can serve as the only memory
in the system, assuming the dual roles of "smart
memories" and conventional memory; (2) supporting a
wide range of familiar programming paradigms, closely
related to parallel computing; (3) targeting applications
that are severely impacted by the processor-memory
bottlenecks in conventional systems: sparse-matrix and
pointer-based applications with irregular memory access
patterns, and image and video applications with large
working sets; and, (4) developing a VLSI device to
exploit memory and communications bandwidth in PIM-
based systems while making efficient use of on-chip
resources for target applications.

This paper focuses on the microarchitecture design
and implementation of the WideWord Processor
component of the PIM processing logic. Similar in style
to vector extensions like AltiVec [1], the DIVA
WideWord Processor uses a 256-bit datapath that
enables significant processing speedups through the use
of data parallelism. The WideWord Processor was
fabricated as part of a DIVA prototype chip in TSMC
0.18µm technology and is currently in test. The
remainder of the paper is organized as follows. Sections
2 and 3 present an overview of the DIVA system
architecture and microarchitecture, to put the WideWord
Processor design into its proper context. Section 4
describes the WideWord microarchitecture in detail.
Section 5 presents details of the fabrication and testing of
the WideWord Processor as part of a PIM chip, and
Section 6 concludes the paper.

2. System architecture overview

A driving principle of the DIVA system architecture is
efficient use of PIM technology while requiring a smooth
migration path for software. This principle demands

integration of PIM features into conventional systems as
seamlessly as possible. As a result, DIVA PIM chips are
designed to resemble commercial DRAMs, enabling PIM
memory to be accessed by host software as if it were
conventional memory. In Figure 1, we show a small set
of PIMs connected to a single host processor through
conventional memory control logic.

Figure 1. DIVA system architecture
Spawning computation, gathering results,

synchronizing activity, or simply accessing non-local
data is accomplished via parcels. A parcel is similar to an
active message, as it is a relatively lightweight
communication mechanism containing a reference to a
function to be invoked when the parcel is received [12].
From a programmer's view, parcels, together with the
global address space supported in DIVA, provide a
compromise between the ease of programming a shared-
memory system and the architectural simplicity of pure
message passing. Parcels utilize a separate PIM-to-PIM
interconnect to enable communication without interfering
with host-memory traffic, as shown in Figure 1. Details
of this interconnect can be found in [10], and more detail
about the DIVA system architecture can be found in
[2][4][6][7].

3. Microarchitecture overview

Each DIVA PIM chip is a VLSI memory device
augmented with general-purpose computing and
networking/communication hardware. Although a PIM
may consist of multiple nodes, each of which are
primarily comprised of a few megabytes of memory and
a node processor, Figure 2 shows a PIM with a single
node, which reflects the focus of the initial research that
is being conducted. Nodes on a PIM chip share a single
PIM Routing Component (PiRC) and a host interface.
The PiRC is responsible for routing parcels on and off
chip. The host interface implements the JEDEC standard
SDRAM protocol so that memory accesses as well as
parcel activity initiated by the host appear as
conventional memory accesses from the host perspective.

Figure 2 also shows two interconnects that span a PIM
chip for information flow between nodes, the host
interface, and the PiRC. Each interconnect is
distinguished by the type of information it carries. The
PIM memory bus is used for conventional memory
accesses from the host processor. The parcel interconnect

allows parcels to transit between the host interface, the
nodes, and the PiRC. Within the host interface, a parcel
buffer (PBUF) is a buffer that is memory-mapped into
the host processor's address space, permitting
application-level communication through parcels. Each
PIM node also has a PBUF, memory-mapped into the
node's local address space.

Figure 2. DIVA PIM chip organization
Figure 3 shows the major control and data

connections within a node, with the 256-bit memory data
bus as the centerpiece. The DIVA PIM node processing
logic supports single-issue, in-order execution, with 32-
bit instructions and 32-bit addresses. There are two
datapaths whose actions are coordinated by a single
execution control unit: a scalar datapath that performs
sequential operations on 32-bit operands, and a
WideWord datapath that performs fine-grain parallel
operations on 256-bit operands. Both datapaths execute
from a single instruction stream under the control of a
single 5-stage DLX-like pipeline [8]. The instruction set
has been designed so both datapaths can, for the most
part, use the same opcodes and condition codes,
generating a large functional overlap.

Figure 3. DIVA PIM node architecture
Each datapath has its own independent general-

purpose register file, 32 32-bit registers for the scalar
datapath and 32 256-bit registers for the WideWord

Memory Bus

PIM PIM PIM

PIM Array

PIM-to-PIM Interconnect

Host
Processor

Host
Memory
Interface

PIM Memory Bus

To Host System Memory Bus

Node

Processing
Logic

Memory Port PBUF

Memory

Memory Port PBUF
Host Interface

PIM Routing
Component

To Neighboring PIM

To Neighboring PIM

 Parcel
Interconnect

PBUF

Memory Port

Node
Memory

Pipelined Execution
Control Unit

Memory
Control &

Arbiter
I-Cache

Scalar Datapath
(Reg File, ALU, etc)

WideWord Datapath
(Reg File, ALU, etc)

Address/Control
Data

datapath, but special instructions permit direct transfers
between datapaths without going through memory.
Although not supported in the initial DIVA prototype,
floating-point extensions to the WideWord datapath will
be provided in future implementations. In addition to the
execution units, each DIVA PIM node contains other
essential components of note. These components are
described in [5].

4. Microarchitecture details of the DIVA
WideWord Processor

The combination of the execution control unit and
WideWord datapath is regarded as the WideWord
Processor. This component enables superword-level
parallelism [11] on wide words of 256 bits, similar to
multimedia extensions such as MMX and AltiVec. This
fine-grain parallelism offers additional opportunity for
exploiting the increased processor-memory bandwidth
available in a PIM. Selective execution, direct transfers
to/from other register files, integration with
communication, as well as the ability to access main
memory at very low latency, distinguish the DIVA
WideWord capabilities from MMX and AltiVec. This
section details the microarchitecture of this component
by first presenting an overview of the instruction set
architecture, followed by a description of the pipeline.

4.1. Instruction set architecture

Figure 4. WideWord instruction format
As shown in Figure 4, most DIVA WideWord

instructions use a three-operand format to specify two
256-bit source registers and a 256-bit destination
register. The opcode generally denotes a class of
operations, such as arithmetic, and the function denotes a
specific operation, such as add or subtract. The C bit
indicates whether the operation performed by the
instruction execution updates condition codes. The W
field indicates the operand width, allowing WideWord
data to be treated as a packed array of objects of eight,
sixteen, or thirty-two bits in size. This characteristic
means the WideWord ALU can be represented as a
number of variable-width parallel ALUs. The P field
indicates the participation mode, a form of selective
subfield execution that depends on the state of local and
neighboring condition codes. Under selective execution,
only the results corresponding to the subfields that
participate in the computation are written back, or
committed, to the instruction's destination register. The
subfields that participate in the conditional execution of a

given instruction are derived from the condition codes or
a mask register, plus the instruction's 2-bit participation
field. For more details, see [2].

The WideWord instruction set consists of roughly 30
instructions implementing typical arithmetic instructions
like add, subtract, and multiply; logical functions like
AND, OR, NOT, XOR; and logical/arithmetic shift
operations. In addition, there are load/store and transfer
instructions that provide for rich interactions between the
scalar and WideWord datapaths.

Some special instructions include permutation, merge,
and pack/unpack. The WideWord permutation network
supports fast alignment and reorganization of data in
wide registers. The permutation network enables any 8-
bit data field of the source register to be moved into any
8-bit data field of the destination register. A permutation
is specified by a permutation vector, which contains 32
indices corresponding to the 32 8-bit subfields of a
WideWord destination register. A WideWord
permutation instruction selects a permutation vector by
either specifying an index into a small set of hard-wired
commonly used permutations or a WideWord register
whose contents are the desired permutation vector. The
merge instruction allows a WideWord destination to be
constructed from the intermixing of subfields from two
source operands, where the source for each destination
subfield is selected by a condition specified in the
instruction. This merge instruction effects efficient
sorting. The pack/unpack instructions allow the
truncation/elevation of data types and are especially
useful in pixel processing.

4.2. Pipeline description

The WideWord Processor pipeline is a standard DLX-
like 5-stage pipeline, with the following stages: (1)
instruction fetch; (2) decode and register read; (3)
execute; (4) memory; and, (5) writeback. Data hazards
occur when there are read-after-write register
dependences between instructions that co-exist in the
pipeline. The controller and datapath contain the
necessary forwarding, or bypass, logic to allow pipeline
execution to proceed without stalling in most data
dependence cases. Register forwarding is complicated
somewhat by the participation capability. Participation
status must be forwarded along with each subfield to
effect correct forwarding.

5. Implementation and testing of the DIVA
WideWord Processor

The DIVA WideWord Processor specification
required on the order of 25,000 lines of VHDL code,
consisting of a mix of RTL-level behavioral and gate-
level structural code. A preliminary, unoptimized stand-
alone layout of the WideWord Processor used 100,000
standard cells (approximately one million transistors) and

opcode rD rA rB funct WP C

6 5 5 5 1 2 2 6

Field Bit Widths
(32 bits total)

occupied 10 sq mm in 0.18µm technology, projected to
operate at 300MHz while dissipating 500mW.

Although the WideWord Processor is suitable for
stand-alone implementations, the DIVA project employs
it as part of a tightly integrated node design, as discussed
in Section 3. The WideWord Processor VHDL
specification was included as part of a DIVA PIM
prototype specification, which was synthesized using
Synopsys Design Analyzer. The entire chip was placed
and routed with Cadence Silicon Ensemble, and physical
verification, such as DRC and LVS, was performed with
Mentor Calibre. The intellectual property building blocks
used in the chip include Virage Logic SRAM, a
NurLogic PLL clock multiplier, and Artisan standard
cells, pads, and register files.

The first DIVA PIM prototype, shown in Figure 5, is
a single-node implementation of the DIVA PIM chip
architecture. Due to challenges in gaining access to
embedded DRAM fabrication lines, this first prototype is
SRAM-based. This chip implements all features of the
DIVA PIM architecture except address translation and
floating-point capabilities. A second version of a PIM
chip, which not only integrates these functions but
achieves a faster clock rate, is due to tape out in the
second half of 2002. The chip shown in Figure 5 was
fabricated through MOSIS in TSMC 0.18µm technology,
and the silicon die measures 9.8mm on a side. It contains
approximately 2 million logic transistors in addition to
the 53 million transistors that implement 8 Mbits of
SRAM. The chip also contains 352 pads, of which 240
are signal I/O, and is packaged in a 35mm TBGA.

Figure 5. DIVA PIM prototype chip
The chip is being tested with the use of an HP

16702A logic analysis system. Pattern generator modules
are utilized to apply test vectors to the inputs of the chip,
and timing/state capture modules are used to sense the
outputs of the chip. The chip is currently being tested for
functionality at a testbench speed of 80MHz. Although
exhaustive testing has not yet been completed, the chip is
running a demonstration application of matrix transpose
that exercises all major control and datapaths within the
scalar processor, including the permutation network
highlighted in Section 4.1. Even in this limited test setup,
the chip is achieving 640MOPS and 2.56Gbytes/s
memory bandwidth while dissipating only 800mW. We
anticipate even greater achievements with further testing.

6. Conclusion

This paper has presented the design and
implementation of the WideWord Processor used in the

DIVA system, an integrated hardware and software
architecture for exploiting the bandwidth of PIM-based
systems. A working implementation of this design, based
on TSMC 0.18µm technology, has proven the validity of
the design. The workstation system that is currently
being developed to use this component is projected to
achieve speedups ranging from 8.8 to 38.3 over
conventional workstations for a number of applications.
These improvements arise mainly from three sources:
decreased memory times; coarse-grain parallelism across
PIMs to exploit system bandwidth; and, wide on-chip
datapaths to exploit fine-grain parallelism, including
especially those wide datapaths within the WideWord
Processor.

Acknowledgments

This research was supported by DARPA contract
F30602-98-2-0180.

References

[1] http://www.altivec.org
[2] J. Brockman, et al, "Microservers: A New Memory

Semantics for Massively Parallel Computing", in Proc. of the
International Conference on Supercomputing, June 1999, pp.
454 - 463.

[3] D. Burger, J. Goodman and A. Kagi. "Memory
Bandwidth Limitations of Future Microprocessors," In Proc. of
the 23rd International Symposium on Computer Architecture,
May 1996.

[4] J. Chame, M. Hall and J. Shin, "Code Transformations
for Exploiting Bandwidth in PIM-Based Systems," In Proc. of
the Workshop on Solving the Memory Wall Problem, ISCA
Workshop, June 2000.

[5] J. Draper, et al, "The Architecture of the DIVA
Processing-in-Memory Chip", to appear at International
Conference on Supercomputing, June 2002.

[6] M. Hall, et al, "Mapping Irregular Applications to
DIVA: A Data-Intensive Architecture," In Proc. of SC '99,
November 1999.

[7] M. Hall and C. Steele. "Memory Management in a PIM-
Based Architecture," in Proc. of the Workshop on Intelligent
Memory Systems, October 2000.

[8] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufman, Second Edition,
1996.

[9] S. Iyer and H. Kalter, "Embedded DRAM Technology:
Opportunities and Challenges," IEEE Spectrum, April 1999,
pp. 56 - 64.

[10] C. Kang, J. Draper, "A Fast, Simple Router for the
Data-Intensive Architecture (DIVA) System," In Proc. of the
IEEE Midwest Symposium on Circuits and Systems, August
2000.

[11] R. Lee, "Subword Parallelism with MAX-2," IEEE
Micro 16(4), Aug. 1996, pp. 51 - 59.

[12] T. von Eicken, D. Culler, S. C. Goldstein, and K.
Schauser, "Active Messages: a Mechanism for Integrated
Communication and Computation", In Proc. of the 19th
International Symposium on Computer Architecture, May
1992.

