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Abstract 

The Data-Intensive Architecture (DIVA) system 
incorporates Processing-In-Memory (PIM) chips as 
smart-memory coprocessors to a microprocessor. This 
architecture exploits inherent memory bandwidth both 
on chip and across the system to target several classes of 
bandwidth-limited applications, including multimedia, 
pointer-based, and sparse-matrix applications. The 
DIVA project is building a prototype workstation-class 
system using PIM chips in place of standard DRAMs to 
demonstrate these concepts.  

A key component of this architecture is the WideWord 
Processor, which is a 5-stage pipelined 256-bit 
datapath, complete with register file and ALU blocks.  
This component offers fine-grained data parallelism 
resulting in significant speedups. This paper details the 
design and implementation of this WideWord Processor 
in TSMC 0.18µm technology. 

1. Introduction 

The increasing gap between processor and memory 
speeds is a well-known problem in computer 
architecture, with peak processor performance increasing 
at a rate of 50-60% per year while memory access times 
improve at merely 5-7%. Furthermore, techniques 
designed to hide memory latency, such as multithreading 
and prefetching, actually increase the memory bandwidth 
requirements [3]. A recent VLSI technology trend, 
embedded DRAM, offers a promising solution to 
bridging the processor-memory gap [9]. One application 
of this technology integrates logic with high-density 
memory in a processing-in-memory (PIM) chip. Because 
PIM internal processors can be directly connected to the 
memory banks, the memory bandwidth is dramatically 
increased (with hundreds of gigabit/second aggregate 
bandwidth available on a chip--up to 2 orders of 
magnitude over conventional DRAM). Latency to on-
chip logic is also reduced, down to as little as one half 
that of a conventional memory system, because internal 
memory accesses avoid the delays associated with 
communicating off chip. 

The Data-Intensive Architecture (DIVA) project uses 
PIM technology to replace or augment the memory 

system of a conventional workstation with "smart 
memories" capable of very large amounts of processing. 
System bandwidth limitations are thus overcome in three 
ways: (1) tight coupling of a single PIM processor with 
an on-chip memory bank; (2) distributing multiple 
processor-memory "nodes" per PIM chip; and, (3) 
utilizing a separate chip-to-chip interconnect, for direct 
communication between nodes on different chips that 
bypasses the host system bus. The system architecture of 
DIVA is focused on achieving the following four goals: 
(1) developing PIMs that can serve as the only memory 
in the system, assuming the dual roles of "smart 
memories" and conventional memory; (2) supporting a 
wide range of familiar programming paradigms, closely 
related to parallel computing; (3) targeting applications 
that are severely impacted by the processor-memory 
bottlenecks in conventional systems: sparse-matrix and 
pointer-based applications with irregular memory access 
patterns, and image and video applications with large 
working sets; and, (4) developing a VLSI device to 
exploit memory and communications bandwidth in PIM-
based systems while making efficient use of on-chip 
resources for target applications. 

This paper focuses on the microarchitecture design 
and implementation of the WideWord Processor 
component of the PIM processing logic.  Similar in style 
to vector extensions like AltiVec [1], the DIVA 
WideWord Processor uses a 256-bit datapath that 
enables significant processing speedups through the use 
of data parallelism. The WideWord Processor was 
fabricated as part of a DIVA prototype chip in TSMC 
0.18µm technology and is currently in test. The 
remainder of the paper is organized as follows. Sections 
2 and 3 present an overview of the DIVA system 
architecture and microarchitecture, to put the WideWord 
Processor design into its proper context. Section 4 
describes the WideWord microarchitecture in detail. 
Section 5 presents details of the fabrication and testing of 
the WideWord Processor as part of a PIM chip, and 
Section 6 concludes the paper. 

2. System architecture overview 

A driving principle of the DIVA system architecture is 
efficient use of PIM technology while requiring a smooth 
migration path for software. This principle demands 



integration of PIM features into conventional systems as 
seamlessly as possible. As a result, DIVA PIM chips are 
designed to resemble commercial DRAMs, enabling PIM 
memory to be accessed by host software as if it were 
conventional memory. In Figure 1, we show a small set 
of PIMs connected to a single host processor through 
conventional memory control logic. 

 

Figure 1. DIVA system architecture 
Spawning computation, gathering results, 

synchronizing activity, or simply accessing non-local 
data is accomplished via parcels. A parcel is similar to an 
active message, as it is a relatively lightweight 
communication mechanism containing a reference to a 
function to be invoked when the parcel is received [12]. 
From a programmer's view, parcels, together with the 
global address space supported in DIVA, provide a 
compromise between the ease of programming a shared-
memory system and the architectural simplicity of pure 
message passing. Parcels utilize a separate PIM-to-PIM 
interconnect to enable communication without interfering 
with host-memory traffic, as shown in Figure 1. Details 
of this interconnect can be found in [10], and more detail 
about the DIVA system architecture can be found in 
[2][4][6][7].  

3. Microarchitecture overview 

Each DIVA PIM chip is a VLSI memory device 
augmented with general-purpose computing and 
networking/communication hardware. Although a PIM 
may consist of multiple nodes, each of which are 
primarily comprised of a few megabytes of memory and 
a node processor, Figure 2 shows a PIM with a single 
node, which reflects the focus of the initial research that 
is being conducted. Nodes on a PIM chip share a single 
PIM Routing Component (PiRC) and a host interface. 
The PiRC is responsible for routing parcels on and off 
chip. The host interface implements the JEDEC standard 
SDRAM protocol so that memory accesses as well as 
parcel activity initiated by the host appear as 
conventional memory accesses from the host perspective. 

Figure 2 also shows two interconnects that span a PIM 
chip for information flow between nodes, the host 
interface, and the PiRC. Each interconnect is 
distinguished by the type of information it carries. The 
PIM memory bus is used for conventional memory 
accesses from the host processor. The parcel interconnect 

allows parcels to transit between the host interface, the 
nodes, and the PiRC. Within the host interface, a parcel 
buffer (PBUF) is a buffer that is memory-mapped into 
the host processor's address space, permitting 
application-level communication through parcels. Each 
PIM node also has a PBUF, memory-mapped into the 
node's local address space.  

 

Figure 2. DIVA PIM chip organization 
Figure 3 shows the major control and data 

connections within a node, with the 256-bit memory data 
bus as the centerpiece. The DIVA PIM node processing 
logic supports single-issue, in-order execution, with 32-
bit instructions and 32-bit addresses. There are two 
datapaths whose actions are coordinated by a single 
execution control unit: a scalar datapath that performs 
sequential operations on 32-bit operands, and a 
WideWord datapath that performs fine-grain parallel 
operations on 256-bit operands. Both datapaths execute 
from a single instruction stream under the control of a 
single 5-stage DLX-like pipeline [8]. The instruction set 
has been designed so both datapaths can, for the most 
part, use the same opcodes and condition codes, 
generating a large functional overlap. 

 

Figure 3. DIVA PIM node architecture 
Each datapath has its own independent general-

purpose register file, 32 32-bit registers for the scalar 
datapath and 32 256-bit registers for the WideWord 
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datapath, but special instructions permit direct transfers 
between datapaths without going through memory. 
Although not supported in the initial DIVA prototype, 
floating-point extensions to the WideWord datapath will 
be provided in future implementations. In addition to the 
execution units, each DIVA PIM node contains other 
essential components of note. These components are 
described in [5]. 

4. Microarchitecture details of the DIVA 
WideWord Processor 

The combination of the execution control unit and 
WideWord datapath is regarded as the WideWord 
Processor. This component enables superword-level 
parallelism [11] on wide words of 256 bits, similar to 
multimedia extensions such as MMX and AltiVec. This 
fine-grain parallelism offers additional opportunity for 
exploiting the increased processor-memory bandwidth 
available in a PIM. Selective execution, direct transfers 
to/from other register files, integration with 
communication, as well as the ability to access main 
memory at very low latency, distinguish the DIVA 
WideWord capabilities from MMX and AltiVec. This 
section details the microarchitecture of this component 
by first presenting an overview of the instruction set 
architecture, followed by a description of the pipeline. 

4.1. Instruction set architecture 

 

Figure 4. WideWord instruction format 
As shown in Figure 4, most DIVA WideWord 

instructions use a three-operand format to specify two 
256-bit source registers and a 256-bit destination 
register. The opcode generally denotes a class of 
operations, such as arithmetic, and the function denotes a 
specific operation, such as add or subtract. The C bit 
indicates whether the operation performed by the 
instruction execution updates condition codes. The W 
field indicates the operand width, allowing WideWord 
data to be treated as a packed array of objects of eight, 
sixteen, or thirty-two bits in size. This characteristic 
means the WideWord ALU can be represented as a 
number of variable-width parallel ALUs. The P field 
indicates the participation mode, a form of selective 
subfield execution that depends on the state of local and 
neighboring condition codes. Under selective execution, 
only the results corresponding to the subfields that 
participate in the computation are written back, or 
committed, to the instruction's destination register. The 
subfields that participate in the conditional execution of a 

given instruction are derived from the condition codes or 
a mask register, plus the instruction's 2-bit participation 
field. For more details, see [2]. 

The WideWord instruction set consists of roughly 30 
instructions implementing typical arithmetic instructions 
like add, subtract, and multiply; logical functions like 
AND, OR, NOT, XOR; and logical/arithmetic shift 
operations.  In addition, there are load/store and transfer 
instructions that provide for rich interactions between the 
scalar and WideWord datapaths.   

Some special instructions include permutation, merge, 
and pack/unpack. The WideWord permutation network 
supports fast alignment and reorganization of data in 
wide registers. The permutation network enables any 8-
bit data field of the source register to be moved into any 
8-bit data field of the destination register. A permutation 
is specified by a permutation vector, which contains 32 
indices corresponding to the 32 8-bit subfields of a 
WideWord destination register. A WideWord 
permutation instruction selects a permutation vector by 
either specifying an index into a small set of hard-wired 
commonly used permutations or a WideWord register 
whose contents are the desired permutation vector. The 
merge instruction allows a WideWord destination to be 
constructed from the intermixing of subfields from two 
source operands, where the source for each destination 
subfield is selected by a condition specified in the 
instruction.  This merge instruction effects efficient 
sorting.  The pack/unpack instructions allow the 
truncation/elevation of data types and are especially 
useful in pixel processing. 

4.2. Pipeline description 

The WideWord Processor pipeline is a standard DLX-
like 5-stage pipeline, with the following stages: (1) 
instruction fetch; (2) decode and register read; (3) 
execute; (4) memory; and, (5) writeback. Data hazards 
occur when there are read-after-write register 
dependences between instructions that co-exist in the 
pipeline. The controller and datapath contain the 
necessary forwarding, or bypass, logic to allow pipeline 
execution to proceed without stalling in most data 
dependence cases. Register forwarding is complicated 
somewhat by the participation capability.  Participation 
status must be forwarded along with each subfield to 
effect correct forwarding. 

5. Implementation and testing of the DIVA 
WideWord Processor 

The DIVA WideWord Processor specification 
required on the order of 25,000 lines of VHDL code, 
consisting of a mix of RTL-level behavioral and gate-
level structural code. A preliminary, unoptimized stand-
alone layout of the WideWord Processor used 100,000 
standard cells (approximately one million transistors) and 
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occupied 10 sq mm in 0.18µm technology, projected to 
operate at 300MHz while dissipating 500mW. 

Although the WideWord Processor is suitable for 
stand-alone implementations, the DIVA project employs 
it as part of a tightly integrated node design, as discussed 
in Section 3. The WideWord Processor VHDL 
specification was included as part of a DIVA PIM 
prototype specification, which was synthesized using 
Synopsys Design Analyzer. The entire chip was placed 
and routed with Cadence Silicon Ensemble, and physical 
verification, such as DRC and LVS, was performed with 
Mentor Calibre. The intellectual property building blocks 
used in the chip include Virage Logic SRAM, a 
NurLogic PLL clock multiplier, and Artisan standard 
cells, pads, and register files. 

The first DIVA PIM prototype, shown in Figure 5, is 
a single-node implementation of the DIVA PIM chip 
architecture. Due to challenges in gaining access to 
embedded DRAM fabrication lines, this first prototype is 
SRAM-based. This chip implements all features of the 
DIVA PIM architecture except address translation and 
floating-point capabilities. A second version of a PIM 
chip, which not only integrates these functions but 
achieves a faster clock rate, is due to tape out in the 
second half of 2002. The chip shown in Figure 5 was 
fabricated through MOSIS in TSMC 0.18µm technology, 
and the silicon die measures 9.8mm on a side. It contains 
approximately 2 million logic transistors in addition to 
the 53 million transistors that implement 8 Mbits of 
SRAM. The chip also contains 352 pads, of which 240 
are signal I/O, and is packaged in a 35mm TBGA. 

 

Figure 5. DIVA PIM prototype chip 
The chip is being tested with the use of an HP 

16702A logic analysis system. Pattern generator modules 
are utilized to apply test vectors to the inputs of the chip, 
and timing/state capture modules are used to sense the 
outputs of the chip. The chip is currently being tested for 
functionality at a testbench speed of 80MHz. Although 
exhaustive testing has not yet been completed, the chip is 
running a demonstration application of matrix transpose 
that exercises all major control and datapaths within the 
scalar processor, including the permutation network 
highlighted in Section 4.1. Even in this limited test setup, 
the chip is achieving 640MOPS and 2.56Gbytes/s 
memory bandwidth while dissipating only 800mW. We 
anticipate even greater achievements with further testing. 

6. Conclusion 

This paper has presented the design and 
implementation of the WideWord Processor used in the 

DIVA system, an integrated hardware and software 
architecture for exploiting the bandwidth of PIM-based 
systems. A working implementation of this design, based 
on TSMC 0.18µm technology, has proven the validity of 
the design. The workstation system that is currently 
being developed to use this component is projected to 
achieve speedups ranging from 8.8 to 38.3 over 
conventional workstations for a number of applications. 
These improvements arise mainly from three sources: 
decreased memory times; coarse-grain parallelism across 
PIMs to exploit system bandwidth; and, wide on-chip 
datapaths to exploit fine-grain parallelism, including 
especially those wide datapaths within the WideWord 
Processor. 

Acknowledgments 

This research was supported by DARPA contract 
F30602-98-2-0180. 

References 

[1] http://www.altivec.org 
[2]  J. Brockman, et al, "Microservers: A New Memory 

Semantics for Massively Parallel Computing", in Proc. of the 
International Conference on Supercomputing, June 1999, pp. 
454 - 463. 

[3] D. Burger, J. Goodman and A. Kagi. "Memory 
Bandwidth Limitations of Future Microprocessors," In Proc. of 
the 23rd International Symposium on Computer Architecture, 
May 1996. 

[4] J. Chame, M. Hall and J. Shin, "Code Transformations 
for Exploiting Bandwidth in PIM-Based Systems," In Proc. of 
the Workshop on Solving the Memory Wall Problem, ISCA 
Workshop, June 2000. 

[5] J. Draper, et al, "The Architecture of the DIVA 
Processing-in-Memory Chip", to appear at International 
Conference on Supercomputing, June 2002. 

[6] M. Hall, et al, "Mapping Irregular Applications to 
DIVA: A Data-Intensive Architecture," In Proc. of SC '99, 
November 1999. 

[7] M. Hall and C. Steele. "Memory Management in a PIM-
Based Architecture," in Proc. of the Workshop on Intelligent 
Memory Systems, October 2000. 

[8] J. Hennessy and D. Patterson, Computer Architecture: A 
Quantitative Approach, Morgan Kaufman, Second Edition, 
1996. 

[9] S. Iyer and H. Kalter, "Embedded DRAM Technology: 
Opportunities and Challenges," IEEE Spectrum, April 1999, 
pp. 56 - 64. 

[10] C. Kang, J. Draper, "A Fast, Simple Router for the 
Data-Intensive Architecture (DIVA) System," In Proc. of the 
IEEE Midwest Symposium on Circuits and Systems, August 
2000. 

[11] R. Lee, "Subword Parallelism with MAX-2," IEEE 
Micro 16(4), Aug. 1996, pp. 51 - 59. 

[12] T. von Eicken, D. Culler, S. C. Goldstein, and K. 
Schauser, "Active Messages: a Mechanism for Integrated 
Communication and Computation", In Proc. of the 19th 
International Symposium on Computer Architecture, May 
1992. 


