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Abstract—Demand response is a key element of the smart grid 

technologies. This is a particularly interesting problem with 

the use of dynamic energy pricing schemes which incentivize 

electricity consumers to consume electricity more prudently in 

order to minimize their electric bill. On the other hand 

optimizing the number and production time of power 

generation facilities is a key challenge. In this paper, three 

models are presented for consumers, utility companies, and a 

third-part arbiter to optimize the cost to the parties 

individually and in combination. Our models have high 

quality and exhibit superior performance, by realistic 

consideration of non-cooperative energy buyers and sellers 

and getting real-time feedback from their interactions. 

Simulation results show that the energy consumption 

distribution becomes very stable during the day utilizing our 

models, while consumers and utility companies pay lower cost. 

I. INTRODUCTION 

There is no substitute for the status of electrical energy, 

which dramatically fuels both the development of economy 

and the improvement of people’s living standard. 

Availability of affordable and sustainable electrical energy 

has been the key to prosperity and continued socio-

economic growth of nations and the world  [1]. Two key 

characteristics of electrical energy are that it is easy to 

distribute but hard to store. More precisely, electrical 

energy can be transmitted to a faraway place with only a 

tiny loss, but unlike other common forms of energy such as 

chemical or kinetic, electricity must be used as it is being 

generated. If storage is needed, it must typically be 

converted immediately into another form of energy such as 

potential, kinetic, or electrochemical. 

The huge difference between energy consumption levels 

at peak usage time and off-peak times has resulted in not 

only cost inefficiencies and potential brownouts and 

blackouts, but also environmental pollution due to over 

provisioning of the Power Grid and the resulting energy 

waste  [7]. Utility companies are interested in reducing the 

peak demand of energy consumers so that their cost can be 

reduced. However, the power demand depends on 

exogenous factors and varies dramatically as a function of 

time of day and seasonal factors  [10].   

An ideal method to solve this problem is dynamic 

energy pricing  [2]- [10]. Dynamic changes in energy prices 

provide an incentive for the customers to shift their energy 

consumption from peak-energy-use hours to off-peak hours, 

thus save money on their monthly electrical bill. At the 

same time, by proper use of energy, utility companies save 

capital expenditure by not having to add new power plants 

to the Grid in order to meet the customers’ peak-hour 

demands. So, dynamic energy pricing can benefit both the 

consumer and the producer in an economical way. 

Implementing dynamic energy pricing faces many 

challenges. The most difficult step is how to predict 

people’s reaction to various dynamic energy pricing 

schemes, which calls for accurate models and practical 

algorithms. In addition, the price of electrical energy can 

have a significant effect on the national and local 

economies. Improper dynamic energy pricing can result in a 

decrease of economic activities or even economic 

dislocation. That is why governments impose restrictions on 

electrical energy prices.  

Existing research on dynamic energy pricing can be 

classified into two categories: profit maximization for 

utility companies  [10] or cost minimization for 

customers  [7] and  [8]. In reality, each of utility companies 

and customers tend to make their decisions based on the 

reaction of the other. Works such as the ones in  [7],  [8] 

and  [10] fail to consider the feedback effects between the 

two, and cannot give a “closed loop” solution. 

In the classical economics problems between sellers and 

buyers, economists always give suggestions to the sellers 

based on the reaction of the buyers or vice versa because 

although the government would like to maximize the total 

social welfare, we still need to consider sellers and buyers 

as non-cooperative and always making decisions based on 

their own best solution. This is also the case for energy 

users and utility companies. Considering this fact, three 

models of dynamic energy pricing are presented in this 

paper to solve the cost minimization problem for either the 



energy consumers or the utility companies. In addition, 

another contribution of this paper is to present a third model 

which is a combination of the first two where a feedback 

system is created and managers can make their decisions 

based on the reaction of customers and power 

generations  [11]- [12]. 

The remainder of this paper is organized as follows. In 

the next section, we present our models for optimizing the 

cost of both costumers and power generations. Section  III 

reports the simulation results. The paper is concluded in 

Section  IV. 

II. MODELS AND COST OPTIMIZATION METHODS 

As stated above, three types of optimization problems are 

presented in this paper. For each problem, a related model 

is created and an optimal solution is discussed. A unified 

electricity bill is used in all the models. 

The first model deals with task scheduling problems. 

Under the given daily price function, we act as a house 

owner to decide when to start each task in order to 

minimize the total electrical energy bill. The second model 

is for engineers in the utility company. The energy demand 

at each time is given and the problem is to decide whether 

to turn on or turn off power generation facilities to meet the 

energy requirements while minimizing the cost to the utility 

company. In the third model, we analyze the problem from 

a global manager’s perspective to decide the price 

distribution in order to maximize the total social welfare. 

This time we assume that both customers and utility 

companies are making their own optimal choices and find a 

good solution based on repeatedly calling for the first two 

models. 

A. Model for Homeowners 

Figure 1shows an example of a task scheduling solution 

based on the given electricity price function. The height of 

the task box in this figure signifies the amount of power 

each household task consumes while running. 

Figure 1. An example of the task scheduling problem. 

In this paper, a slotted time model is assumed for all 

models, i.e., all system cost parameters and constraints as 

well as scheduling decisions are provided for discrete time 

intervals of constant length. The scheduling epoch is thus 

divided into a fixed number of equal-sized time slots (in the 

experiment, a day is divided into 24 time slots, each of 

duration 1 hour). Tasks can be launched only at the 

beginning of one of these time slots and will be completed 

at the end of the slots. 

We define Price function, P(i), as the price of one unit 

of energy (kWh) at time slot i. In the first model, we 

assume that P(i) is fixed and pre-announced by the utility 

company before the start of the day, which means house 

owners can make their decisions about the whole day but 

their decisions does not affect the energy price function.  

In this model, we also assume that there are a number of 

tasks in each house that should be executed daily. These 

tasks are identified by index j. The set of task indexes is 

denoted by K={1, …,N}. For each task j, the earliest start 

time, es(j), the latest end time, le(j), energy consumption 

per time slot, C(j), and the duration of task, Time(j), are 

specified. 

To solve the task assigning problem, two additional 

definitions are needed: start time, S(j), which represents the 

time slot when a task starts and task operation matrix, 

M(i,j),which represents the operating condition of each task 

j at time slot i. We set M(i,j)=1 when at time slot i, task j is 

operating. Otherwise M(i,j)=0. 

Using the above definition, the homeowner’s cost 

minimization problem can be modeled as follows. Given 

P(i), C(j), and Time(j), es(j), le(j), we are to assign S(j) for 

each j. The problem is to minimize the total cost 
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subject to: 

S(j)  ≥  es(j) 

S(j)+Time(j)<le(j) 

where M(i,j) can be found by the following method: 

Initialize M(i,j)=0 for all i and j; 

for each j { 

for (i=S(j), i<S(j)+T(j), i++) 

M(i,j)=1; 

} 

In this model, for simplicity, we assume that each task is 

independent of other tasks. We use a greedy algorithm to 

find the minimal cost: for Time(j)=k, from the earliest start 

time to the latest possible start time, we calculate all the 

values of P(i)+P(i+1)+….+P(i+k-1) and find the minimal 

sum. Then we put this task into these timeslots. Repeat the 

above steps until all the tasks are arranged. It can simply be 

proven that the proposed greedy algorithm obtains the 

global optimum solution.  
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B. Model for Utility Companies 

As stated earlier, utility companies have been willing to 

reduce the peak demand from energy consumers. But when 

the demand is given, the engineers in the utility company 

should decide whether to turn on or turn off the power 

generation facilities. Many times a utility company prefers 

to waste some amount of energy in order to avoid 

repeatedly turning its power generation on and off, and 

thus, avoid the resulting large amount of startup operating 

costs. For example, in Los Angeles, some buildings in the 

downtown area may turn on their lights all night and waste 

energy although there is no body inside. This will be done 

to reduce the power generation startup cost. 

In this model, we act as an engineer to consider how 

many power generation facilities will operate at each time, 

T(i), when the energy demand for each time, Con(i), is 

given. For a utility company, we assume that the operating 

price of one power generation facility per time, Pc, the price 

of turning on one power generation facility, Pon, the price of 

turning off one power generation facility, Poff, and the 

amount of energy one power generation facility can offer, 

i.e., the load it can service are specified.  

To solve this problem, we assign each power generation 

facility an integer number from 1 to Max-number. We can 

then create a power generation operation matrix L(i,j), 

which represents the operating condition of each power 

generation j at time slot i. We set L(i,j)=1 if power 

generation facility j is operating at time slot i, Otherwise 

L(i,j)=0. For simplicity, we assume that we can turn on a 

power generation facility with the smallest number and turn 

off an operating power generation facility with the largest 

number. This means we will never have L(i, j)=0 but 

L(i,j+1)=1. L(i,j) and T(i) can be translated from each other. 

Our goal is to minimize the total cost of the utility 

company (namely costg), which consists of the total 

operating cost and the total turning on and off cost. The 

problem formulation is as follows: 
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where the last constraint forces the amount of energy 

provided by the power generations in each time to be 

greater  than amount of energy needed at that time.   

For this model, we use an algorithm that we refer to as 

the filling method. This method can be proven to find the 

optimal solution. The steps of this algorithm are following. 

1. Calculate the minimal T(i) based on the constraints and 

calculate the corresponding L(i,j): 

For each i {  

 T[i] = Con[i]/load + 1; 

 for(j=1; j<T[i]+1; j++) 

 L[i][j] = 1; 

 for(j=T[i]+1; j<number of time slots; j++) 

 L[i][j] = 0; 

 } 

2. Calculate the number of time slots needed to be filled: 

expense = (Pon + Poff)/Pc 

3. Fill L(i,j) by change several 0 to 1: 

for(k=0; k<expense; k++){ 

for each i,j{ 

if(L[i][j] == 1) 

{ 

 if(L[i+2+k][j] == 1) 

 { 

 for(l=0; l<k+1; l++) 

 L[i+1+l][j] = 1; 

 } 

 } 

     } 

} 

4. Translate L(i,j) to T(i): ��	
 = 	∑ )�	, �
�  

C. Model for Global Controller 

A solution for each of the above problems is proposed to 

reach a minimized cost for homeowners or power 

generations. But these models are far from complete 

because our goal is to maximize the social welfare. Also 

note that there exists a connection between homeowners 

and utility companies so that one’s action exerts an impact 

to the other. Considering this, a feedback system is 

required. 

Homeowners and utility companies are generally non-

cooperative and always make their own optimal decision. 

Based on this, what we should be acting like a global 

controller that manages the whole system where everyone 

inside the system is making its own choice. 

Unlike our first model, this model does not assume a 

fixed price function, P(i). Instead, the price is what the 

third-part arbiter should decide, although still pre-

announced to homeowners. However, since energy price is 

very sensitive to the national and local economies, almost 

every national or local government will impose price 

constraints on utility companies. In this model, we consider 

two price constraints explained below. 

First, Average price P is a price that government gives 

in order to regulate the profit of a utility company. For the 

company to arrange the price as a function of time slot, it 

should have: 
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In addition, Pmax and Pmin are given to regulate the upper 

and the lower bounds of price at each time. 

�-�� ≤ ��	
 ≤ �-*. 

Differently from the second model in this paper, the 

energy consumption of each time Con(i) is not fixed. 

Instead, we should calculate this value after all the 

homeowners have made their decisions i.e.,  
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where Fix(i) represents the fixed energy consumption at 

each time. 

The objective function will then be to maximize the 

social welfare, which means minimizing the total cost. 

Considering that the cost for homeowners will be the 

income of power generations, we take the cost function of 

the second model as our final cost, except for an additional 

consideration: the maximal number of power generation 

facilities, Tmax), is needed. For a relatively long time 

consideration, saving one power generation means saving 

space, human and repair cost. As a result, we take the cost 

function as: 

����	 = 	����� + 	&��&0 

where a is a factor that represents the total fixed cost for 

having one power generation. So the problem of 

maximizing the social welfare is as follows: 
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In this problem, P(i) changes the behavior of the 

customers and affects the electricity demand in each time, 

and �-*. . 

The problem of minimizing the Cost is an NP complete 

problem and we use simulated annealing to find a nearly-

optimal solution. Details of this method are as follows. 

1. Set all P(i)=P_ave 

2. Based on given P(i), call the homeowner model, 

assign all tasks and calculate total energy consumption of 

each time Con(i) 

3. Based on the calculated Con(i), all the engineer 

model, assign each power generation, calculate the total 

cost 

4. Randomly change the price distribution P(i) within 

the constraints, repeat step 2 and 3 and calculate cost_new 

5. If cost_new<cost, accept the new solution, if not 

accept in a certain probability based on the temperature T 

6. Cool down and repeat from step 2 until T reaches a 

certain value. 

III. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed 

algorithms, cases corresponding to the aforesaid pricing 

models are examined. 

In these simulations, duration of a time slot is set to one 

hour. For this reason, the minimum duration of a task is 

also set to one hour, and the durations of tasks are integer 

multiples of one hour. Moreover, power consumption of the 

tasks is determined with a granularity of one hour. 

The proposed algorithms have been implemented in 

C++ code and tested for random cases. 

In Table I, we act as a house owner and we assume that 

there are in total 10 tasks for us to assign. By using the 

algorithm provided above, the cost has been reduced by 

about 13.3% in average. Figure 1 shows the initial solution 

and the final solution. 

Table I. Cost Minimization for House Owners 

 Initial cost Final cost 
Cost 

reduction 

Expr. 1 1838 1594 13.3% 

 

 

Figure 2.Task assignment process 

 



Figure 2 shows the task assignment process. Initially, all 

the tasks are assigned randomly. But after using our task 

assigning method, all the tasks are assigned at the lowest-

cost time slots based on meeting the earliest start time and 

latest end time constraints. Remember that the proposed 

greedy algorithm is optimal and its run time on a normal 

machine for more than 100 tasks is less than a second. 

In Table II, we tested the model under three different 

values for expense. The results show that as the value of 

expense increases, the cost minimization effectiveness is 

enhanced from 5.2% to 26.3%. 

Table II. Cost Minimization for Utility Companies 

 
Initial cost Final cost Cost 

reduction 

expense = 1 2223 2107 5.2% 

expense =2 2748 2303 16.2% 

expense =3 3713 2738 26.3% 

 

Figure 3 shows how our algorithm helps to assign the fill-up 

power generations for different value of expense. 
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Figure 3.Power generation working conditions for different 

expense profiles 

In Table III, we use simulated annealing for cost 

minimization. We assume that 1 power generation serves 

10 houses and each house has 10 tasks so that there are 100 

tasks in total. We can see from the tables that both 

homeowners and power generations have significantly 

reduced their cost. 

Table III. Cost Minimization for Combined Model 

 
Base-line cost Final cost Cost 

reduction 

Utility 

companies 
6939 4256 38.7% 

Homeowners 350200 293750 16.1% 

 

In this table, base-line cost refers to the cost in a case 

with initial scheduling for tasks in the homeowners and 

initial state for power generations.  

 
Figure 4. Price Distribution 

Figure 4 shows the change of price distribution. 

Initially, we set average price to all the time slots. After 

simulated annealing, the price distribution varies up to 

±75%. 

 



 
 

Figure 5.Energy consumption distribution 

Figure 5 shows the change of energy consumption 

distribution. Initially, the energy consumption exhibits peak 

and off-peak time behavior. But finally, the energy 

consumption distribution turns out to be relatively flat 

during the day. The energy consumption at the peak time is 

reduced about 50%. 

 

 
Figure 6. Power generation distribution 

Figure 6 shows the change of power generation 

distribution. Initially, we have to turn on a lot of power 

generation facilities in the peak time and turn off at the off-

peak time. But finally, as the energy consumption turns out 

to be relatively flat, the number of power generation 

facilities needed to be turned on or turned off becomes 

small. The maximum number of power generation facilities 

is reduced by about 50%. 

 
Figure 7. Simulated Annealing Steps 

Figure 7shows the change of total cost as a function of 

the simulated annealing steps. The cost reduces 

significantly in the first steps and comes relatively stable in 

the rest. The cost reduces down to about 40% of the base-

line solution. 

Runtime of the proposed heuristic for the third model is 

less than 10 seconds for 100 aggregated task in house 

owners for a machine with a dual core processor with 

frequency of 2.80 GHz. This run time is acceptable for 

using this algorithm real-time. 

IV. CONCLUSION 

Three different models of cost minimization including their 

problem formulation and solution were presented. All three 

models were implemented and tested for some random test 

schemes. More specifically in our key model, customers 

and power generation facilities are simultaneously 

considered as non-cooperative, always making decisions 

based on their own best solutions. A feedback system is 

utilized such that a manager can make the best decision 

according to the action and reaction of utility companies 

and customers. The results were compared to a base-line 

solution with significant improvements. 
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