
To appear in the IEEE Trans. on VLSI Systems, 2016 1

Abstract—Companies operating large data centers are focusing

on how to reduce the electrical energy costs of operating data
centers. A common way of cost reduction is to perform dynamic
voltage and frequency scaling (DVFS), thereby matching the
CPU’s performance and power level to incoming workloads.
Another power saving technique is CPU consolidation, which uses
the minimum number of CPUs necessary to meet the service
request demands and turns off the remaining unused CPUs.
DVFS has been already extensively studied and verified its
effectiveness. On the other hand, it is necessary to study more
about effectiveness of CPU consolidation. Key questions that must
be answered are how effectively the CPU consolidation improves
the energy efficiency and how to maximize the improvement.
These questions are addressed in this paper. After understanding
modern power management techniques and developing an
appropriate power model, this paper provides an extensive set of
hardware-based experimental results and makes suggestions
about how to maximize energy efficiency improvement through
CPU consolidation. In addition, the paper also presents new
online CPU consolidation algorithms, which reduce the energy
delay product up to 13% compared to the Linux default DVFS
algorithm.

Index Terms—Algorithm, consolidation, energy efficiency, and
virtualization.

I. INTRODUCTION
ATA centers consist of a very large number of server
machines that can be leased to provide cloud services to a

whole slew of clients running many different applications. The
number of servers employed in data centers has been rapidly
increasing, confirmed by continuous increase in the BLADE
server shipments in US and worldwide. Although the energy
efficiency of server machines has been improving, this
efficiency advances have not kept pace with the increase in
cloud computing services and the concomitant increase in the
number and size of data centers. As a result, an ever increasing
amount of electrical energy is being consumed in today’s data

Manuscript received April 15, 2015; revised August 31, 2015; accepted

October 14, 2015. This work was supported in part by a grant from the
Semiconductor Research Corporation (No. 2012-HJ-2292).

The authors are with the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA 90089 USA (e-mail:
inkwonhw@usc.edu; pedram@usc.edu).

centers, giving rise to concerns about the carbon emission
footprint of data centers and the costs of operating them. The
latter is especially important concern from the viewpoint of
datacenter owners and operators (as well as their
customers/clients who must eventually pay the bill).

Two widely employed techniques for reducing the costs of
operating data centers are server consolidation and DVFS. The
former aims at minimizing the number of ON servers in a
datacenter by consolidating all the incoming jobs into as few
servers as possible whereas the latter attempts to match the
performance of each ON server to the current workloads so that
energy can be saved at the workload level of each server. Server
consolidation is needed and complements DVFS technique
because of the energy no-proportional behavior of modern
servers [1], and an unfortunate effect by which a server
machine operating at a low performance level tends to consume
power close to the power it consumes at its peak performance
level. This is somewhat natural and expected because an
electronic circuit (with server being a special case) consumes
static power (leakage in CMOS digital circuits) regardless of
whether it provides any computational services. The issue is,
however, worse than simple leakage and has to do with the fact
that many components within a modern server system (e.g.,
“uncore” logic within the processor chip, DRAM modules on
the board, many of the I/O controllers, and even the network
interface) cannot be scaled/modulated to exhibit a linear
relationship between their power consumption and delivered
performance levels.

A data center is typically under-utilized; it has been designed
to provide the required performance and satisfy its service level
agreements (SLAs) with clients even during peak workload
hours, and hence, at other times its resources are vastly
under-utilized. For example, the minimum and the maximum
utilization of the statically provisioned capacity of Facebook’s
data center are 40% and 90%, respectively [2]. Hence, in light
of the energy non-proportionality of today’s server base, a
greater amount of energy costs can be reduced by consolidating
jobs into as few server machines as possible and turning off the
unused machines. The server consolidation has been studied
very well, and many studies have suggested the use of virtual
machine migration (VMM) as a means of doing server
consolidation [3-7].

A Comparative Study of the Effectiveness of
CPU Consolidation versus Dynamic Voltage and
Frequency Scaling in a Virtualized Multi-Core

Server
Inkwon Hwang, Student Member and Massoud Pedram, Fellow, IEEE

D

To appear in the IEEE Trans. on VLSI Systems, 2016 2

Although server consolidations can greatly lower a data
center’s total energy consumption, there is still room for further
energy savings due to the limitations and overheads associated
with the server consolidation. For one, it is difficult to conduct
server consolidation very frequently because the migration of
tasks or virtual machines causes high overheads; e.g., heavy
network traffic, high network latency and large system boot
time, plus large energy consumption to move virtual machines
and their local contexts around. Because of these overheads,
there is a relatively long period between server consolidation
decision times. To avoid the SLA violations during each timing
period when virtual machine to server assignments are fixed,
virtual machines (or tasks) are not too tightly consolidated into
the active server set in order to provide a safe margin of
operation. Too aggressive a server consolidation strategy will
result in violation of client SLAs. The longer the period
between migrations is, the larger the aforesaid margin should
be (i.e., more server machines should be activated, each at a
lower average utilization rate). Hence, server machines are still
under-utilized after datacenter-level server consolidation,
which implies that there is the potential of further energy
savings through additional resource management techniques as
explained below.

There are a number of resources in a computer system such
as computing, storage, and I/O bandwidth. This study focuses
on the computing resource, i.e., the CPU, which is a major
energy consumer. A well-known and popular energy-aware
CPU management technique is a Dynamic Voltage and
Frequency Scaling (DVFS) [3, 8, 9]. The DVFS was introduced
decades ago, and it has been one of the most effective power
saving techniques for CPUs. The amount of the energy savings
by DVFS, however, is decreasing due to the following reasons.
First, the supply voltages have already become quite low; hence,
the remaining headroom for further supply voltage reductions
is small and shrinking. Second, many modern servers have two
or more processor chips, each chip containing multiple CPUs
(cores1) but a single on-chip power distribution network shared
by all the CPUs. Because of this sharing, the CPUs on the same
package must operate at the same supply voltage level and
hence the same clock frequencies2. Unless we do ‘perfect’ load
balancing among CPUs sharing the same power bus, the
voltage level that is set for the most highly loaded CPU will
result in energy waste because all the other under-utilized CPUs
run at higher frequency than what is actually needed. Third, in a
virtualized server system, it is difficult to gather sufficient
information about the running applications, which is necessary
to choose the optimal clock frequency and voltage level for the
CPUs. This is because the virtual machine manager
(hypervisor), which conducts DVFS, resides in a privileged
domain whereas the applications are running in a different
domain (virtual machine domain) [4].

Another well-known CPU energy management technique is
Dynamic Power State Switching. Many modern processors
support multiple power states (known as C, Core C, and

1 The terms ‘CPU’ and ‘core’ are used interchangeably in this paper.
2 Some processors are capable of independent DVFS among cores while

Intel® processors are not. Intel® Xeon® processors are used for this study.

Package C-states). Each C-state specifies the circuits that are
turned ON or OFF. Based on the history of recent workloads of
CPUs, the operating system (OS) suggests C-state of each CPU.
Based on this suggestion, appropriate CC and PC-states are
chosen by a Power Control Unit (PCU). This PCU is
programmed using fine-tuned algorithms. These algorithms are
well designed but still not perfect, so we believe that further
energy savings can be achieved if there is software-level
assistance. In this study, we present a CPU consolidation
technique, which helps the PCU to reduce more energy. This
technique explicitly defines sets of active and inactive (sleep)
CPUs. It guarantees to meet performance target and reduce
energy consumption by minimizing power state switches.

There are research studies that investigate the effectiveness
of the CPU consolidation. In [10] the authors show that
consolidation across CPUs in a single processor and two
processor systems offers a very small amount of energy savings.
They used their own benchmark which is not the standard and
may not create realistic workloads. In [11] Jacob et al. compare
core-level power gating (CPG) with DVFS and show that CPG
saves more energy by 30% than DVFS. This result implies the
energy savings by the CPU consolidation may be larger if the
processor supports the CPG. However, the reported results are
calculated from a combination of real measurements and their
leakage estimator (the adopted leakage power model is
somewhat simple). In [2] the authors present a technique called
core count management (CCM), which is a variant of the CPU
consolidation technique, and report 35% energy savings.
However, all results are obtained from a simulator, and the
power and performance models used in the simulator are again
fairly simplistic.

This paper is differentiated from the prior work because of
the following reasons. First, all results are obtained not from a
simulation but from actual hardware measurements. Second,
well designed benchmarks (PARSEC and SPECWeb2009) are
used for the experiment, and we believe the workloads from
these benchmarks are realistic. Third, it is intensively analyzed
and discussed how CPU consolidation improves energy
efficiency rather than just showing final results. Fourth, this
paper compares energy efficiency improvement by CPU
consolidation, DVFS, and combined techniques (i.e., both
consolidation and DVFS are combined).

A preliminary version of this work has been published in
[12]. This archival paper is a substantially extended version,
which includes a completely new power model, using a new
benchmark (PARSEC), vastly more detailed experimental
results and discussions, and a more efficient online CPU
consolidation algorithm.

The strength of this paper is that all results are collected not
based on any simulations but rather from experiments on a
server system comprising two Intel® Xeon® Westmere E5620
processors. It is true that our conclusions are therefore
applicable to the server under consideration. However, as also
explained below, this server is an archetypical Intel server that
can be used in a wide range of scenarios from small cluster of
servers to larger data center computing. Hence, we believe
there is value and benefit in understanding and quantifying the

To appear in the IEEE Trans. on VLSI Systems, 2016 3

energy efficiency gains that can be achieved by using the right
combination of DVFS and CPU consolidation in such a server.
Clearly, the basic power management strategy must be
enhanced when we go from the level of an individual server or a
small server clusters to a very large (potentially heterogeneous)
number of servers in a data center (see for example, references
[13-15]); However, further study on the server level will be
essential and important in deriving global power management
strategies at higher levels. Moreover, to the best of our
knowledge, this is the only published result that provides such a
detailed discussion of the core and package C-states in a
modern server, develops and validates power and latency
models for applications running on these servers as a function
of the deployed DVFS and/or consolidation policy, and
suggests effective yet simple, solutions for applying a
combination of DVFS and CPU consolidation to these servers
(esp. for I/O bound applications).

The remainder of the paper is organized as follows. Existing
CPU power management technologies are reviewed in Section
II. In Section III we present the power and delay models. Based
on these models we discuss how CPU consolidation can
improve energy efficiency. The metrics for quantifying energy
efficiency are presented in section IV. The experimental system
setup is explained in Section V. Section VI presents our
extensive experimental results and discussions. Finally, we
summarize the results and provide final conclusions and
insights in Section VII.

II. BACKGROUND – POWER MANAGEMENT TECHNOLOGIES
The purpose of this study is to understand how effectively

CPU consolidation improves the energy efficiency of server
systems so as to maximize the improvement. The consolidation
interacts with existing power management technologies, so it is
helpful to understand these technologies. In this section, the
processor power and performance states are briefly reviewed.
In addition, we review Intel® Quickpath Interface technology
which may affect the energy savings by consolidation. Before
starting a discussion, a few confusing terms is clearly defined
below:
• CPU – all circuits used to perform arithmetic/logic operations and

L1 and L2 cache memories. A term ‘core’ is used interchangeably
with a word ‘CPU’ in this paper

• uncore – all components in a processor except cores
• package – a physical unit which has core and uncore. A word

‘package’ is used interchangeably with a word ‘processor’
• CPU consolidation – it is simply called ‘consolidation’ unless it is

confusing
• total utilization – sum of percentage of times when CPUs are

running codes. For example, when two CPUs are fully utilized, the
total utilization is 200%

• average utilization – average utilization per core. It is calculated
by dividing total utilization by the number of active CPUs, so it
should be equal to or less than 100%. This term is simply called
‘utilization’ or ‘util’

• throughput – the number of tasks (jobs) processed in a second
• delay – total amount of time spent for executing a task. This

includes the time when a task is suspended and that waiting in a
queue of the CPU scheduler.

A. Processor power states (C, CC, PC-States)
The Advanced Configuration and Power Interface (ACPI)

specification was developed as an open standard for
OS-directed power management. Many modern operating
systems (OS) meet this specification. First, the specification
defines C-States as processor power states; when a processor is
in a higher-numbered C-State, which is also called a ‘deeper’
sleep state, a larger area of internal circuitry is turned off or
inactive, which reduces power dissipation. On the other hand, it
also takes longer time to go back to the operating state (i.e., C0
state). The number of supported C-States is processor
dependent. For example, the Intel® Core™ i7 processor
(code-named Nehalem) supports the following core states: C0
(normal operating mode–cores in this state are either executing
code or are in standby), C1 (autoHALT–a low power state
entered when all threads within the core execute a HLT or
MWAIT instruction), C1E (autoHALT with lowest frequency
and voltage operating point), C3 (deep sleep–cores in this state
flush their L1 instruction cache, L1 data cache, and L2 cache to
the L3 shared cache; Clocks are shut off to each core), and C6
(deep power down–cores in this state save their architectural
state before removing core voltage). See Intel® CoreTM i7
datasheets for more detailed information.

The C-state is also known as a logical C-State. An OS
‘requests’ a change in C-State of logical cores 3, but the request
may be denied (e.g., auto demotion). The decision about
demotion is made based on each core’s immediate residency
history (think of this as the breakeven time for the proposed
power state transition); if an amount of future residency in idle,
which is estimated from the residency history, is insufficient,
then a request to transition a core into a deeper power state will
be ignored. In general, the entry/exit costs (latency and energy
overheads) increase when the processor/core escapes from a
deeper sleep state; hence, the auto demotion prevents
unnecessary excursions into deeper power states, and thereby,
it reduces both latency and energy overheads of power state
switches.

In addition to the logical C-states there are two more types of
hardware C-States: core (𝐶𝐶𝑛) and package C-state (𝑃𝐶𝑛).
Based on logical C-state switch request from an OS, a Power
Control Unit (PCU) decides about the CC and PC-states. Each
core and/or package can switch its power state independently;
that is, CC-state of a core may be different from that of other
cores. Likewise, PC-state of one package could be different
from that of another package. The 𝐶𝐶0 state is a special state
that deserves more discussion; a core is in this state when it is
executing tasks or when it is standing by for the next task to
arrive (but is still in the normal operating mode). Note that a
core does not immediately switch from 𝐶𝐶0 state to a deeper
sleep state when it becomes idle.

The PC-state of a package depends on the CC-states of cores
in the package. In particular, a package state can be 𝑃𝐶𝑘 only
when all of its cores are in 𝐶𝐶𝑘 state or deeper CC-states. It is
because some resources shared by cores cannot be turned off

3 A logical core is identical to a physical core unless Intel® hyper-threading

is enabled. In this study hyper-threading was disabled.

To appear in the IEEE Trans. on VLSI Systems, 2016 4

unless all cores are inactive. For example, the Intel® i7
processor’s L3 cache is shared by multiple cores, so a package
should stay in active state if any core is still active. Otherwise,
the active cores cannot function properly.

B. Processor performance state (P-States)
While a processor executes codes, it can be in one of several

performance states (P-State), which specify the clock frequency
and corresponding voltage level. At the higher frequency, the
performance is higher, but its power dissipation is also higher.
Similar to the C-States, the number of supported P-States is
processor- dependent, and a frequency is higher at lower
numbered P-States, that is, P0 is the highest performance state.

An OS chooses the P-State based on the historical workload
information. The OS may not choose the same state for all cores,
but all cores in Intel® processors will run at the same clock
frequency. Therefore, even if the OS sets different P-States for
the cores, only one state is selected and applied. In general, the
highest performance state is chosen, but another decision policy
may be used. Because of this hardware constraint of the current
Intel® processors, it is recommended to distribute the workload
evenly among all active cores. Otherwise, the selected P-State
will be appropriate only for some cores, but not for the others.

C. Core-level power gating
Recent state-of-the-art Intel® processors are capable of

core-level power gating; processors can completely shut down
some of the cores (the OFF cores consume nearly zero power).
Processors with the power gating feature have additional
C-State at which power dissipation is nearly zero, but with the
largest entry/exit costs. Note that the processor used in this
study supports core-level power gating.

D. Intel® Quickpath Interconnect (QPI)
In the past there was only one memory controller (MC) in a

system because one MC was enough for single core/processor
systems. However, modern server systems, which have
multiple packages (processors), need multiple MCs to achieve a
target performance level. With a single MC, performance of all
packages reduces as soon as a CPU in one package uses
memory controller heavily. In order to address such a memory
bottleneck issue, Intel® invented QPI; each package owns an
integrated memory controller (IMC) and communicates with
other packages through the QPI. An example of a dual
processor system is shown in Fig. 1. . Half of DDR3 slots are
directly connected to a first package while the other half is
connected to a second package. Therefore, if a core in package
#1 needs data located in a remote DDR3, which is connected to
package #2, the data is requested and received through QPI.
Hence, the PC-state of some package may not be the deepest
sleep state even when all CPUs in that package are inactive.
This is because any CPU in other packages may be requesting
data from the DDR3 slots that are directly connected to the
package in question. Due to this phenomenon, it is expected
that power savings achievable by package-level consolidation
are negligible. This will be discussed in more details in a later
section.

Fig. 1. Intel® QPI block diagram

III. POWER, DELAY AND CONSOLIDATION
In this section we present power and delay models for Chip

Multiprocessor (CMP) server systems. Using these models, we
will discuss how the consolidation affects the energy efficiency
and delay. This discussion is abstraction level, so it may be too
simplified to cover everything of real situations. However, we
believe it is sufficient for deriving insights. The discussion
about the power/latency tradeoffs will be verified by empirical
results in Section VI. Note that thermal issues (e.g., leakage
power variation as a function of chip temperature) are not
considered. This is because we can do consolidation only when
the system is under-utilized, which also implies that the
temperature of processor chips is not very high.

A. Power model
This section presents a full platform-level power dissipation

model, accounting for the power consumed by all components
within a server system. This model estimates the system power
dissipation by using statistical data reported by the system; i.e.,
the percentage of time spent in specific CC and PC-states.

The processor power dissipation consists of core and uncore
power dissipations. Some notations used for the model and
their definitions are shown below:

• 𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 – Power dissipation by a core when the core is active and
executing code. This active power is a function of P-State of active
cores. This is also dependent on the type of workload, but we do not
consider this factor because consolidation does not change
characteristics of the current workload.

• 𝑃𝐶𝐶𝑛
𝑐𝑐𝑐𝑐 – Power dissipation by a core at 𝐶𝐶𝑛 state. Note that 𝑃𝐶𝐶0

𝑐𝑐𝑐𝑐 is
different from 𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 ; a core may be simply standing by while it is
in 𝐶𝐶0 (i.e., it is not executing any tasks although it is fully on)

• 𝑃𝑃𝐶𝑛
𝑢𝑢𝑢𝑢𝑢𝑢 – Power dissipation by the uncore when a package is in the

𝑃𝐶𝑛 state
• 𝑇𝑎𝑎𝑡𝑡𝑡𝑡

𝑐𝑐𝑐𝑐𝑖 – Percentage of time when a core is active and executing
tasks, which is also called core utilization (𝑢𝑢𝑢𝑢𝑖)

• 𝑇𝐶𝐶𝑛
𝑐𝑐𝑐𝑐𝑖 – Percentage of time when a core is in 𝐶𝐶𝑛 state

• 𝑇𝑃𝑃𝑛
𝑢𝑢𝑢𝑢𝑢𝑢 – Percentage of time spent when a package is in 𝑃𝐶𝑛 state

Total (server platform) power dissipation is the sum of the
processor power dissipation (Pproc) and the power consumed by
other system components (Pother), e.g., I/O, memory, and hard
disc drive. Pother is fixed and independent of the DVFS or CPU
consolidation, so it acts as a fixed offset on top of the Pproc.

 (1)

To appear in the IEEE Trans. on VLSI Systems, 2016 5

The core power dissipation can be estimated using 𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 ,
𝑃𝐶𝐶𝑛
𝑐𝑐𝑐𝑐, 𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖 , and 𝑇𝐶𝐶𝑛
𝑐𝑐𝑐𝑐𝑖 as shown below. CC0 is a special state;

a core is in the CC0 state when the core is executing codes.
However, the core may be in the CC0 state even when it is in
idle. For example, a CPU stays in the CC0 state for a certain
amount of time (i.e., a timeout period) before switching to
deeper power state.

()

()

0 0

0

1

0

i i ii

i
n n

i i
n n

core core corecore core core
active active CC activeCC

corecore
CC CCn

core corecore core core
active CC active CC CCn

P P T P T T

P T

P P T P T

≥

≥

= ⋅ + ⋅ −

+ ⋅

= − ⋅ + ⋅

∑
∑

 (2)

Similar to the core power dissipation, the uncore power
dissipation is:

 jj
n n

uncoreuncore uncore
PC PCnP P T= ⋅∑ (3)

Note that 0: 1i
n

core
CCni T

≥
∀ =∑ and 0: 1j

n

uncore
PCnj T

≥
∀ =∑

B. CPU consolidation and power dissipation
In this section we discuss whether consolidation reduces

power dissipation or not. We do not cover its impact on delay,
which is discussed in the following section. The discussion here
is based on an assumption that consolidation is performed in a
correct way so that throughput remains the same; in other
words, a sufficiently large number of CPUs are always active.
Lower power dissipation at the same throughput means less
energy is consumed for the same workloads, which also means
more energy-efficient operation. The discussion in this section
focuses on how power dissipation changes with consolidation.
Therefore, we can see if energy efficiency is improved or not.

Consolidation reduces the number of active CPUs, that is, the
type and level of workloads do not change. Therefore, it is
expected that 𝑃𝑜𝑜ℎ𝑒𝑒 is not affected by consolidation. Hence,
we focus on changes in the core and uncore power dissipations:

 () ()ji uncorecoretotal
i j

P P P∆ = ∆ + ∆∑ ∑ (4)

We start with the power impact on cores:

() () ()
()

0

0

i i

i

n n

core corecore core
active CC activei i

corecore
CC CCn i

P P P T

P T
≥

∆ = − ∆

+ ∆

∑ ∑
∑ ∑

 (5)

In the above equation, term ∑ 𝑇𝑎𝑎𝑎𝑎𝑎𝑒
𝑐𝑐𝑐𝑐𝑖

𝑖 is not affected by
consolidation because the workload level does not change (i.e.,
∆∑ 𝑇𝑎𝑎𝑎𝑎𝑎𝑒

𝑐𝑐𝑐𝑐𝑖
𝑖 = 0). Therefore,

 () ()0
i i

n n

core corecore
CC CCi n i

P P T
≥

∆ = ∆∑ ∑ ∑ (6)

As shown in the above equation, the power savings of
consolidation is a function of changes in the sum of 𝑇𝐶𝐶𝑛

𝑐𝑐𝑐𝑐𝑖 .
Let us assume that power state transition is ideal: 1. CC-state

immediately switches to the deepest sleep state (CC6) without
any delay when a core becomes idle (i.e., 𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖 = 𝑇𝐶𝐶0
𝑐𝑐𝑐𝑐𝑖) 2.

There is no power state switch cost: additional delay and power
consumption when power state switches. Based on these
assumptions, there is negligible change in core power
dissipation by consolidation because all cores are in the CC6
state when they are idle:

() () ()()

()
6 6 6

6

1

0

i i i

i

core core corecore core
CC CC CC activei i i

corecore
CC activei

P P T P T

P T

∆ = ∆ = ∆ −

= −∆ =

∑ ∑ ∑
∑

(7)

However, this assumption is not realistic. Because of
non-negligible switch costs, a core may not switch promptly its
power state when it becomes idle; if the core is in low power
state for the very short time, then switch costs could be greater
than power savings by the switch. Consolidation can decrease
power consumption by reducing the number of switch (hence,
reducing switch costs). Fig. 2. depicts an example which shows
how consolidation reduces the costs; there are two CPUs and
two CC-states available: CC0 and CC6. When a task is given to
a CPU, the CPU executes the task (CC0-active). When the
execution is done, the CPU stays in the CC0 state (CC0-idle) for
certain amount of time before switching to CC6. For the rest of
period, the CPU is in the CC6 state. From the upper case in the
figure (Fig. 2. (a)), we can see one CC6-to-CC0 switch and two
CC0-to-CC6 switches. On the other hand, from a consolidation
case (Fig. 2. (b)), there is only one switch: CC0-to-CC6. In
addition, CPUs reside in the CC0-idle state for shorter amount of
time. Therefore, in this example, consolidation reduces power
dissipation, which also means it improves energy efficiency.
However, consolidation may increase execution time of a task.
In this example, the 2nd task cannot be executed promptly
because a CPU is running the previous task (task 1) and this
CPU is the only one active CPU. Therefore, we have to
consider performance degradation and decide whether
performs consolidation or not.

Second, we discuss about power dissipation impact on
uncore power by consolidation. As discussed in Section II.A, a
package can switch its power state to deeper one only when all
cores in the package are idle. A uncore can stay longer at deeper
power state when both CPUs are active (Fig. 2. (a)); there is
overlap where both CPUs are in active state, so both CPUs are
in the CC6 state for longer period than the 2nd case where only
one CPU is active. In other words, consolidation may increase
uncore power. However, consolidation can reduce the
percentage of time spent in the CC0-idle state, so if the reduction
is greater than the overlap, uncore power dissipation may be
reduced by consolidation.

CC0-activeCPU1 CC0-idle CC6

(a) 2 adtive CPUt

(b) 1 adtive CPU (dontolieation)

CC0-active CC0-idleCC6 CC6CPU2

CC0-activeCPU1 CC0-active CC0-idle CC6

CC6CPU2

task 1
arrives

task 2
arrives

time

Fig. 2. Example of CC-state switch by consolidation

We have discussed about impacts on power dissipation using
the power model, but real system is too complicated for the

To appear in the IEEE Trans. on VLSI Systems, 2016 6

model to consider all factors which affect power dissipation.
Therefore, we run experiment on a real system and quantify the
power savings by consolidation.

C. Delay model
As discussed in the previous section, consolidation may

increase delay of tasks. In this section, we discuss the impact of
consolidation on delay. The proposed delay model is a function
of core utilization (𝑇𝑎𝑎𝑎𝑎𝑎𝑒

𝑐𝑐𝑐𝑐𝑖). In general, the delay increases
rapidly when a CPU approaches full utilization [5]:

1 i

i core
active

eD f
T

= +
−

 (8)

𝐷𝑖 is the delay of the 𝑖th CPU (𝑐𝑐𝑐𝑐𝑖). Coefficient e represents
how sensitive the delay is to the core utilization; with larger e,
delay increases more rapidly as the core utilization approaches
1. Another coefficient f represents a lower bound on the delay,
that is, the delay may not reduce below certain value even when
the core utilization is very low (𝐷𝑖 ≥ 𝑒 + 𝑓). These coefficients
are task-dependent, that is, coefficients for one task might be
different from those for another task. They are also
hardware-dependent. This delay is affected by consolidation
because 𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖 is a function of the active CPU count. When 𝐾
tasks are assigned to the system every second, the tasks are
evenly distributed to the 𝑚 active CPUs by a scheduler;
therefore, each CPU is assigned 𝐾/𝑚 tasks every second. The
core utilization 𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖 is linearly proportional to the workload
(𝐾/𝑚):

 ()icore
activeT d K m= (9)

Coefficient d represents the amount of CPU resource (i.e. the
number of CPU cycles) needed for executing a task. A task with
higher d needs more CPU cycles compared to another task with
smaller d. Now we can model the delay as a function of the
active CPU count (m) and the total number of tasks (K):

()1
eD f

d K m
= +

−
 (10)

Delay increases as the core utilization 𝑇𝑎𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑖 increases. The

increase rate at high utilization is greater than that at low
utilization. Consolidation increases the core utilization, but if
we keep the core utilization lower than certain level (threshold),
then delay increase by consolidation will be insignificant.
Hence, it is important to find this threshold and keep core
utilization lower than the threshold.

Coefficients in the delay model may be application
dependent, so a threshold for one application may be different
from that for another application. Therefore, we will find
thresholds for various kinds of benchmark tests. From
experiments, we recommend that the average core utilization is
no more than 70% for CPU-bound applications. Note that for
memory-bound applications where the execution time limit is
tight, contention can occur on other shared resources (including
bus, second level cache, and main memory) and hence a limit
on average CPU utilization will not be sufficient. However as
we will show later for such applications CPU consolidation is
not an effective technique anyways. Details will be presented in
Section VI.

IV. ENERGY EFFICIENCY METRICS
In the previous discussion, the term ‘energy efficiency’ has

been used without defining it. In order to determine if
consolidation improves the energy efficiency or not, we have to
precisely define what ‘energy efficiency’ is. Depending on how
it is defined, consolidation may or may not enhance the energy
efficiency. In this study we use two metrics for energy
efficiency: energy per task (E/task) and energy-delay product
per task (ED/task).

A. Energy per task (E/task)
This metric is often used for comparing energy efficiency

among different platforms. A term ‘task’ denotes an instance of
executing a specified benchmark. This metric is simply
calculated using average power consumption (Pavg) and
throughput (i.e., the number of tasks processed in a second):

 /

gross avg avgE P Time P
E task

of tasks of tasks throughput
×

= = = (11)

The consolidation may decrease this metric, but it can also
reduce performance. If ‘throughput’ is selected as a
performance indicator, then this metric also includes
performance information in it. If consolidation reduces E/tasks,
we can say energy savings dominate performance degradation
(i.e., throughput reduction). However, for another performance
definition, this metric may be insufficient; if we have to care of
execution time as well as throughput, this metric does not
include performance information. For example, if the execution
time increases due to consolidation but throughput does not
change, this metric shows that the energy efficiency is
improved without any performance degradation. This may
mislead into a wrong decision. Hence, we introduce another
metric at the following section.

B. Energy-delay product per task (ED/task)
A ‘delay’ in this metric is the average execution time of tasks.

This also includes period when a task is suspended by the CPU
scheduler and CPUs execute other tasks. This metric is
calculated using the average power dissipation, throughput, and
execution time:

 ()/ / avgP delay
ED task E task delay

throughput
×

= × = (12)

Depending on a metric a different power management
technique can be determined as the best one. Hence, we will
report energy efficiency improvement of both metrics.

V. EXPERIMENTAL SETUP
A goal of this study is to quantify energy efficiency

improvement of consolidation and to find a way to maximize
the improvement. In addition, we will compare consolidation
with DVFS which is the most popular technique. Because a real
system is too complicated to be well simulated, all data shown
in the following sections are measured from experiments (not
simulations).

A. Hardware test-bed and XEN
The server system under test has two Intel® Xeon® Westmere

E5620 processor packages, and each package in turn includes

To appear in the IEEE Trans. on VLSI Systems, 2016 7

four CPUs in it (Fig. 1.). As mentioned in Section II.B, all
CPUs in the same package run at the same clock frequency and
voltage. However, the power state of a CPU can be different
from that of the other CPUs in the same package. Each 64-bit
CPU has its own dedicated 256KB L1 and 1MB L2 caches but
shares a 12 MB L3 cache with the other CPUs. The total size of
the system memory is 6GBytes. This processor supports seven
clock frequency levels, from 1.6GHz to 2.4GHz.

This considered server system may appear too small to
represent typical servers in data centers. A common myth is that
data centers always consist of large-size servers which have
many processors. In fact this is not true for all data centers; the
Google data center consists of clusters of inexpensive
desktop-class machines [16, 17]. As another example, the
Facebook data center is comprised of dual processor servers [18,
19]. There are a few reasons why data centers consist of many
small servers rather than fewer large-size servers [20]: first,
resource management in many processor servers is a complex
and challenging task, so actual performance may not high
enough. Second, the license cost of resource management
software for large servers is high. Third, it is tricky to properly
handle a failure of individual component, that is, failure of one
processor in a large server may cause the whole server system
to fail, taking out a big chunk of computing resources within a
data center. Hence, our setup is realistic and representative of
typical server systems found in some data centers.

A power analyzer tool measures the total platform (system)
power dissipation, which includes total power consumed by all
components; e.g., processor, HDD, DRAM, fan, and so on.
None of the components other than CPU are optimized to
achieve any power savings. For example, cooling fans are
running at highest speed all the time and high performance
HDDs are used all the time in order to avoid any risk of
performance degradation. Hence, the system power dissipation
is very high even when the system is idle (we call this quantity
the standby power from now on). In order to compensate
potential power inefficiency of other system components, we
calculate and report ‘power dissipation’ as the difference
between the total system power and the standby power:

 measured standbypower power power= − (13)
The reported power value thus accounts for dynamic power
consumption of all system components. The standby power of
our system is 98.1W. When the system is fully loaded, the
system power is about 160W; that is, we report 61.9W as the
power consumption. Consolidation is needed only when the
system is under-utilized. If the average core utilization is 50%,
calculated power consumption is about 30W. If consolidation
reduces power dissipation by 15W, then we report 50% power
savings. On the other hand, the power savings would have to be
reported as only 12% if we had used the total system power for
the calculation. We believe reporting 50% total dynamic power
saving is more indicative of the actual effect of consolidation
that reporting 12% saving in the total platform power. All
power dissipation numbers reported in the following sections
are calculated using the above equation unless there is specific
description. A photo of the system under test is shown in Fig. 3.

Fig. 3. The server system along with a power analyzer

We have built the virtualized system using XEN (version
4.0.1), which is an open source hypervisor-based virtualization
product and provides the APIs for changing VM configurations:
the number of virtual CPUs (vCPU), clock frequencies, and the
set of active CPUs. We change these configurations by calling
the XEN built-in functions.

B. Benchmarks- PARSEC and SPECWeb2009
For this study two different benchmark suits are used: 1. the

Princeton Application Repository for Shared-Memory
Computers (PARSEC) [21] and 2. SPECWeb2009. PARSEC
consists of 13 multithreaded and shared-memory programs,
which represent next-generation programs for CMP. All these
programs are designed and developed for real applications.
Characteristics of these programs are very different from one
another, and they represent wide range of applications.
Therefore, we can make strong conclusion using PARSEC
benchmark. Note that there are total of 13 programs are
provided, but we use 11 programs. It is because ‘facesim’ and
‘ferret’ programs are very instable and often crashed in our
setup. The PARSEC benchmark does not provide an I/O-bound
program, so SPECWeb2009 was used as an I/O-bound one.

For PARSEC, we present improvement of both metrics:
E/task and ED/task. On the other hand, for SPECWeb2009, we
only present ED/task. Delay, which is defined as turn-around
time for SPECWeb2009, is very important for web service, so
E/task is not an appropriate metric for SPECWeb2009.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, experimental results of PARSEC and

SPECWeb2009 running on the system under test are presented
and discussed below. We start from presenting a detailed power
model as a function of CC and PC-states. We also investigate
the consolidation overhead 4 and suggest that the number of
virtual CPUs (vCPU) has to be dynamically changed to reduce
the overhead. It is also important to find out which set of CPUs
should be active in order to maximize energy efficiency. Next
we report the E/task and ED/task improvement of PARSEC
using three techniques: 1. DVFS, 2. Consolidation, and 3.
Combined. Finally, we present a highly effective, yet simple,
online consolidation algorithms for SPECWeb2009 and report
energy efficiency improvement.

4 The DVFS overhead has been extensively studied in reference [22].

To appear in the IEEE Trans. on VLSI Systems, 2016 8

A. Power model derivation and verification
This section presents a full platform-level power dissipation

model, accounting for the power consumed by the core and
uncore components within the target server system. As will be
seen, this model is more detailed than the generic one that was
described in Section III.A.

Our system allows limiting the deepest C-state, and we can
set the limit to C1, C2, or C3 by using the xenpm [23] of the
XEN hypervisor. The hardware-reported information for each
C-state limit is shown in TABLE I. As shown in this table, not
all information is available; percentage of times spent in the
CC0, CC1, PC0, and PC1 states are not reported, hence these
unreported times will be estimated. Our goal is to estimate the
power dissipation when all C-states are available, i.e., the
C-state limit is C3, but this is a difficult undertaking. Therefore,
we start from the simplest case when the C-state limit is C1.
Subsequently, we go over the second case when the C-state
limit is C2. Finally, we will derive the power equation when the
C-state limit is C3.

TABLE I
C-STATE LIMIT AND HARDWARE-REPORTED INFORMATION

C-state
limit

Core C-state Processor C-state
TCC0 TCC1 TCC3 TCC6 TPC0 TPC1 TPC3 TPC6

C1 available but
not reported

n/a n/a available but
not reported

n/a n/a
C2 OK n/a OK n/a
C3 OK OK OK OK

Power dissipation is dependent on the C-state limit as shown
in Fig. 4. ; for the higher C-state limit, the power dissipation is
lower. Note that utilization and system power reported in this
figure are all measurements; In particular, power is measured
using the power analyzer tool whereas the utilization is reported
by xentop. The power difference among different C-state limits
is greater when the utilization is lower. This is because cores
stay in the C0 state most of the time when utilization is high.

Fig. 4. Power dissipation vs. utilization for C-state limits

We do not provide details about how we derive the power
dissipation equations for the three C-state limits since the
derivations are involved and do not fit in the page limit that we
have. Full derivations can be found in the Appendix of a USC
CENG technical report [24]. The key idea behind the derivation
is to start with equations (2) and (3), and then use a combination
of analytical expansion of terms, lookups from hardware-
reported information (TABLE I), and regression analysis to
derive the appropriate power macro-models as shown in
TABLE II. Note that time spent in power states of a core is
almost identical to one another because a CPU scheduler evenly

distributes tasks. Hence, these times in TABLE II are
core-independent terms.

TABLE II
POWER MACRO-MODELS FOR THE SERVER SYSTEM UNDER TEST (COMPRISING

TWO INTEL® XEON® E5620 PROCESSOR PACKAGES) [24]
C-state limit Power equation

C1 𝑃𝑒𝑒𝑒.
𝑡𝑡𝑡𝑡𝑡 = 21.88𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 141.12

C2 𝑃𝑒𝑒𝑒.
𝑡𝑡𝑡𝑡𝑡 = 22.48𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 5.76𝑇𝐶𝐶3 − 31.16𝑇𝑃𝑃3 + 140.7

C3 𝑃𝑒𝑒𝑒.
𝑡𝑡𝑡𝑡𝑡 = 22.48𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 5.76𝑇𝐶𝐶3 − 8.56𝑇𝐶𝐶6 −

31.16𝑇𝑃𝑃3 − 42.55𝑇𝑃𝑃6 + 140.7

The power models presented in the above table are highly
accurate; Fig. 4. shows a comparison between measurements
and model predictions for the case that C-state limit is set to C3;
estimation is very close to measurements.

Fig. 5. Power estimation vs. measurements when the C-state limit is C3

The first coefficient (for active state) in TABLE II is
application dependent. The main point here is not finding very
accurate parameters of the power model but showing that
power dissipation can be well estimated using CC/PC-state
stats. Therefore, we will see how those states are changed by
consolidation in order to understand how consolidation
improves energy efficiency.

B. Package-level consolidation
As shown in equation (3), uncore power is a function of

PC-states. If we have more than one package in a system,
further power savings may be achieved by package-level
consolidation: select CPUs from the minimum number of
packages and put other packages in the deepest power state.

Package consolidation can reduce the total time spent in the
active state (PC0), which is obtained by summing over all
packages the time that each package spends in its PC0 state;
thus, the uncore power dissipation decreases. In particular
package consolidation utilizes as few packages in a server as
possible, so the amount of time when multiple CPUs in the
same package are in the CC0 state at the same time increases;
i.e., the CC0 state overlap time increases and therefore, the total
time spent in the PC0 state (which is equal to ∑ 𝑇𝑃𝑃0

𝑐𝑐𝑐𝑐𝑖
𝑖)

decreases. When we consider an extreme case, this point
becomes more obvious. Let us say one CPU is chosen from
each package to remain active. Then the total time spent in PC0
state will be greater than or equal to times spent in the CC0 state
of each CPU because there is no possibility for CC0 state
overlap. In comparison if the two CPUs are chosen from the
same package, then only one of the packages will be active and
even then the time spent in PC0 for that package is less than or
equal to times spent in the CC0 state of each CPU because there

0 20 40 60 80 100
100

110

120

130

140

150

160

utilization (%)

sy
st

em
 p

ow
er

 (W
)

C-state limit: C1
C-state limit: C2
C-state limit: C3

0 20 40 60 80 100
100

120

140

160

average utilization (%)
sy

st
em

 p
ow

er
 (W

)

Powermeasured

Powerestimated

To appear in the IEEE Trans. on VLSI Systems, 2016 9

is CC0 state overlap.
The above discussion is based on a key assumption, i.e., the

PC-state of a package is independent of that of other packages.
In practice, this assumption is far from the truth. Fig. 6. depicts
PC0 state of two packages, which reveals the opposite. The data
presented in the figure is for a case when all active CPUs are
chosen from exactly one package, and therefore, all CPUs in
the other package are idle. The figure shows that PC0 states of
both packages are nearly identical. Indeed, the same behavior is
observed for other PC-states (PC3 and PC6), although not
shown here. This implies that all packages should stay in the
active state (PC0) when any CPU, which may in fact reside in
another package, is active. This is because an active CPU may
need data from a remote DRAM, so not only the package where
the active CPU is located but also all the other packages should
remain in active states to provide the requested data (details of
Intel® QPI architecture has already been discussed in Section
II.D) in order to avoid a significant additional latency.

As discussed above, PC-states of all packages are nearly the
same due to Intel® QPI, hence little or no energy savings are
expected from package-level consolidation. On the other hand,
if a task accesses memory infrequently (such as in the case of
CPU bound tasks), package consolidation may save further
energy. In other words, package-level consolidation may or
may not improve energy efficiency depending on the
characteristics of tasks. We discuss later whether or not
package-level consolidation results in any energy savings.

Fig. 6. Relationship between PC0 states of two packages of the target server

when there are 4 active CPUs in exactly one of the packages

There are 8 CPUs in the system, so only when all these CPUs
are inactive, both packages can be switched to inactive states
(PC3 or PC6). Hence, we expect that the two packages are
active most of the time even when the total utilization is low.
As depicted in Fig. 7. , PC0 state is 100% when total utilization
is greater than 150% out of 800%. This implies that there is a
very small room for uncore power reduction.

Fig. 7. Percentage of the time that each package in the traget server is in the

PC0 state as a function of the total utilization

C. Consolidation overhead – vCPU count
The number of virtual CPUs, called vCPU count, is an

important parameter of a virtual machine (VM) because this
count limits the performance of the VM. For example, a VM
with two vCPUs is capable of utilizing up to two CPUs at a time,
so the maximum total CPU utilization of the VM is 200%.
However, managing each vCPU causes additional overheads;
thus, it could hurt both performance and energy efficiency if
VMs have unnecessarily too many vCPUs. We use the ratio of
vCPU to active CPU counts (called virtualization ratio) as an
indicator of this overhead.

Experimental results of PARSEC benchmark programs with
different virtualization ratios are reported in Fig. 8. and Fig. 9.
The active CPU count is 4; that is, the total CPU utilization is
always equal to or less than 400%. The same experiments are
repeated for four different vCPU counts: 8, 16, 24, and 32
(corresponding to virtualization ratios of 2, 4, 6, and 8,
respectively). Except one program, i.e., vips, execution time
remains the same when the ratio is 6 or less while E/task of
many programs increases noticeably even when the ratio is 4
(Fig. 9.). This is due to higher overheads of vCPUs
management. We suggest keeping the virtualization ratio to be
less than or equal to 3.

Fig. 8. Consolidation overhead i.e., execution time as a function of the

virtualization ratio

Fig. 9. Consolidation overhead i.e., energy per task as a function of the

virtualization ratio

D. CPU selection policy
The basic idea of the consolidation is to have as fewer active

CPUs at any time. In addition to the active CPU count, the CPU
selection policy can be important for multi core/processor
systems; e.g., choosing CPUs from a minimum number of
packages or selecting CPUs uniformly from all packages. The
system under test has two packages, so there are two possible
selection policies: i) Select all CPUs from one package first
and take additional CPUs from the other package if necessary.

40 50 60 70 80 90 100
40

60

80

100

package 1 (%)

pa
ck

ag
e

2
(%

)

PC0 state

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

total utilization (%)

PC
0 st

at
e

(%
)

package 1
package 2

2 4 6 8
0

2

4

6

8

virtualization ratio

no
rm

al
iz

ed
 e

xe
 ti

m
e

blackscholes
bodytrack
canneal
dedup
fluidaminate
freqmine
raytrace
streamcluster
swaptions
vips
x264

2 4 6 8
0.9

1

1.1

1.2

1.3

1.4

virtualization ratio

no
rm

al
iz

ed
 E

/t
as

k

 blackscholes
bodytrack
canneal
dedup
fluidaminate
freqmine
raytrace
streamcluster
swaptions
vips
x264

To appear in the IEEE Trans. on VLSI Systems, 2016 10

ii) Select equal number of CPUs (modulo plus/minus one) from
each package.

CC0 and PC0 states of the bodytrack program are shown in
Fig. 10. Each plot compares two selection policies: all four
CPUs are selected from one package (4CPU-1P) and two CPUs
are chosen from each package (4CPU-2P). In our experimental
results, core and package may reside in either active (CC0 and
PC0) or deepest sleep (CC6 and PC6) states. Hence, we only
present statistics of active states. The total time spent in each
state (called state residency) is calculated as the sum of all
times spent in the corresponding state by all active cores (for
CC0) or packages (for PC0), so these times can be greater than
100%. Normalized workloads are calculated as ratios of actual
workloads over workloads that result in 50% total core
utilization. As shown in Fig. 10. CC0 states of the policies close
to each other, which is reasonable and expected. On the other
hand, the total time spent in the PC0 state for the first policy
(4CPU-1P) is smaller than that for the other (4CPU-2P). That is,
time spent in the PC6 state under 4CPU-1P is greater; therefore,
the uncore power dissipation of 4CPU-1P is smaller. According
to the discussion in Section VI.B, bodytrack is considered to be
a non-memory-intensive task.

Fig. 10. CC0 and PC0 state residencies for the bodytrack program

Result of another program, canneal, is shown in Fig. 11.
Here there is a significant difference in the CC0 state residency
between the two policies. canneal is a program to find a chip
design with minimum routing cost. It uses cache-aware
simulated annealing which creates intensive memory read/write
activity. If we use all four CPUs in the same package, then we
only use half of the L3 cache compared with the other case
(4CPU-2P). This causes much higher cache misses, so both the
time spent in the CC0 state and the application execution time
increase. There is negligible difference in the PC0 state
residency. From this result, package-level consolidation is not a
good idea for applications requiring extensive data transfers to
and from the main memory.

Fig. 11. CC0 and PC0 state residencies for the canneal program

Normalized E/task comparisons for all PARSEC programs
are reported in Fig. 12. Due to run-to-run variations, the
average of 15 measurements is presented. E/task difference is
less than 3% for most of programs except bodytrack, canneal,
and x264. Most significant difference (~ 6%) is observed for
canneal. Later in this paper we will present a more
sophisticated CPU selection policy to minimize the E/task.

Fig. 12. Effect of simple CPU selection policies on energy consumption per

task of various PARSEC programs

E. Execution time
According to (10), the delay (execution time) of a task

increases as the average utilization per core increases. The
marginal rate of increase at high utilization is greater than that
at low utilization. Hence, if we keep the average utilization
lower than a certain threshold, then delay increase by
consolidation can be made small. The normalized execution
times of PARSEC benchmark programs at various average
utilizations are shown in Fig. 13.

Fig. 13. Execution time of PARSEC benchmark programs as a function of the

average utilization per core

Except one program, i.e., canneal, the execution time
increase is less than 5% at average utilizations as high as 70%.
In other words, if we keep the average utilization below 70%,
the maximum execution time increase will be less than 5% for
most applications. We use this threshold to decide about the
degree of consolidation that we do. For example, let’s say that
the average CPU utilization is 40% with 8 active CPUs. If we
consolidate the workloads to four CPUs, then the new average
utilization will be approximately 80%, which is greater than our
threshold (70%). This implies that there should be at least 5
active CPUs in order to avoid a considerable increase in the

0 2 4 6
0

50

100

150

200

normalized workload

pe
rc

en
ta

ge
 (%

)

(a) CC0 state

0 2 4 6
0

50

100

150

200

normalized workload

(b) PC0 state

4CPU-1P
4CPU-2P

0 2 4 6 8
0

100

200

300

normalized workload

pe
rc

en
ta

ge
 (%

)

(a) CC0 state

0 2 4 6 8
0

50

100

150

200

250

normalized workload

(b) PC0 state

4CPU-1P
4CPU-2P

0.9

0.95

1

1.05

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

 no
rm

al
iz

ed
 E

/t
as

k

4CPU-1P
4CPU-2P

20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

average utilization (%)

no
rm

al
iz

ed
 ex

e t
im

e

 blackscholes
bodytrack
canneal
dedup
fluidaminate
freqmine
raytrace
streamcluster
swaptions
vips
x264

To appear in the IEEE Trans. on VLSI Systems, 2016 11

average execution time of tasks. As discussed in the previous
section, canneal generates extensive memory read/write
requests, so the cache miss rate is expected to rise rapidly as the
CPU utilization increases. In other words, the execution time of
canneal increases monotonically with CPU consolidation.
More generally speaking, when we have an execution time
target (upper bound), aggressive CPU consolidation can result
in significant SLA violation for memory-intensive applications.

F. E/task and ED/task improvements for PARSEC
In this section we present E/task and ED/task for PARSEC

benchmark programs. The average utilization is kept to be less
than 70% and the virtualization ratio not to be greater than 3 as
discussed in previous sections.

The first interesting metric is E/task, which is reported in Fig.
14. The white, gray, and black bars in the plot show
improvements in E/task achieved by DVFS, consolidation, and
both DVFS and consolidation, respectively. For all programs,
improvement by DVFS is always greater than that by
consolidation. Recall that the processor under test supports 7
frequencies from 1.6GHz to 2.4GHz. DVFS can thus
effectively reduce E/task by slowing down the clock frequency
from 2.4GHz all the way down to 1.6GHz (and accordingly
lowering the supply voltage level). Evidently, this action
increases the average execution time of tasks; however, this
execution time increase does not affect the E/task metric much
(this is because energy consumption of the server is dominated
by dynamic power and not leakage power). The maximum
E/task improvement achieved by consolidation is about 10%.
Another observation is that the effects are somewhat additive
that is, when we apply both DVFS and consolidation (see the
‘Combined’ results in the figure), the improvement is greater
than the other two cases for most programs with the exception
of canneal. The maximum improvement of the ‘Combined’
technique is greater than 15% (achieved for dedup).

 Fig. 14. Energy per task improvement

Surprisingly, we observe very different results for the
ED/task metric, as seen in Fig. 15. The ED/task is worsened by
DVFS because the task execution time increases significantly
as a result of reducing the CPU clock frequency. On the other
hand, consolidation maintains its relative energy savings except
for the case of canneal. This is because the execution time of
canneal increases monotonically even when the average CPU
utilization is kept below 70%. Therefore, the ED/task

improvement of consolidation for canneal is much smaller than
all other programs. From this result, we can conclude that
consolidation is a much more effective solution for delay
sensitive applications compared to DVFS (although it loses
much of its advantage in memory-bound applications).

 Fig. 15. Energy delay product per task improvement

G. CPU consolidation for SPECWeb2009 benchmarks
In the previous section, the relative effectiveness of the CPU

consolidation and DVFS was studied for the PARSEC
benchmark suite. In this section, results for the SPECWeb2009
are presented. This benchmark suite comprises of I/O bound
application programs whose characteristics are very different
from those of the PARSEC programs. SPECWeb2009 is a very
well developed benchmark suite, and its main purpose is to
evaluate a web server (I/O-bound application); hence, we can
see how consolidation affects the delay and energy efficiency
of I/O-bound applications from SPECWeb2009 results.

The energy efficiency is quantified as ED/packet because
delay (i.e., response time) is a critical performance metric in
these applications. SPECWeb2009 requires a simultaneous
user session (SUS) count as an input, which is another way of
specifying the workload intensity. The SUS count specifies
only the average workload intensity (the instantaneous
workload intensity fluctuates a lot). Hence, an online method,
which dynamically finds optimal settings for consolidation, is
needed. In this section, we start from analyzing characteristics
of the SPECWeb2009. After that, four online consolidation
algorithms are presented, and results of those algorithms are
reported and analyzed.

Web applications are in general not compute-intensive [25];
hence, the average response time is less dependent on CPU
clock frequencies as shown in Fig. 16. (a). This is because the
response time of web servers is closely related to the I/O
processes, such as network and disk access. Likewise, the
response time is almost independent of the active CPU count
when a sufficiently large number of CPUs is active. The
relationship between the power dissipation and clock
frequency/active CPU count is shown in Fig. 16. (b). The
power dissipation declines as the frequency decreases and/or
the active CPU count is reduced. This result implies that both
DVFS and the CPU consolidation improve the energy
efficiency without any significant performance degradation. In
addition, we expect higher power efficiency gains when both

0

5

10

15

20

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

 E/
ta

sk
 im

pr
ov

em
en

t (
%

)

DVFS
Consolidation
Combined

-40

-20

0

20

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

ED
/t

as
k

im
pr

ov
em

en
t (

%
)

To appear in the IEEE Trans. on VLSI Systems, 2016 12

techniques are applied at the same time.

Fig. 16. Response time and power dissipation

When the OS changes the CPU clock frequency, the CPU
utilization also changes under the same workload. Therefore,
before changing the CPU clock frequency, the corresponding
CPU utilization must be estimated in order to prevent the
undesirable situation whereby active CPUs are overloaded
because the chosen frequency is too low for the given workload.
The relationship between the total CPU utilization and CPU
clock frequency is depicted in Fig. 17. Note that utilization is
the percentage of time that a CPU spends executing user and
system space codes. When a task is waiting for an I/O operation
to be completed, the task is suspended and CPU does nothing.
Hence, this suspension time is not included in the utilization.

Fig. 17. Frequency vs. total utilization (SPECWeb)

According to the R2 value, a linear equation is a nearly perfect
fit the data points in Fig. 17. The relationship is then as
follows:

 ()u fβ α− = (14)
where 𝛼 = 150.4, 𝛽 = 29.9 and 0 ≤ 𝑢 ≤ 800 (i.e., there are
eight CPUs). Since coefficient β is relatively small, it can be
ignored to simplify the relationship. Hence, the equation may
be written as follows:

 i i j jf u f u α= = (15)

H. Online CPU consolidation algorithms
As shown in the previous section, both the clock frequency

and the active CPU count affect the E/task and ED/task. In this
section, we present online algorithms, which perform
voltage/frequency setting and consolidation simultaneously.
These algorithms monitor the CPU utilization, and change the
frequency setting and/or the active CPU count depending on the
current workloads. The main idea of these algorithms is to
utilize as few CPUs at low frequencies as possible (while
meeting the performance constraints); the decision is made by
considering the current CPU utilization levels. This approach is
reasonable for I/O bound applications because performance
degradation is not significant unless the CPU is very highly

utilized [10]. To avoid energy and delay overheads associated
with frequent state changes, the proposed algorithms change
the system configuration conservatively, that is, if the system is
overloaded, these algorithms will immediately increase the
frequency and/or the number of active CPUs. If, however, the
system is underutilized, they will apply a state change (reduce
frequency and/or turn off some CPUs) only if the situation
persists for at least some time. We achieve this goal by
introducing two different thresholds with hysteresis as
described below.

We present four algorithms whose main ideas are quite
similar to each other: if the average utilization (𝑢𝑖) of a CPU is
greater than an upper threshold (𝑢ℎ𝑖𝑖ℎ), these algorithms
deploy more computing resources by increasing the clock
frequency of the active CPUs and/or by adding to the number of
active CPUs. On the other hand, if the average utilization is less
than a lower threshold (𝑢𝑙𝑙𝑙), then they will release some
computing resources by decreasing the CPU frequency and/or
reducing the number of active CPUs. It is necessary to estimate
the new utilization level under the new frequency and active
CPU count to avoid any performance degradation. Equation (15)
does not account for the number of active CPUs (𝑐𝑖) in the
system, and hence, it is modified to apply to this new situation:

 i i i j j jc f u c f u= (16)
Because we can change both the CPU frequency and the active
CPU count (when needed), we must decide which strategy must
be given higher priority: i) Changing the clock frequency first
and the CPU count next, ii) Changing the CPU count first and
the clock frequency next. Two pseudo codes are presented in
Fig. 18. The first function 𝑚𝑚𝑚_𝑐𝑐𝑐() finds the minimum CPU
count (𝑥𝑐) without any performance degradation. After finding
the minimum CPU count, it determines the slowest frequency
(𝑥𝑓) with the new CPU count that would still avoid any
performance degradation. This function tries to achieve a new
CPU utilization close to 𝑢𝑚𝑚𝑚 , which is the median of high/low
thresholds and is calculated as follows:

 , 85%, 65%
2

high low
mid high low

u u
u u and u

+
= = = (17)

The second function 𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() finds the slowest frequency
first, and then finds the minimum CPU count with the new
frequency. Again no performance penalty is allowed. The two
functions are called when the system is under-utilized (i.e., the
current utilization is smaller than 𝑢𝑙𝑙𝑙) or over-utilized (i.e.,
the current utilization is greater than 𝑢ℎ𝑖𝑖ℎ). For each case, we
can choose which function is called, i.e., 𝑚𝑚𝑚_𝑐𝑐𝑐()
or 𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() . Therefore, there are a total of four online
algorithms, which are shown in Fig. 18.

Function min_cpu(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) {
 𝑥𝑐 = � 𝑢𝑖𝑓𝑖

𝑢𝑚𝑚𝑚𝑓𝑚𝑚𝑚
𝑐𝑖�;

 𝑥𝑓 = � 𝑢𝑖𝑐𝑖
𝑢𝑚𝑚𝑚𝑥𝑐

𝑓𝑖�;

 return (𝑥𝑐 , 𝑥𝑓);
}

Function min_freq(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) {
 𝑥𝑓 = � 𝑢𝑖𝑐𝑖

𝑢𝑚𝑚𝑚𝑐𝑚𝑚𝑚
𝑓𝑖�;

 𝑥𝑐 = � 𝑢𝑖𝑓𝑖
𝑢𝑚𝑚𝑚𝑥𝑓

𝑐𝑖�;

 return (𝑥𝑐 , 𝑥𝑓);
}

Fig. 18. Psuedo codes for min_cpu() and min_freq()

1.5 2 2.5

1

1.2

1.4

(a) response time

frequency (GHz)

no
rm

al
iz

ed
 ti

m
e

3CPU
4CPU
5CPU
6CPU

1.5 2 2.5
0.9

1

1.1

1.2

1.3

(b) power

frequency (GHz)

no
rm

al
iz

ed
 p

ow
er

0.4 0.45 0.5 0.55 0.6 0.65
90

100

110

120

130

1/freqency (1/GHz)

to
ta

l u
til

iz
at

io
n

(%
)

u = α / f + β
α = 150.422, β = 29.854
R2 = 0.999

To appear in the IEEE Trans. on VLSI Systems, 2016 13

The first algorithm (Type1) calls 𝑚𝑚𝑚_𝑐𝑐𝑐() function for
both the under and over-utilized CPU cases. The Type2
algorithm calls 𝑚𝑚𝑚_𝑐𝑐𝑐() when a CPU is over-utilized and
𝑚𝑖𝑖_𝑓𝑓𝑓𝑓() if it is under-utilized. The Type3 algorithm calls
𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() when a CPU is over-utilized and 𝑚𝑚𝑚_𝑐𝑐𝑐() if it
is under-utilized. The last algorithm (Type4) calls 𝑚𝑚𝑚_𝑓𝑓𝑓𝑓()
for both over and under-utilized CPU cases.

We do experiments for three different SUS counts and
compare the ED/packet and the quality of service (QoS) for the
aforesaid four consolidation algorithms and two more
algorithms (read below). The QoS refers to the percentage of
packets whose response time (latency) is less than the
pre-defined threshold. This QoS is reported by SPECWeb2009
benchmark suite. In addition to the four proposed algorithms,
we provide results for two other algorithms: base and
ondemand. The base algorithm means there is no dynamic
adjustment of the active CPU count and clock frequency, i.e.,
all CPUs are active and running at the maximum allowed clock
frequency. The ondemand algorithm is the default DVFS
method used in LinuxTM, which does not change the active CPU
count but changes the CPU frequency.

Fig. 19. Four online consolidation algorithms

Experimental results are reported in Fig. 20. Regardless of
the SUS count, the proposed algorithms always result in
smaller ED/packet compared to the base and ondemand
algorithms. Among the four proposed algorithms, Type1
algorithm is the best one in terms of the ED/packet. As the SUS

count increases, QoS of all algorithms decreases, but QoS
remains greater than 95%; hence, there are no appreciable
performance degradation concerns. Note that the magnitude of
ED/packet metric also decreases as the SUS count increases,
which implies that the system consumes less energy for
executing a packet. This is because of the energy
non-proportionality of the existing server systems (including
the one used in this study). From these results, we can state that
the Type1 consolidation algorithm is the best. This implies that,
at least for the system under experiment, adjusting the CPU
frequency has higher impact on the ED/packet metric than
changing the CPU count. We compare ED/packet of the
ondemand and Type1 algorithm in TABLE III. For three SUS
settings, ED/packet of Type1 algorithm is always smaller than
that of ondemand. In addition, the difference between the two
algorithms increases for larger number of user sessions.

Fig. 20. ED/pack and QoS comparisons

TABLE III
COEFFICIENTS OF THE DELAY MODEL

SUS ED/packet (Js)
∆ED/packet(%) ondemand Type1

1000 0.91 0.82 9.44
1400 0.76 0.67 11.83
1900 0.51 0.44 13.65

VII. CONCLUSION
DVFS has been a promising method for reducing the energy

consumption, but the energy saving leverage of DVFS reduces
as the supply voltage level decreases with CMOS scaling. In
this paper, CPU consolidation is considered as a substitute, or
better stated, as a complement. The idea looks simple; however,
we need to investigate CPU consolidation under realistic setup
to maximize the energy efficiency. The effectiveness of CPU
consolidation was thus investigated for different configurations:
types of applications, the virtual CPU count, the active CPU
count, and the active CPU set. From the investigation we learn a
few useful lessons. First, unnecessarily large number of virtual
CPUs causes significant performance degradation; hence, the
virtual CPU count must be dynamically adjusted. Second, we
need to choose different CPU selection policy depending on
applications. Third, DVFS outperforms consolidation in terms
of E/task improvement. On the other hand, DVFS do not
improve ED/task of PARSEC while consolidation does. Forth,
the maximum improvement of ED/task for SPECWeb2009 is
also achieved when both DVFS and the consolidation are
applied. Similarly, biggest E/task improvement of PARSEC is
achieved when both techniques are used.

To appear in the IEEE Trans. on VLSI Systems, 2016 14

ACKNOWLEDGMENT
The authors would like to thank Dr. Timothy Kam of Intel®

Corp. who contributed to the conference version of the paper
and who provided helpful feedback and advice regarding the
experimental setup, results analysis, and discussions.

REFERENCES
[1] L. A. Barroso, and U. Holzle, “The case for energy-proportional

computing,” Computer, vol. 40, no. 12, pp. 33-37, 2007.
[2] O. Bilgir, M. Martonosi, and Q. Wu, "Exploring the potential of CMP

core count management on data center energy savings."
[3] G. Dhiman, G. Marchetti, and T. Rosing, “vGreen: a system for energy

efficient computing in virtualized environments,” in Proceedings of the
14th ACM/IEEE international symposium on Low power electronics and
design, San Fancisco, CA, USA, 2009, pp. 243-248.

[4] R. Nathuji, and K. Schwan, “VirtualPower: coordinated power
management in virtualized enterprise systems,” in Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles,
Stevenson, Washington, USA, 2007, pp. 265-278.

[5] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic Placement of Virtual
Machines for Managing SLA Violations." pp. 119-128.

[6] H. N. Van, F. D. Tran, and J.-M. Menaud, “Autonomic virtual resource
management for service hosting platforms,” in Proceedings of the 2009
ICSE Workshop on Software Engineering Challenges of Cloud
Computing, 2009, pp. 1-8.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings of
the 2nd conference on Symposium on Networked Systems Design &
Implementation - Volume 2, 2005, pp. 273-286.

[8] G. von Laszewski, W. Lizhe, A. J. Younge, and H. Xi, "Power-aware
scheduling of virtual machines in DVFS-enabled clusters." pp. 1-10.

[9] P. Pillai, and K. G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” in Proceedings of the
eighteenth ACM symposium on Operating systems principles, Banff,
Alberta, Canada, 2001, pp. 89-102.

[10] M. Pedram, and H. Inkwon, "Power and Performance Modeling in a
Virtualized Server System." pp. 520-526.

[11] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C.
Kozyrakis, “Power Management of Datacenter Workloads Using
Per-Core Power Gating,” Computer Architecture Letters, vol. 8, no. 2, pp.
48-51, 2009.

[12] I. Hwang, T. Kam, and M. Pedram, “A study of the effectiveness of CPU
consolidation in a virtualized multi-core server system,” in Proceedings
of the 2012 ACM/IEEE international symposium on Low power
electronics and design, Redondo Beach, California, USA, 2012, pp.
339-344.

[13] H. Goudarzi, and M. Pedram, “Multi-dimensional SLA-Based Resource
Allocation for Multi-tier Cloud Computing Systems,” in Proceedings of
the 2011 IEEE 4th International Conference on Cloud Computing, 2011,
pp. 324-331.

[14] H. Goudarzi, M. Ghasemazar, and M. Pedram, "SLA-based Optimization
of Power and Migration Cost in Cloud Computing." pp. 172-179.

[15] M. Pedram, “Energy-Efficient Datacenters,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 31, no. 10,
pp. 1465-1484, 2012.

[16] L. A. Barroso, J. Dean, and U. Holzle, “Web Search for a Planet: The
Google Cluster Architecture,” IEEE Micro, vol. 23, no. 2, pp. 22-28,
2003.

[17] S. Shankland. "Google uncloaks once-secret server,"
http://www.cnet.com/news/google-uncloaks-once-secret-server-1020958
0/.

[18] "Open computer project: Server/Specs and designs,"
http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns.

[19] A. Andreyev. "Introducing data center fabric, the next-generation
Facebook data center network,"
https://code.facebook.com/posts/360346274145943/introducing-data-ce
nter-fabric-the-next-generation-facebook-data-center-network/.

[20] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines, Second
edition,” Synthesis Lectures on Computer Architecture, vol. 8, no. 3, pp.
1-154, 2013/07/31, 2013.

[21] C. Bienia, “Benchmarking modern multiprocessors,” Princeton
University, 2011.

[22] P. Sangyoung, P. JaeHyun, S. Donghwa, W. Yanzhi, X. Qing, M.
Pedram, and C. Naehyuck, “Accurate Modeling of the Delay and Energy
Overhead of Dynamic Voltage and Frequency Scaling in Modern
Microprocessors,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 32, no. 5, pp. 695-708, 2013.

[23] "Xen power management,"
http://wiki.xen.org/wiki/Xen_power_management.

[24] I. Hwang, and M. Pedram, "A Comparative Study of the Effectiveness of
CPU Consolidation versus Dynamic Voltage and Frequency Scaling in a
Virtualized Multi-Core Server."

[25] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber, and T. F. Wenisch,
"Power management of online data-intensive services." pp. 319-330.

Inkwon Hwang (S’10) received the B.S.
degree in electrical engineering from Seoul
National University, Seoul, Korea, in 2006
and M.S. degree in electrical engineering
from the University of Southern California,
Los Angeles, CA, USA, in 2008. He is
currently pursuing the Ph.D. degree in
electrical engineering at the University of

Southern California, Los Angeles, CA, USA. He has been
working on power management of cloud computing systems
and CPU consolidation.

Massoud Pedram (F’01) received the
Ph.D. degree in electrical engineering and
computer sciences from the University of
California, Berkeley, CA, USA, in 1991.
He is the Stephen and Etta Varra Professor
with the Ming Hsieh Department of
Electrical Engineering, University of
Southern Califor nia, Los Angeles, CA,

USA. He holds 10 U.S. patents and has authored four books, 13
book chapters, and more than 140 archival and 380 conference
papers. His research interests include low power electronics,
energy-efficient processing, and cloud computing to
photovoltaic cell power generation, energy storage, and power
conversion, and from RT-level optimization of VLSI circuits to
synthesis and physical design of quantum circuits. Dr. Pedram
is an ACM Distinguished Scientist, and currently serves as the
Editor-in-Chief of the ACM Transactions on Design
Automation of Electronic Systems and the IEEE JOURNAL
ON EMERGING AND SELECTED TOPICS IN CIRCUITS
AND SYSTEMS. He has also served on the Technical Program
Committee of a number of premiere conferences in his field and
was the founding Technical Program Co-Chair of the 1996
International Symposium on Low Power Electronics and
Design and the Technical Program Chair of the 2002
International Symposium on Physical Design. He was a
recipient of the 1996 Presidential Early Career Award for
Scientists and Engineers. He and his students have received
seven conference and two IEEE TRANSACTIONS Best Paper
Awards.

http://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/
http://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/
http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns
http://wiki.xen.org/wiki/Xen_power_management

	I. INTRODUCTION
	II. Background – power management technologies
	A. Processor power states (C, CC, PC-States)
	B. Processor performance state (P-States)
	C. Core-level power gating
	D. Intel® Quickpath Interconnect (QPI)

	III. Power, Delay and Consolidation
	A. Power model
	B. CPU consolidation and power dissipation
	C. Delay model

	IV. Energy Efficiency Metrics
	A. Energy per task (E/task)
	B. Energy-delay product per task (ED/task)

	V. Experimental Setup
	A. Hardware test-bed and XEN
	B. Benchmarks- PARSEC and SPECWeb2009

	VI. Experimental Results and Discussions
	A. Power model derivation and verification
	B. Package-level consolidation
	C. Consolidation overhead – vCPU count
	D. CPU selection policy
	E. Execution time
	F. E/task and ED/task improvements for PARSEC
	G. CPU consolidation for SPECWeb2009 benchmarks
	H. Online CPU consolidation algorithms

	VII. Conclusion

