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Abstract—Companies operating large data centers are focusing 

on how to reduce the electrical energy costs of operating data 
centers. A common way of cost reduction is to perform dynamic 
voltage and frequency scaling (DVFS), thereby matching the 
CPU’s performance and power level to incoming workloads. 
Another power saving technique is CPU consolidation, which uses 
the minimum number of CPUs necessary to meet the service 
request demands and turns off the remaining unused CPUs. 
DVFS has been already extensively studied and verified its 
effectiveness. On the other hand, it is necessary to study more 
about effectiveness of CPU consolidation. Key questions that must 
be answered are how effectively the CPU consolidation improves 
the energy efficiency and how to maximize the improvement. 
These questions are addressed in this paper. After understanding 
modern power management techniques and developing an 
appropriate power model, this paper provides an extensive set of 
hardware-based experimental results and makes suggestions 
about how to maximize energy efficiency improvement through 
CPU consolidation. In addition, the paper also presents new 
online CPU consolidation algorithms, which reduce the energy 
delay product up to 13% compared to the Linux default DVFS 
algorithm.  
 

Index Terms—Algorithm, consolidation, energy efficiency, and 
virtualization. 

I. INTRODUCTION 
ATA centers consist of a very large number of server 
machines that can be leased to provide cloud services to a 

whole slew of clients running many different applications. The 
number of servers employed in data centers has been rapidly 
increasing, confirmed by continuous increase in the BLADE 
server shipments in US and worldwide. Although the energy 
efficiency of server machines has been improving, this 
efficiency advances have not kept pace with the increase in 
cloud computing services and the concomitant increase in the 
number and size of data centers. As a result, an ever increasing 
amount of electrical energy is being consumed in today’s data 
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centers, giving rise to concerns about the carbon emission 
footprint of data centers and the costs of operating them. The 
latter is especially important concern from the viewpoint of 
datacenter owners and operators (as well as their 
customers/clients who must eventually pay the bill). 

Two widely employed techniques for reducing the costs of 
operating data centers are server consolidation and DVFS. The 
former aims at minimizing the number of ON servers in a 
datacenter by consolidating all the incoming jobs into as few 
servers as possible whereas the latter attempts to match the 
performance of each ON server to the current workloads so that 
energy can be saved at the workload level of each server. Server 
consolidation is needed and complements DVFS technique 
because of the energy no-proportional behavior of modern 
servers [1], and an unfortunate effect by which a server 
machine operating at a low performance level tends to consume 
power close to the power it consumes at its peak performance 
level.  This is somewhat natural and expected because an 
electronic circuit (with server being a special case) consumes 
static power (leakage in CMOS digital circuits) regardless of 
whether it provides any computational services. The issue is, 
however, worse than simple leakage and has to do with the fact 
that many components within a modern server system (e.g., 
“uncore” logic within the processor chip, DRAM modules on 
the board, many of the I/O controllers, and even the network 
interface) cannot be scaled/modulated to exhibit a linear 
relationship between their power consumption and delivered 
performance levels. 

A data center is typically under-utilized; it has been designed 
to provide the required performance and satisfy its service level 
agreements (SLAs) with clients even during peak workload 
hours, and hence, at other times its resources are vastly 
under-utilized. For example, the minimum and the maximum 
utilization of the statically provisioned capacity of Facebook’s 
data center are 40% and 90%, respectively [2]. Hence, in light 
of the energy non-proportionality of today’s server base, a 
greater amount of energy costs can be reduced by consolidating 
jobs into as few server machines as possible and turning off the 
unused machines. The server consolidation has been studied 
very well, and many studies have suggested the use of virtual 
machine migration (VMM) as a means of doing server 
consolidation [3-7]. 
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Although server consolidations can greatly lower a data 
center’s total energy consumption, there is still room for further 
energy savings due to the limitations and overheads associated 
with the server consolidation. For one, it is difficult to conduct 
server consolidation very frequently because the migration of 
tasks or virtual machines causes high overheads; e.g., heavy 
network traffic, high network latency and large system boot 
time, plus large energy consumption to move virtual machines 
and their local contexts around. Because of these overheads, 
there is a relatively long period between server consolidation 
decision times. To avoid the SLA violations during each timing 
period when virtual machine to server assignments are fixed, 
virtual machines (or tasks) are not too tightly consolidated into 
the active server set in order to provide a safe margin of 
operation. Too aggressive a server consolidation strategy will 
result in violation of client SLAs. The longer the period 
between migrations is, the larger the aforesaid margin should 
be (i.e., more server machines should be activated, each at a 
lower average utilization rate). Hence, server machines are still 
under-utilized after datacenter-level server consolidation, 
which implies that there is the potential of further energy 
savings through additional resource management techniques as 
explained below. 

There are a number of resources in a computer system such 
as computing, storage, and I/O bandwidth.  This study focuses 
on the computing resource, i.e., the CPU, which is a major 
energy consumer. A well-known and popular energy-aware 
CPU management technique is a Dynamic Voltage and 
Frequency Scaling (DVFS) [3, 8, 9]. The DVFS was introduced 
decades ago, and it has been one of the most effective power 
saving techniques for CPUs. The amount of the energy savings 
by DVFS, however, is decreasing due to the following reasons. 
First, the supply voltages have already become quite low; hence, 
the remaining headroom for further supply voltage reductions 
is small and shrinking. Second, many modern servers have two 
or more processor chips, each chip containing multiple CPUs 
(cores1) but a single on-chip power distribution network shared 
by all the CPUs. Because of this sharing, the CPUs on the same 
package must operate at the same supply voltage level and 
hence the same clock frequencies2. Unless we do ‘perfect’ load 
balancing among CPUs sharing the same power bus, the 
voltage level that is set for the most highly loaded CPU will 
result in energy waste because all the other under-utilized CPUs 
run at higher frequency than what is actually needed. Third, in a 
virtualized server system, it is difficult to gather sufficient 
information about the running applications, which is necessary 
to choose the optimal clock frequency and voltage level for the 
CPUs. This is because the virtual machine manager 
(hypervisor), which conducts DVFS, resides in a privileged 
domain whereas the applications are running in a different 
domain (virtual machine domain) [4]. 

Another well-known CPU energy management technique is 
Dynamic Power State Switching. Many modern processors 
support multiple power states (known as C, Core C, and 
 

1 The terms ‘CPU’ and ‘core’ are used interchangeably in this paper. 
2 Some processors are capable of independent DVFS among cores while 

Intel® processors are not. Intel® Xeon® processors are used for this study. 

Package C-states). Each C-state specifies the circuits that are 
turned ON or OFF. Based on the history of recent workloads of 
CPUs, the operating system (OS) suggests C-state of each CPU. 
Based on this suggestion, appropriate CC and PC-states are 
chosen by a Power Control Unit (PCU). This PCU is 
programmed using fine-tuned algorithms. These algorithms are 
well designed but still not perfect, so we believe that further 
energy savings can be achieved if there is software-level 
assistance. In this study, we present a CPU consolidation 
technique, which helps the PCU to reduce more energy. This 
technique explicitly defines sets of active and inactive (sleep) 
CPUs. It guarantees to meet performance target and reduce 
energy consumption by minimizing power state switches.  

There are research studies that investigate the effectiveness 
of the CPU consolidation. In [10] the authors show that 
consolidation across CPUs in a single processor and two 
processor systems offers a very small amount of energy savings.  
They used their own benchmark which is not the standard and 
may not create realistic workloads. In [11] Jacob et al. compare 
core-level power gating (CPG) with DVFS and show that CPG 
saves more energy by 30% than DVFS. This result implies the 
energy savings by the CPU consolidation may be larger if the 
processor supports the CPG. However, the reported results are 
calculated from a combination of real measurements and their 
leakage estimator (the adopted leakage power model is 
somewhat simple). In [2] the authors present a technique called 
core count management (CCM), which is a variant of the CPU 
consolidation technique, and report 35% energy savings. 
However, all results are obtained from a simulator, and the 
power and performance models used in the simulator are again 
fairly simplistic.  

This paper is differentiated from the prior work because of 
the following reasons. First, all results are obtained not from a 
simulation but from actual hardware measurements. Second, 
well designed benchmarks (PARSEC and SPECWeb2009) are 
used for the experiment, and we believe the workloads from 
these benchmarks are realistic. Third, it is intensively analyzed 
and discussed how CPU consolidation improves energy 
efficiency rather than just showing final results. Fourth, this 
paper compares energy efficiency improvement by CPU 
consolidation, DVFS, and combined techniques (i.e., both 
consolidation and DVFS are combined).  

A preliminary version of this work has been published in  
[12]. This archival paper is a substantially extended version, 
which includes a completely new power model, using a new 
benchmark (PARSEC), vastly more detailed experimental 
results and discussions, and a more efficient online CPU 
consolidation algorithm. 

The strength of this paper is that all results are collected not 
based on any simulations but rather from experiments on a 
server system comprising two Intel® Xeon® Westmere E5620 
processors. It is true that our conclusions are therefore 
applicable to the server under consideration. However, as also 
explained below, this server is an archetypical Intel server that 
can be used in a wide range of scenarios from small cluster of 
servers to larger data center computing. Hence, we believe 
there is value and benefit in understanding and quantifying the 
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energy efficiency gains that can be achieved by using the right 
combination of DVFS and CPU consolidation in such a server. 
Clearly, the basic power management strategy must be 
enhanced when we go from the level of an individual server or a 
small server clusters to a very large (potentially heterogeneous) 
number of servers in a data center (see for example, references 
[13-15]); However, further study on the server level will be 
essential and important in deriving global power management 
strategies at higher levels. Moreover, to the best of our 
knowledge, this is the only published result that provides such a 
detailed discussion of the core and package C-states in a 
modern server, develops and validates power and latency 
models for applications running on these servers as a function 
of the deployed DVFS and/or consolidation policy, and 
suggests effective yet simple, solutions for applying a 
combination of DVFS and CPU consolidation to these servers 
(esp. for I/O bound applications).  

The remainder of the paper is organized as follows. Existing 
CPU power management technologies are reviewed in Section 
II. In Section III we present the power and delay models. Based 
on these models we discuss how CPU consolidation can 
improve energy efficiency. The metrics for quantifying energy 
efficiency are presented in section IV. The experimental system 
setup is explained in Section V. Section VI presents our 
extensive experimental results and discussions. Finally, we 
summarize the results and provide final conclusions and 
insights in Section VII. 

II. BACKGROUND – POWER MANAGEMENT TECHNOLOGIES 
The purpose of this study is to understand how effectively 

CPU consolidation improves the energy efficiency of server 
systems so as to maximize the improvement. The consolidation 
interacts with existing power management technologies, so it is 
helpful to understand these technologies. In this section, the 
processor power and performance states are briefly reviewed. 
In addition, we review Intel® Quickpath Interface technology 
which may affect the energy savings by consolidation. Before 
starting a discussion, a few confusing terms is clearly defined 
below: 
• CPU – all circuits used to perform arithmetic/logic operations and 

L1 and L2 cache memories. A term ‘core’ is used interchangeably 
with a word ‘CPU’ in this paper  

• uncore – all components in a processor except cores 
• package – a physical unit which has core and uncore. A word 

‘package’ is used interchangeably with a word ‘processor’ 
• CPU consolidation – it is simply called ‘consolidation’ unless it is 

confusing 
• total utilization – sum of percentage of times when CPUs are 

running codes. For example, when two CPUs are fully utilized, the 
total utilization is 200% 

• average utilization – average utilization per core. It is calculated 
by dividing total utilization by the number of active CPUs, so it 
should be equal to or less than 100%.  This term is simply called 
‘utilization’ or ‘util’ 

• throughput – the number of tasks (jobs) processed in a second 
• delay – total amount of time spent for executing a task. This 

includes the time when a task is suspended and that waiting in a 
queue of the CPU scheduler.  

A. Processor power states (C, CC, PC-States) 
The Advanced Configuration and Power Interface (ACPI) 

specification was developed as an open standard for 
OS-directed power management. Many modern operating 
systems (OS) meet this specification. First, the specification 
defines C-States as processor power states; when a processor is 
in a higher-numbered C-State, which is also called a ‘deeper’ 
sleep state, a larger area of internal circuitry is turned off or 
inactive, which reduces power dissipation. On the other hand, it 
also takes longer time to go back to the operating state (i.e., C0 
state). The number of supported C-States is processor 
dependent. For example, the Intel® Core™ i7 processor 
(code-named Nehalem) supports the following core states: C0 
(normal operating mode–cores in this state are either executing 
code or are in standby), C1 (autoHALT–a low power state 
entered when all threads within the core execute a HLT or 
MWAIT instruction), C1E (autoHALT with lowest frequency 
and voltage operating point), C3 (deep sleep–cores in this state 
flush their L1 instruction cache, L1 data cache, and L2 cache to 
the L3 shared cache; Clocks are shut off to each core), and C6 
(deep power down–cores in this state save their architectural 
state before removing core voltage). See Intel® CoreTM i7 
datasheets for more detailed information. 

The C-state is also known as a logical C-State. An OS 
‘requests’ a change in C-State of logical cores 3, but the request 
may be denied (e.g., auto demotion). The decision about 
demotion is made based on each core’s immediate residency 
history (think of this as the breakeven time for the proposed 
power state transition); if an amount of future residency in idle, 
which is estimated from the residency history, is insufficient, 
then a request to transition a core into a deeper power state will 
be ignored.  In general, the entry/exit costs (latency and energy 
overheads) increase when the processor/core escapes from a 
deeper sleep state; hence, the auto demotion prevents 
unnecessary excursions into deeper power states, and thereby, 
it reduces both latency and energy overheads of power state 
switches. 

In addition to the logical C-states there are two more types of 
hardware C-States: core (𝐶𝐶𝑛 ) and package C-state (𝑃𝐶𝑛 ). 
Based on logical C-state switch request from an OS, a Power 
Control Unit (PCU) decides about the CC and PC-states. Each 
core and/or package can switch its power state independently; 
that is, CC-state of a core may be different from that of other 
cores. Likewise, PC-state of one package could be different 
from that of another package. The 𝐶𝐶0 state is a special state 
that deserves more discussion; a core is in this state when it is 
executing tasks or when it is standing by for the next task to 
arrive (but is still in the normal operating mode). Note that a 
core does not immediately switch from 𝐶𝐶0 state to a deeper 
sleep state when it becomes idle. 

The PC-state of a package depends on the CC-states of cores 
in the package. In particular, a package state can be 𝑃𝐶𝑘 only 
when all of its cores are in 𝐶𝐶𝑘 state or deeper CC-states. It is 
because some resources shared by cores cannot be turned off 

 
3 A logical core is identical to a physical core unless Intel® hyper-threading 

is enabled. In this study hyper-threading was disabled. 
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unless all cores are inactive. For example, the Intel® i7 
processor’s L3 cache is shared by multiple cores, so a package 
should stay in active state if any core is still active. Otherwise, 
the active cores cannot function properly. 

B. Processor performance state (P-States) 
While a processor executes codes, it can be in one of several 

performance states (P-State), which specify the clock frequency 
and corresponding voltage level. At the higher frequency, the 
performance is higher, but its power dissipation is also higher. 
Similar to the C-States, the number of supported P-States is 
processor- dependent, and a frequency is higher at lower 
numbered P-States, that is, P0 is the highest performance state.  

An OS chooses the P-State based on the historical workload 
information. The OS may not choose the same state for all cores, 
but all cores in Intel® processors will run at the same clock 
frequency. Therefore, even if the OS sets different P-States for 
the cores, only one state is selected and applied. In general, the 
highest performance state is chosen, but another decision policy 
may be used. Because of this hardware constraint of the current 
Intel® processors, it is recommended to distribute the workload 
evenly among all active cores. Otherwise, the selected P-State 
will be appropriate only for some cores, but not for the others. 

C. Core-level power gating 
Recent state-of-the-art Intel® processors are capable of 

core-level power gating; processors can completely shut down 
some of the cores (the OFF cores consume nearly zero power). 
Processors with the power gating feature have additional 
C-State at which power dissipation is nearly zero, but with the 
largest entry/exit costs. Note that the processor used in this 
study supports core-level power gating. 

D. Intel® Quickpath Interconnect (QPI) 
In the past there was only one memory controller (MC) in a 

system because one MC was enough for single core/processor 
systems. However, modern server systems, which have 
multiple packages (processors), need multiple MCs to achieve a 
target performance level. With a single MC, performance of all 
packages reduces as soon as a CPU in one package uses 
memory controller heavily. In order to address such a memory 
bottleneck issue, Intel® invented QPI; each package owns an 
integrated memory controller (IMC) and communicates with 
other packages through the QPI. An example of a dual 
processor system is shown in Fig. 1.  . Half of DDR3 slots are 
directly connected to a first package while the other half is 
connected to a second package. Therefore, if a core in package 
#1 needs data located in a remote DDR3, which is connected to 
package #2, the data is requested and received through QPI. 
Hence, the PC-state of some package may not be the deepest 
sleep state even when all CPUs in that package are inactive. 
This is because any CPU in other packages may be requesting 
data from the DDR3 slots that are directly connected to the 
package in question. Due to this phenomenon, it is expected 
that power savings achievable by package-level consolidation 
are negligible. This will be discussed in more details in a later 
section. 

 

Fig. 1.   Intel® QPI block diagram 

III. POWER, DELAY AND CONSOLIDATION 
In this section we present power and delay models for Chip 

Multiprocessor (CMP) server systems. Using these models, we 
will discuss how the consolidation affects the energy efficiency 
and delay. This discussion is abstraction level, so it may be too 
simplified to cover everything of real situations. However, we 
believe it is sufficient for deriving insights. The discussion 
about the power/latency tradeoffs will be verified by empirical 
results in Section VI. Note that thermal issues (e.g., leakage 
power variation as a function of chip temperature) are not 
considered. This is because we can do consolidation only when 
the system is under-utilized, which also implies that the 
temperature of processor chips is not very high.   

A. Power model  
This section presents a full platform-level power dissipation 

model, accounting for the power consumed by all components 
within a server system. This model estimates the system power 
dissipation by using statistical data reported by the system; i.e., 
the percentage of time spent in specific CC and PC-states.  

The processor power dissipation consists of core and uncore 
power dissipations. Some notations used for the model and 
their definitions are shown below: 

• 𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐  – Power dissipation by a core when the core is active and 
executing code. This active power is a function of P-State of active 
cores. This is also dependent on the type of workload, but we do not 
consider this factor because consolidation does not change 
characteristics of the current workload. 

• 𝑃𝐶𝐶𝑛
𝑐𝑐𝑐𝑐 – Power dissipation by a core at 𝐶𝐶𝑛 state. Note that 𝑃𝐶𝐶0

𝑐𝑐𝑐𝑐 is 
different from 𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 ; a core may be simply standing by while it is 
in 𝐶𝐶0 (i.e., it is not executing any tasks although it is fully on) 

• 𝑃𝑃𝐶𝑛
𝑢𝑢𝑢𝑢𝑢𝑢 – Power dissipation by the uncore when a package is in the 

𝑃𝐶𝑛 state 
• 𝑇𝑎𝑎𝑡𝑡𝑡𝑡

𝑐𝑐𝑐𝑐𝑖  – Percentage of time when a core is active and executing 
tasks, which is also called core utilization (𝑢𝑢𝑢𝑢𝑖) 

• 𝑇𝐶𝐶𝑛
𝑐𝑐𝑐𝑐𝑖 – Percentage of time when a core is in 𝐶𝐶𝑛 state 

• 𝑇𝑃𝑃𝑛
𝑢𝑢𝑢𝑢𝑢𝑢 – Percentage of time spent when a package is in 𝑃𝐶𝑛 state 

Total (server platform) power dissipation is the sum of the 
processor power dissipation (Pproc) and the power consumed by 
other system components (Pother), e.g., I/O, memory, and hard 
disc drive. Pother is fixed and independent of the DVFS or CPU 
consolidation, so it acts as a fixed offset on top of the Pproc.  

 (1) 
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The core power dissipation can be estimated using  𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 , 
𝑃𝐶𝐶𝑛
𝑐𝑐𝑐𝑐, 𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖 , and 𝑇𝐶𝐶𝑛
𝑐𝑐𝑐𝑐𝑖  as shown below. CC0 is a special state; 

a core is in the CC0 state when the core is executing codes. 
However, the core may be in the CC0 state even when it is in 
idle. For example, a CPU stays in the CC0 state for a certain 
amount of time (i.e., a timeout period) before switching to 
deeper power state.  
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Similar to the core power dissipation, the uncore power 
dissipation is: 
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B. CPU consolidation and power dissipation 
In this section we discuss whether consolidation reduces 

power dissipation or not. We do not cover its impact on delay, 
which is discussed in the following section. The discussion here 
is based on an assumption that consolidation is performed in a 
correct way so that throughput remains the same; in other 
words, a sufficiently large number of CPUs are always active. 
Lower power dissipation at the same throughput means less 
energy is consumed for the same workloads, which also means 
more energy-efficient operation. The discussion in this section 
focuses on how power dissipation changes with consolidation. 
Therefore, we can see if energy efficiency is improved or not. 

Consolidation reduces the number of active CPUs, that is, the 
type and level of workloads do not change. Therefore, it is 
expected that 𝑃𝑜𝑜ℎ𝑒𝑒  is not affected by consolidation. Hence, 
we focus on changes in the core and uncore power dissipations:  

 ( ) ( )ji uncorecoretotal
i j

P P P∆ = ∆ + ∆∑ ∑  (4) 

We start with the power impact on cores: 
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In the above equation, term ∑ 𝑇𝑎𝑎𝑎𝑎𝑎𝑒
𝑐𝑐𝑐𝑐𝑖

𝑖   is not affected by 
consolidation because the workload level does not change (i.e., 
∆∑ 𝑇𝑎𝑎𝑎𝑎𝑎𝑒

𝑐𝑐𝑐𝑐𝑖
𝑖 = 0). Therefore, 

 ( ) ( )0
i i

n n

core corecore
CC CCi n i

P P T
≥

∆ = ∆∑ ∑ ∑  (6) 

As shown in the above equation, the power savings of 
consolidation is a function of changes in the sum of 𝑇𝐶𝐶𝑛

𝑐𝑐𝑐𝑐𝑖 . 
Let us assume that power state transition is ideal: 1. CC-state 

immediately switches to the deepest sleep state (CC6) without 
any delay when a core becomes idle (i.e., 𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖 = 𝑇𝐶𝐶0
𝑐𝑐𝑐𝑐𝑖) 2. 

There is no power state switch cost: additional delay and power 
consumption when power state switches. Based on these 
assumptions, there is negligible change in core power 
dissipation by consolidation because all cores are in the CC6 
state when they are idle:  
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However, this assumption is not realistic. Because of 
non-negligible switch costs, a core may not switch promptly its 
power state when it becomes idle; if the core is in low power 
state for the very short time, then switch costs could be greater 
than power savings by the switch. Consolidation can decrease 
power consumption by reducing the number of switch (hence, 
reducing switch costs). Fig. 2.  depicts an example which shows 
how consolidation reduces the costs; there are two CPUs and 
two CC-states available: CC0 and CC6. When a task is given to 
a CPU, the CPU executes the task (CC0-active). When the 
execution is done, the CPU stays in the CC0 state (CC0-idle) for 
certain amount of time before switching to CC6. For the rest of 
period, the CPU is in the CC6 state. From the upper case in the 
figure (Fig. 2.  (a)), we can see one CC6-to-CC0 switch and two 
CC0-to-CC6 switches. On the other hand, from a consolidation 
case (Fig. 2.  (b)), there is only one switch: CC0-to-CC6. In 
addition, CPUs reside in the CC0-idle state for shorter amount of 
time. Therefore, in this example, consolidation reduces power 
dissipation, which also means it improves energy efficiency. 
However, consolidation may increase execution time of a task. 
In this example, the 2nd task cannot be executed promptly 
because a CPU is running the previous task (task 1) and this 
CPU is the only one active CPU. Therefore, we have to 
consider performance degradation and decide whether 
performs consolidation or not.  

Second, we discuss about power dissipation impact on 
uncore power by consolidation. As discussed in Section II.A, a 
package can switch its power state to deeper one only when all 
cores in the package are idle. A uncore can stay longer at deeper 
power state when both CPUs are active (Fig. 2.   (a)); there is 
overlap where both CPUs are in active state, so both CPUs are 
in the CC6 state for longer period than the 2nd case where only 
one CPU is active. In other words, consolidation may increase 
uncore power. However, consolidation can reduce the 
percentage of time spent in the CC0-idle state, so if the reduction 
is greater than the overlap, uncore power dissipation may be 
reduced by consolidation. 

CC0-activeCPU1 CC0-idle CC6

(a) 2 adtive CPUt

(b) 1 adtive CPU (dontolieation)

CC0-active CC0-idleCC6 CC6CPU2

CC0-activeCPU1 CC0-active CC0-idle CC6

CC6CPU2

task 1
arrives

task 2
arrives

time

 

Fig. 2.   Example of CC-state switch by consolidation 

We have discussed about impacts on power dissipation using 
the power model, but real system is too complicated for the 
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model to consider all factors which affect power dissipation. 
Therefore, we run experiment on a real system and quantify the 
power savings by consolidation. 

C. Delay model 
As discussed in the previous section, consolidation may 

increase delay of tasks. In this section, we discuss the impact of 
consolidation on delay. The proposed delay model is a function 
of core utilization ( 𝑇𝑎𝑎𝑎𝑎𝑎𝑒

𝑐𝑐𝑐𝑐𝑖 ). In general, the delay increases 
rapidly when a CPU approaches full utilization [5]: 

 
1 i

i core
active

eD f
T

= +
−

 (8) 

𝐷𝑖  is the delay of the 𝑖th CPU (𝑐𝑐𝑐𝑐𝑖). Coefficient e represents 
how sensitive the delay is to the core utilization; with larger e, 
delay increases more rapidly as the core utilization approaches 
1. Another coefficient f represents a lower bound on the delay, 
that is, the delay may not reduce below certain value even when 
the core utilization is very low (𝐷𝑖 ≥ 𝑒 + 𝑓). These coefficients 
are task-dependent, that is, coefficients for one task might be 
different from those for another task. They are also 
hardware-dependent. This delay is affected by consolidation 
because  𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖  is a function of the active CPU count. When 𝐾 
tasks are assigned to the system every second, the tasks are 
evenly distributed to the 𝑚  active CPUs by a scheduler; 
therefore, each CPU is assigned 𝐾/𝑚 tasks every second. The 
core utilization  𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑖  is linearly proportional to the workload 
(𝐾/𝑚):  

 ( )icore
activeT d K m=  (9) 

Coefficient d represents the amount of CPU resource (i.e. the 
number of CPU cycles) needed for executing a task. A task with 
higher d needs more CPU cycles compared to another task with 
smaller d. Now we can model the delay as a function of the 
active CPU count (m) and the total number of tasks (K): 

 
( )1
eD f

d K m
= +

−
 (10) 

Delay increases as the core utilization 𝑇𝑎𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑖  increases. The 

increase rate at high utilization is greater than that at low 
utilization. Consolidation increases the core utilization, but if 
we keep the core utilization lower than certain level (threshold), 
then delay increase by consolidation will be insignificant. 
Hence, it is important to find this threshold and keep core 
utilization lower than the threshold. 

Coefficients in the delay model may be application 
dependent, so a threshold for one application may be different 
from that for another application. Therefore, we will find 
thresholds for various kinds of benchmark tests. From 
experiments, we recommend that the average core utilization is 
no more than 70% for CPU-bound applications.  Note that for 
memory-bound applications where the execution time limit is 
tight, contention can occur on other shared resources (including 
bus, second level cache, and main memory) and hence a limit 
on average CPU utilization will not be sufficient. However as 
we will show later for such applications CPU consolidation is 
not an effective technique anyways. Details will be presented in 
Section VI. 

IV. ENERGY EFFICIENCY METRICS 
In the previous discussion, the term ‘energy efficiency’ has 

been used without defining it. In order to determine if 
consolidation improves the energy efficiency or not, we have to 
precisely define what ‘energy efficiency’ is. Depending on how 
it is defined, consolidation may or may not enhance the energy 
efficiency. In this study we use two metrics for energy 
efficiency: energy per task (E/task) and energy-delay product 
per task (ED/task). 

A. Energy per task (E/task) 
This metric is often used for comparing energy efficiency 

among different platforms. A term ‘task’ denotes an instance of 
executing a specified benchmark. This metric is simply 
calculated using average power consumption ( Pavg ) and 
throughput (i.e., the number of tasks processed in a second): 

 /
#  #  

gross avg avgE P Time P
E task

of tasks of tasks throughput
×

= = =  (11) 

The consolidation may decrease this metric, but it can also 
reduce performance. If ‘throughput’ is selected as a 
performance indicator, then this metric also includes 
performance information in it. If consolidation reduces E/tasks, 
we can say energy savings dominate performance degradation 
(i.e., throughput reduction). However, for another performance 
definition, this metric may be insufficient; if we have to care of 
execution time as well as throughput, this metric does not 
include performance information. For example, if the execution 
time increases due to consolidation but throughput does not 
change, this metric shows that the energy efficiency is 
improved without any performance degradation. This may 
mislead into a wrong decision. Hence, we introduce another 
metric at the following section. 

B. Energy-delay product per task (ED/task) 
A ‘delay’ in this metric is the average execution time of tasks. 

This also includes period when a task is suspended by the CPU 
scheduler and CPUs execute other tasks. This metric is 
calculated using the average power dissipation, throughput, and 
execution time: 

 ( )/ / avgP delay
ED task E task delay

throughput
×

= × =  (12) 

Depending on a metric a different power management 
technique can be determined as the best one. Hence, we will 
report energy efficiency improvement of both metrics. 

V. EXPERIMENTAL SETUP 
A goal of this study is to quantify energy efficiency 

improvement of consolidation and to find a way to maximize 
the improvement. In addition, we will compare consolidation 
with DVFS which is the most popular technique. Because a real 
system is too complicated to be well simulated, all data shown 
in the following sections are measured from experiments (not 
simulations). 

A. Hardware test-bed and XEN  
The server system under test has two Intel® Xeon® Westmere 

E5620 processor packages, and each package in turn includes 
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four CPUs in it (Fig. 1.  ). As mentioned in Section II.B, all 
CPUs in the same package run at the same clock frequency and 
voltage. However, the power state of a CPU can be different 
from that of the other CPUs in the same package. Each 64-bit 
CPU has its own dedicated 256KB L1 and 1MB L2 caches but 
shares a 12 MB L3 cache with the other CPUs. The total size of 
the system memory is 6GBytes. This processor supports seven 
clock frequency levels, from 1.6GHz to 2.4GHz.  

This considered server system may appear too small to 
represent typical servers in data centers. A common myth is that 
data centers always consist of large-size servers which have 
many processors. In fact this is not true for all data centers; the 
Google data center consists of clusters of inexpensive 
desktop-class machines [16, 17]. As another example, the  
Facebook data center is comprised of dual processor servers [18, 
19]. There are a few reasons why data centers consist of many 
small servers rather than fewer large-size servers [20]: first, 
resource management in many processor servers is a complex 
and challenging task, so actual performance may not high 
enough. Second, the license cost of resource management 
software for large servers is high. Third, it is tricky to properly 
handle a failure of individual component, that is, failure of one 
processor in a large server may cause the whole server system 
to fail, taking out a big chunk of computing resources within a 
data center. Hence, our setup is realistic and representative of 
typical server systems found in some data centers. 

A power analyzer tool measures the total platform (system) 
power dissipation, which includes total power consumed by all 
components; e.g., processor, HDD, DRAM, fan, and so on. 
None of the components other than CPU are optimized to 
achieve any power savings. For example, cooling fans are 
running at highest speed all the time and high performance 
HDDs are used all the time in order to avoid any risk of 
performance degradation. Hence, the system power dissipation 
is very high even when the system is idle (we call this quantity 
the standby power from now on). In order to compensate 
potential power inefficiency of other system components, we 
calculate and report ‘power dissipation’ as the difference 
between the total system power and the standby power:  

 measured standbypower power power= −  (13) 
The reported power value thus accounts for dynamic power 
consumption of all system components. The standby power of 
our system is 98.1W. When the system is fully loaded, the 
system power is about 160W; that is, we report 61.9W as the 
power consumption. Consolidation is needed only when the 
system is under-utilized. If the average core utilization is 50%, 
calculated power consumption is about 30W. If consolidation 
reduces power dissipation by 15W, then we report 50% power 
savings. On the other hand, the power savings would have to be 
reported as only 12% if we had used the total system power for 
the calculation. We believe reporting 50% total dynamic power 
saving is more indicative of the actual effect of consolidation 
that reporting 12% saving in the total platform power. All 
power dissipation numbers reported in the following sections 
are calculated using the above equation unless there is specific 
description. A photo of the system under test is shown in Fig. 3.   

 

Fig. 3.   The server system along with a power analyzer 

We have built the virtualized system using XEN (version 
4.0.1), which is an open source hypervisor-based virtualization 
product and provides the APIs for changing VM configurations: 
the number of virtual CPUs (vCPU), clock frequencies, and the 
set of active CPUs. We change these configurations by calling 
the XEN built-in functions. 

B. Benchmarks- PARSEC and SPECWeb2009 
For this study two different benchmark suits are used: 1. the 

Princeton Application Repository for Shared-Memory 
Computers (PARSEC) [21] and 2. SPECWeb2009. PARSEC 
consists of 13 multithreaded and shared-memory programs, 
which represent next-generation programs for CMP. All these 
programs are designed and developed for real applications. 
Characteristics of these programs are very different from one 
another, and they represent wide range of applications. 
Therefore, we can make strong conclusion using PARSEC 
benchmark. Note that there are total of 13 programs are 
provided, but we use 11 programs. It is because ‘facesim’ and 
‘ferret’ programs are very instable and often crashed in our 
setup. The PARSEC benchmark does not provide an I/O-bound 
program, so SPECWeb2009 was used as an I/O-bound one.  

For PARSEC, we present improvement of both metrics: 
E/task and ED/task. On the other hand, for SPECWeb2009, we 
only present ED/task. Delay, which is defined as turn-around 
time for SPECWeb2009, is very important for web service, so 
E/task is not an appropriate metric for SPECWeb2009.  

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 
In this section, experimental results of PARSEC and 

SPECWeb2009 running on the system under test are presented 
and discussed below. We start from presenting a detailed power 
model as a function of CC and PC-states. We also investigate 
the consolidation overhead 4 and suggest that the number of 
virtual CPUs (vCPU) has to be dynamically changed to reduce 
the overhead. It is also important to find out which set of CPUs 
should be active in order to maximize energy efficiency. Next 
we report the E/task and ED/task improvement of PARSEC 
using three techniques: 1. DVFS, 2. Consolidation, and 3. 
Combined. Finally, we present a highly effective, yet simple, 
online consolidation algorithms for SPECWeb2009 and report 
energy efficiency improvement. 

 
4 The DVFS overhead has been extensively studied in reference [22]. 
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A. Power model derivation and verification 
This section presents a full platform-level power dissipation 

model, accounting for the power consumed by the core and 
uncore components within the target server system.  As will be 
seen, this model is more detailed than the generic one that was 
described in Section III.A. 

Our system allows limiting the deepest C-state, and we can 
set the limit to C1, C2, or C3 by using the xenpm [23] of the 
XEN hypervisor. The hardware-reported information for each 
C-state limit is shown in TABLE I. As shown in this table, not 
all information is available; percentage of times spent in the 
CC0, CC1, PC0, and PC1 states are not reported, hence these 
unreported times will be estimated. Our goal is to estimate the 
power dissipation when all C-states are available, i.e., the 
C-state limit is C3, but this is a difficult undertaking. Therefore, 
we start from the simplest case when the C-state limit is C1. 
Subsequently, we go over the second case when the C-state 
limit is C2. Finally, we will derive the power equation when the 
C-state limit is C3. 

TABLE I  
C-STATE LIMIT AND HARDWARE-REPORTED INFORMATION 

C-state 
limit 

Core C-state Processor C-state 
TCC0 TCC1 TCC3 TCC6 TPC0 TPC1 TPC3 TPC6 

C1 available but 
not reported 

n/a n/a available but 
not reported 

n/a n/a 
C2 OK n/a OK n/a 
C3 OK OK OK OK 

Power dissipation is dependent on the C-state limit as shown 
in Fig. 4.  ; for the higher C-state limit, the power dissipation is 
lower. Note that utilization and system power reported in this 
figure are all measurements; In particular, power is measured 
using the power analyzer tool whereas the utilization is reported 
by xentop. The power difference among different C-state limits 
is greater when the utilization is lower. This is because cores 
stay in the C0 state most of the time when utilization is high. 

 

Fig. 4.   Power dissipation vs. utilization for C-state limits 

We do not provide details about how we derive the power 
dissipation equations for the three C-state limits since the 
derivations are involved and do not fit in the page limit that we 
have. Full derivations can be found in the Appendix of a USC 
CENG technical report [24]. The key idea behind the derivation 
is to start with equations (2) and (3), and then use a combination 
of analytical expansion of terms, lookups from hardware- 
reported information (TABLE I), and regression analysis to 
derive the appropriate power macro-models as shown in 
TABLE II. Note that time spent in power states of a core is 
almost identical to one another because a CPU scheduler evenly 

distributes tasks. Hence, these times in TABLE II are 
core-independent terms. 

TABLE II  
POWER MACRO-MODELS FOR THE SERVER SYSTEM UNDER TEST (COMPRISING 

TWO INTEL® XEON® E5620 PROCESSOR PACKAGES) [24] 
C-state limit Power equation 

C1 𝑃𝑒𝑒𝑒.
𝑡𝑡𝑡𝑡𝑡 = 21.88𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 141.12  

C2 𝑃𝑒𝑒𝑒.
𝑡𝑡𝑡𝑡𝑡 = 22.48𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 5.76𝑇𝐶𝐶3 − 31.16𝑇𝑃𝑃3 + 140.7  

C3 𝑃𝑒𝑒𝑒.
𝑡𝑡𝑡𝑡𝑡 = 22.48𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 5.76𝑇𝐶𝐶3 − 8.56𝑇𝐶𝐶6 −

31.16𝑇𝑃𝑃3 − 42.55𝑇𝑃𝑃6 + 140.7  

The power models presented in the above table are highly 
accurate; Fig. 4.  shows a comparison between measurements 
and model predictions for the case that C-state limit is set to C3; 
estimation is very close to measurements. 

 

Fig. 5.   Power estimation vs. measurements when the C-state limit is C3 

The first coefficient (for active state) in TABLE II is 
application dependent. The main point here is not finding very 
accurate parameters of the power model but showing that 
power dissipation can be well estimated using CC/PC-state 
stats. Therefore, we will see how those states are changed by 
consolidation in order to understand how consolidation 
improves energy efficiency. 

B. Package-level consolidation 
As shown in equation (3), uncore power is a function of 

PC-states. If we have more than one package in a system, 
further power savings may be achieved by package-level 
consolidation: select CPUs from the minimum number of 
packages and put other packages in the deepest power state.  

Package consolidation can reduce the total time spent in the 
active state (PC0), which is obtained by summing over all 
packages the time that each package spends in its PC0 state; 
thus, the uncore power dissipation decreases. In particular 
package consolidation utilizes as few packages in a server as 
possible, so the amount of time when multiple CPUs in the 
same package are in the CC0 state at the same time increases; 
i.e., the CC0 state overlap time increases and therefore, the total 
time spent in the PC0 state (which is equal to ∑ 𝑇𝑃𝑃0

𝑐𝑐𝑐𝑐𝑖
𝑖 ) 

decreases. When we consider an extreme case, this point 
becomes more obvious. Let us say one CPU is chosen from 
each package to remain active. Then the total time spent in PC0 
state will be greater than or equal to times spent in the CC0 state 
of each CPU because there is no possibility for CC0 state 
overlap. In comparison if the two CPUs are chosen from the 
same package, then only one of the packages will be active and 
even then the time spent in PC0 for that package is less than or 
equal to times spent in the CC0 state of each CPU because there 
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is CC0 state overlap.  
The above discussion is based on a key assumption, i.e., the 

PC-state of a package is independent of that of other packages. 
In practice, this assumption is far from the truth.  Fig. 6.  depicts 
PC0 state of two packages, which reveals the opposite. The data 
presented in the figure is for a case when all active CPUs are 
chosen from exactly one package, and therefore, all CPUs in 
the other package are idle. The figure shows that PC0 states of 
both packages are nearly identical. Indeed, the same behavior is 
observed for other PC-states (PC3 and PC6), although not 
shown here. This implies that all packages should stay in the 
active state (PC0) when any CPU, which may in fact reside in 
another package, is active. This is because an active CPU may 
need data from a remote DRAM, so not only the package where 
the active CPU is located but also all the other packages should 
remain in active states to provide the requested data (details of 
Intel® QPI architecture has already been discussed in Section 
II.D) in order to avoid a significant additional latency.  

As discussed above, PC-states of all packages are nearly the 
same due to Intel® QPI, hence little or no energy savings are 
expected from package-level consolidation. On the other hand, 
if a task accesses memory infrequently (such as in the case of 
CPU bound tasks), package consolidation may save further 
energy. In other words, package-level consolidation may or 
may not improve energy efficiency depending on the 
characteristics of tasks. We discuss later whether or not 
package-level consolidation results in any energy savings.  

 
Fig. 6.   Relationship between PC0 states of two packages of the target server 

when there are 4 active CPUs in exactly one of the packages 

There are 8 CPUs in the system, so only when all these CPUs 
are inactive, both packages can be switched to inactive states 
(PC3 or PC6). Hence, we expect that the two packages are 
active most of the time even when the total utilization is low. 
As depicted in Fig. 7.  , PC0 state is 100% when total utilization 
is greater than 150% out of 800%. This implies that there is a 
very small room for uncore power reduction. 

 
Fig. 7.   Percentage of the time that each package in the traget server is in the 

PC0 state as  a function of the total utilization 

C. Consolidation overhead – vCPU count 
The number of virtual CPUs, called vCPU count, is an 

important parameter of a virtual machine (VM) because this 
count limits the performance of the VM. For example, a VM 
with two vCPUs is capable of utilizing up to two CPUs at a time, 
so the maximum total CPU utilization of the VM is 200%. 
However, managing each vCPU causes additional overheads; 
thus, it could hurt both performance and energy efficiency if 
VMs have unnecessarily too many vCPUs. We use the ratio of 
vCPU to active CPU counts (called virtualization ratio) as an 
indicator of this overhead. 

Experimental results of PARSEC benchmark programs with 
different virtualization ratios are reported in Fig. 8.  and Fig. 9.   
The active CPU count is 4; that is, the total CPU utilization is 
always equal to or less than 400%. The same experiments are 
repeated for four different vCPU counts: 8, 16, 24, and 32 
(corresponding to virtualization ratios of 2, 4, 6, and 8, 
respectively). Except one program, i.e., vips, execution time 
remains the same when the ratio is 6 or less while E/task of 
many programs increases noticeably even when the ratio is 4 
(Fig. 9.  ). This is due to higher overheads of vCPUs 
management. We suggest keeping the virtualization ratio to be 
less than or equal to 3. 

 
Fig. 8.   Consolidation overhead i.e., execution time as a function of the 

virtualization ratio 

 
Fig. 9.   Consolidation overhead i.e.,  energy per task as a function of the 

virtualization ratio 

D. CPU selection policy 
The basic idea of the consolidation is to have as fewer active 

CPUs at any time. In addition to the active CPU count, the CPU 
selection policy can be important for multi core/processor 
systems; e.g., choosing CPUs from a minimum number of 
packages or selecting CPUs uniformly from all packages. The 
system under test has two packages, so there are two possible 
selection policies:  i) Select all CPUs from one package first 
and take additional CPUs from the other package if necessary. 
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ii) Select equal number of CPUs (modulo plus/minus one) from 
each package. 

CC0 and PC0 states of the bodytrack program are shown in 
Fig. 10.  Each plot compares two selection policies: all four 
CPUs are selected from one package (4CPU-1P) and two CPUs 
are chosen from each package (4CPU-2P). In our experimental 
results, core and package may reside in either active (CC0 and 
PC0) or deepest sleep (CC6 and PC6) states. Hence, we only 
present statistics of active states. The total time spent in each 
state (called state residency) is calculated as the sum of all 
times spent in the corresponding state by all active cores (for 
CC0) or packages (for PC0), so these times can be greater than 
100%. Normalized workloads are calculated as ratios of actual 
workloads over workloads that result in 50% total core 
utilization. As shown in Fig. 10.  CC0 states of the policies close 
to each other, which is reasonable and expected. On the other 
hand, the total time spent in the PC0 state for the first policy 
(4CPU-1P) is smaller than that for the other (4CPU-2P). That is, 
time spent in the PC6 state under 4CPU-1P is greater; therefore, 
the uncore power dissipation of 4CPU-1P is smaller. According 
to the discussion in Section VI.B, bodytrack is considered to be 
a non-memory-intensive task.  

 

Fig. 10.   CC0 and PC0 state residencies for the bodytrack program 

Result of another program, canneal, is shown in Fig. 11.  
Here there is a significant difference in the CC0 state residency 
between the two policies. canneal is a program to find a chip 
design with minimum routing cost. It uses cache-aware 
simulated annealing which creates intensive memory read/write 
activity. If we use all four CPUs in the same package, then we 
only use half of the L3 cache compared with the other case 
(4CPU-2P). This causes much higher cache misses, so both the 
time spent in the CC0 state and the application execution time 
increase. There is negligible difference in the PC0 state 
residency. From this result, package-level consolidation is not a 
good idea for applications requiring extensive data transfers to 
and from the main memory.   

 

Fig. 11.   CC0 and PC0 state residencies for the canneal program 

Normalized E/task comparisons for all PARSEC programs 
are reported in Fig. 12.  Due to run-to-run variations, the 
average of 15 measurements is presented. E/task difference is 
less than 3% for most of programs except bodytrack, canneal, 
and x264. Most significant difference (~ 6%) is observed for 
canneal. Later in this paper we will present a more 
sophisticated CPU selection policy to minimize the E/task.  

 
Fig. 12.   Effect of simple CPU selection policies on energy consumption per 

task  of various PARSEC programs 

E. Execution time 
According to (10), the delay (execution time) of a task 

increases as the average utilization per core increases. The 
marginal rate of increase at high utilization is greater than that 
at low utilization. Hence, if we keep the average utilization 
lower than a certain threshold, then delay increase by 
consolidation can be made small. The normalized execution 
times of PARSEC benchmark programs at various average 
utilizations are shown in Fig. 13.   

 
Fig. 13.   Execution time of PARSEC benchmark programs as  a function of the  

average utilization per core 

Except one program, i.e., canneal, the execution time 
increase is less than 5% at average utilizations as high as 70%. 
In other words, if we keep the average utilization below 70%, 
the maximum execution time increase will be less than 5% for 
most applications. We use this threshold to decide about the 
degree of consolidation that we do. For example, let’s say that 
the average CPU utilization is 40% with 8 active CPUs. If we 
consolidate the workloads to four CPUs, then the new average 
utilization will be approximately 80%, which is greater than our 
threshold (70%). This implies that there should be at least 5 
active CPUs in order to avoid a considerable increase in the 
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average execution time of tasks. As discussed in the previous 
section, canneal generates extensive memory read/write 
requests, so the cache miss rate is expected to rise rapidly as the 
CPU utilization increases. In other words, the execution time of 
canneal increases monotonically with CPU consolidation. 
More generally speaking, when we have an execution time 
target (upper bound), aggressive CPU consolidation can result 
in significant SLA violation for memory-intensive applications.  

F. E/task and ED/task improvements for PARSEC 
In this section we present E/task and ED/task for PARSEC 

benchmark programs. The average utilization is kept to be less 
than 70% and the virtualization ratio not to be greater than 3 as 
discussed in previous sections. 

The first interesting metric is E/task, which is reported in Fig. 
14.  The white, gray, and black bars in the plot show 
improvements in E/task achieved by DVFS, consolidation, and 
both DVFS and consolidation, respectively. For all programs, 
improvement by DVFS is always greater than that by 
consolidation. Recall that the processor under test supports 7 
frequencies from 1.6GHz to 2.4GHz. DVFS can thus 
effectively reduce E/task by slowing down the clock frequency 
from 2.4GHz all the way down to 1.6GHz (and accordingly 
lowering the supply voltage level). Evidently, this action 
increases the average execution time of tasks; however, this 
execution time increase does not affect the E/task metric much 
(this is because energy consumption of the server is dominated 
by dynamic power and not leakage power). The maximum 
E/task improvement achieved by consolidation is about 10%. 
Another observation is that the effects are somewhat additive 
that is, when we apply both DVFS and consolidation (see the 
‘Combined’ results in the figure), the improvement is greater 
than the other two cases for most programs with the exception 
of canneal. The maximum improvement of the ‘Combined’ 
technique is greater than 15% (achieved for dedup). 

 Fig. 14.   Energy per task improvement 

Surprisingly, we observe very different results for the 
ED/task metric, as seen in Fig. 15.  The ED/task is worsened by 
DVFS because the task execution time increases significantly 
as a result of reducing the CPU clock frequency. On the other 
hand, consolidation maintains its relative energy savings except 
for the case of canneal. This is because the execution time of 
canneal increases monotonically even when the average CPU 
utilization is kept below 70%. Therefore, the ED/task 

improvement of consolidation for canneal is much smaller than 
all other programs. From this result, we can conclude that 
consolidation is a much more effective solution for delay 
sensitive applications compared to DVFS (although it loses 
much of its advantage in memory-bound applications). 

 Fig. 15.   Energy delay product per task improvement 

G. CPU consolidation for SPECWeb2009 benchmarks 
In the previous section, the relative effectiveness of the CPU 

consolidation and DVFS was studied for the PARSEC 
benchmark suite. In this section, results for the SPECWeb2009 
are presented. This benchmark suite comprises of I/O bound 
application programs whose characteristics are very different 
from those of the PARSEC programs. SPECWeb2009 is a very 
well developed benchmark suite, and its main purpose is to 
evaluate a web server (I/O-bound application); hence, we can 
see how consolidation affects the delay and energy efficiency 
of I/O-bound applications from SPECWeb2009 results.  

The energy efficiency is quantified as ED/packet because 
delay (i.e., response time) is a critical performance metric in 
these applications. SPECWeb2009 requires a simultaneous 
user session (SUS) count as an input, which is another way of 
specifying the workload intensity. The SUS count specifies 
only the average workload intensity (the instantaneous 
workload intensity fluctuates a lot). Hence, an online method, 
which dynamically finds optimal settings for consolidation, is 
needed. In this section, we start from analyzing characteristics 
of the SPECWeb2009. After that, four online consolidation 
algorithms are presented, and results of those algorithms are 
reported and analyzed.  

Web applications are in general not compute-intensive [25]; 
hence, the average response time is less dependent on CPU 
clock frequencies as shown in Fig. 16.  (a). This is because the 
response time of web servers is closely related to the I/O 
processes, such as network and disk access. Likewise, the 
response time is almost independent of the active CPU count 
when a sufficiently large number of CPUs is active. The 
relationship between the power dissipation and clock 
frequency/active CPU count is shown in Fig. 16.  (b). The 
power dissipation declines as the frequency decreases and/or 
the active CPU count is reduced. This result implies that both 
DVFS and the CPU consolidation improve the energy 
efficiency without any significant performance degradation. In 
addition, we expect higher power efficiency gains when both 
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techniques are applied at the same time. 

 

Fig. 16.   Response time and power dissipation 

When the OS changes the CPU clock frequency, the CPU 
utilization also changes under the same workload. Therefore, 
before changing the CPU clock frequency, the corresponding 
CPU utilization must be estimated in order to prevent the 
undesirable situation whereby active CPUs are overloaded 
because the chosen frequency is too low for the given workload. 
The relationship between the total CPU utilization and CPU 
clock frequency is depicted in Fig. 17.  Note that utilization is 
the percentage of time that a CPU spends executing user and 
system space codes. When a task is waiting for an I/O operation 
to be completed, the task is suspended and CPU does nothing. 
Hence, this suspension time is not included in the utilization.  

 

Fig. 17.   Frequency vs. total utilization (SPECWeb) 

According to the R2 value, a linear equation is a nearly perfect 
fit the data points in Fig. 17.  The relationship is then as 
follows: 

 ( )u fβ α− =  (14) 
where 𝛼 = 150.4, 𝛽 = 29.9 and 0 ≤ 𝑢 ≤ 800 (i.e., there are 
eight CPUs). Since coefficient β is relatively small, it can be 
ignored to simplify the relationship. Hence, the equation may 
be written as follows: 

 i i j jf u f u α= =  (15) 

H. Online CPU consolidation algorithms 
As shown in the previous section, both the clock frequency 

and the active CPU count affect the E/task and ED/task. In this 
section, we present online algorithms, which perform 
voltage/frequency setting and consolidation simultaneously. 
These algorithms monitor the CPU utilization, and change the 
frequency setting and/or the active CPU count depending on the 
current workloads. The main idea of these algorithms is to 
utilize as few CPUs at low frequencies as possible (while 
meeting the performance constraints); the decision is made by 
considering the current CPU utilization levels. This approach is 
reasonable for I/O bound applications because performance 
degradation is not significant unless the CPU is very highly 

utilized [10]. To avoid energy and delay overheads associated 
with frequent state changes, the proposed algorithms change 
the system configuration conservatively, that is, if the system is 
overloaded, these algorithms will immediately increase the 
frequency and/or the number of active CPUs. If, however, the 
system is underutilized, they will apply a state change (reduce 
frequency and/or turn off some CPUs) only if the situation 
persists for at least some time. We achieve this goal by 
introducing two different thresholds with hysteresis as 
described below. 

We present four algorithms whose main ideas are quite 
similar to each other:  if the average utilization (𝑢𝑖) of a CPU is 
greater than an upper threshold ( 𝑢ℎ𝑖𝑖ℎ ), these algorithms 
deploy more computing resources by increasing the clock 
frequency of the active CPUs and/or by adding to the number of 
active CPUs. On the other hand, if the average utilization is less 
than a lower threshold (𝑢𝑙𝑙𝑙 ), then they will release some 
computing resources by decreasing the CPU frequency and/or 
reducing the number of active CPUs. It is necessary to estimate 
the new utilization level under the new frequency and active 
CPU count to avoid any performance degradation. Equation (15) 
does not account for the number of active CPUs (𝑐𝑖) in the 
system, and hence, it is modified to apply to this new situation: 

 i i i j j jc f u c f u=  (16) 
Because we can change both the CPU frequency and the active 
CPU count (when needed), we must decide which strategy must 
be given higher priority: i) Changing the clock frequency first 
and the CPU count next, ii) Changing the CPU count first and 
the clock frequency next. Two pseudo codes are presented in 
Fig. 18.  The first function 𝑚𝑚𝑚_𝑐𝑐𝑐() finds the minimum CPU 
count (𝑥𝑐) without any performance degradation. After finding 
the minimum CPU count, it determines the slowest frequency 
(𝑥𝑓 ) with the new CPU count that would still avoid any 
performance degradation. This function tries to achieve a new 
CPU utilization close to 𝑢𝑚𝑚𝑚 , which is the median of high/low 
thresholds and is calculated as follows: 

 ,  85%,   65%
2

high low
mid high low

u u
u u and u

+
= = =  (17) 

The second function 𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() finds the slowest frequency 
first, and then finds the minimum CPU count with the new 
frequency. Again no performance penalty is allowed. The two 
functions are called when the system is under-utilized (i.e., the 
current utilization is smaller than 𝑢𝑙𝑙𝑙) or over-utilized (i.e., 
the current utilization is greater than 𝑢ℎ𝑖𝑖ℎ ). For each case, we 
can choose which function is called, i.e., 𝑚𝑚𝑚_𝑐𝑐𝑐() 
or  𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() . Therefore, there are a total of four online 
algorithms, which are shown in Fig. 18.   

Function min_cpu(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) { 
      𝑥𝑐 = � 𝑢𝑖𝑓𝑖

𝑢𝑚𝑚𝑚𝑓𝑚𝑚𝑚 
𝑐𝑖�;  

      𝑥𝑓 = � 𝑢𝑖𝑐𝑖
𝑢𝑚𝑚𝑚𝑥𝑐 

𝑓𝑖�; 

      return (𝑥𝑐 , 𝑥𝑓); 
} 

Function min_freq(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) { 
     𝑥𝑓 = � 𝑢𝑖𝑐𝑖

𝑢𝑚𝑚𝑚𝑐𝑚𝑚𝑚 
𝑓𝑖�;  

      𝑥𝑐 = � 𝑢𝑖𝑓𝑖
𝑢𝑚𝑚𝑚𝑥𝑓 

𝑐𝑖�; 

      return (𝑥𝑐 , 𝑥𝑓); 
} 

Fig. 18.   Psuedo codes for min_cpu() and min_freq() 
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The first algorithm (Type1) calls 𝑚𝑚𝑚_𝑐𝑐𝑐() function for 
both the under and over-utilized CPU cases. The Type2 
algorithm calls  𝑚𝑚𝑚_𝑐𝑐𝑐() when a CPU is over-utilized and 
𝑚𝑖𝑖_𝑓𝑓𝑓𝑓() if it is under-utilized. The Type3 algorithm calls 
𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() when a CPU is over-utilized and 𝑚𝑚𝑚_𝑐𝑐𝑐() if it 
is under-utilized. The last algorithm (Type4) calls 𝑚𝑚𝑚_𝑓𝑓𝑓𝑓() 
for both over and under-utilized CPU cases. 

We do experiments for three different SUS counts and 
compare the ED/packet and the quality of service (QoS) for the 
aforesaid four consolidation algorithms and two more 
algorithms (read below). The QoS refers to the percentage of 
packets whose response time (latency) is less than the 
pre-defined threshold. This QoS is reported by SPECWeb2009 
benchmark suite.  In addition to the four proposed algorithms, 
we provide results for two other algorithms: base and 
ondemand. The base algorithm means there is no dynamic 
adjustment of the active CPU count and clock frequency, i.e., 
all CPUs are active and running at the maximum allowed clock 
frequency. The ondemand algorithm is the default DVFS 
method used in LinuxTM, which does not change the active CPU 
count but changes the CPU frequency. 

 

 

 

Fig. 19.   Four online consolidation algorithms 

Experimental results are reported in Fig. 20.  Regardless of 
the SUS count, the proposed algorithms always result in 
smaller ED/packet compared to the base and ondemand 
algorithms. Among the four proposed algorithms, Type1 
algorithm is the best one in terms of the ED/packet. As the SUS 

count increases, QoS of all algorithms decreases, but QoS 
remains greater than 95%; hence, there are no appreciable 
performance degradation concerns. Note that the magnitude of 
ED/packet metric also decreases as the SUS count increases, 
which implies that the system consumes less energy for 
executing a packet. This is because of the energy 
non-proportionality of the existing server systems (including 
the one used in this study). From these results, we can state that 
the Type1 consolidation algorithm is the best. This implies that, 
at least for the system under experiment, adjusting the CPU 
frequency has higher impact on the ED/packet metric than 
changing the CPU count. We compare ED/packet of the 
ondemand and Type1 algorithm in TABLE III. For three SUS 
settings, ED/packet of Type1 algorithm is always smaller than 
that of ondemand. In addition, the difference between the two 
algorithms increases for larger number of user sessions. 

 

Fig. 20.   ED/pack and QoS comparisons 

TABLE III  
COEFFICIENTS OF THE DELAY MODEL 

SUS ED/packet (Js) 
∆ED/packet(%) ondemand Type1 

1000 0.91 0.82 9.44 
1400 0.76 0.67 11.83 
1900 0.51 0.44 13.65 

VII. CONCLUSION 
DVFS has been a promising method for reducing the energy 

consumption, but the energy saving leverage of DVFS reduces 
as the supply voltage level decreases with CMOS scaling. In 
this paper, CPU consolidation is considered as a substitute, or 
better stated, as a complement. The idea looks simple; however, 
we need to investigate CPU consolidation under realistic setup 
to maximize the energy efficiency. The effectiveness of CPU 
consolidation was thus investigated for different configurations: 
types of applications, the virtual CPU count, the active CPU 
count, and the active CPU set. From the investigation we learn a 
few useful lessons. First, unnecessarily large number of virtual 
CPUs causes significant performance degradation; hence, the 
virtual CPU count must be dynamically adjusted. Second, we 
need to choose different CPU selection policy depending on 
applications. Third, DVFS outperforms consolidation in terms 
of E/task improvement. On the other hand, DVFS do not 
improve ED/task of PARSEC while consolidation does. Forth, 
the maximum improvement of ED/task for SPECWeb2009 is 
also achieved when both DVFS and the consolidation are 
applied. Similarly, biggest E/task improvement of PARSEC is 
achieved when both techniques are used. 
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