
This paper presents an energy-efficient (low power) 
prime-field hyperelliptic-curve cryptography (HECC) 
processor with uniform power draw. The HECC 
processor performs divisor scalar multiplication on the 
Jacobian of genus 2 hyperelliptic curves defined over 
prime fields for arbitrary field and curve parameters. It 
supports the most frequent case of divisor doubling and 
addition. The optimized implementation, which is 
synthesized in a 0.13 mm standard CMOS technology, 
performs an 81-bit divisor multiplication in 503 ms 
consuming only 6.55 mJ of energy (average power 
consumption is 12.76 mW.) We also present a technique to 
make the power consumption of the HECC processor 
more uniform and lower the peaks of its power 
consumption. 
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I. Introduction 

Secure communication is an essential part of many current 
and anticipated applications of wireless sensor networks 
(WSNs) and radio-frequency identification (RFID) systems 
[1][2]. Devices used in these systems, including WSN motes, 
RFID tags, and contactless smart cards, usually have to operate 
with very low power consumption and high energy efficiency 
[1]-[3]. Therefore, since the security of digital communications 
is based on cryptography algorithms, there will be a need for 
energy-efficient (low average power) implementations of 
cryptography algorithms for these devices [1]-[3]. To meet the 
limitations of these devices, some researchers have proposed 
security protocols based on symmetric cryptography (for 
example, [4]) while others have used the so-called light-weight 
cryptography algorithms and protocols (for example, [5]-[6]). 
However, [7] gives reasons why standardized public-key 
cryptography (PKC) algorithms should be implemented and 
used in power/energy-limited applications and devices. This 
line of reasoning is also confirmed by the availability of 
commercial solutions equipped with standard PKC hardware 
blocks. 

Considering similar reasoning to that of [7], many research 
groups (for example, [8]-[11]) have tried to implement standard 
PKC algorithms for the mentioned power/energy-limited 
devices. Among well-known PKC algorithms, the elliptic-
curve cryptography (ECC) and the hyperelliptic-curve 
cryptography (HECC) are suitable candidates for energy-
efficient implementations, since they provide higher security 
per bit of the operands [12]-[13]. While ECC has received 
more attention in recent years (for example, [8]-[9]), only few 
reports have been given for energy-efficient designs of HECC 
[10][11]. The  
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advantage of HECC is that it only requires half the operand 
length (or less) to provide the same security level as that of 
ECC with the disadvantage of being more complex than ECC 
[13]. Shorter operand length makes HECC more attractive than 
ECC for applications with constrained power/energy sources 
[13]. In this paper, we present an energy-efficient low-power 
HECC processor design. 

The rest of this paper is organized as follows. Section II gives 
a simplified explanation of the mathematics of HECC and 
Section III summarizes the related works. Section IV describes 
the characteristics of our HECC processor, while Section V 
gives the details of the implemented algorithms. Section VI 
describes the architecture of the HECC processor and gives the 
exact register-mapping of the algorithms. Section VII discusses 
the results obtained for different implementations of the HECC 
processor and Section VIII describes a technique used to make 
the power consumption of the HECC processor more uniform. 
Finally, Section IX concludes the paper. 

II. Mathematics of Hyperelliptic-Curve Cryptography 

In this section, we present a simplified description of the 
underlying mathematics of hyperelliptic curves and HECC. 
Our explanations will be focused on genus 2 hyperelliptic 
curves defined over fields of odd characteristic (that is, prime 
fields) which are the base for our HECC processor design. 
More on the theory of hyperelliptic curves and HECC may be 
found in [13]. 

For our purpose, a hyperelliptic curve C of genus 2 defined 
over a prime field GF(p), is the set of all points (x , y) with x 
and y Î GF(p), satisfying 
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where all fi Î GF(p) and the right hand side function should not 
have any multiple roots. We also note that, to obtain the above 
equation for the curves, some simplifying changes of variables 
have been made without altering the hyperelliptic curve 
properties [13]. By taking into account a point P∞ on the curve 
C, called the ‘point at infinity’, an algebraic group can be 
defined. Members of this group, which is called the Jacobian of 
C, are finite sums of the points of the hyperelliptic curve [13]. 

For the curves of genus 2 defined above, each element of the 
Jacobian, denoted by JC, is made from a finite sum of two 
points of the curve and called a ‘reduced divisor’ [13]. Using 
the set of reduced divisors, then, a ‘divisor addition’ operation 
can be defined on the Jacobian group as 
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To perform the above divisor addition, in the general case, 
first a function y=S(x) of degree 3 in x is found which passes 
through the four points of D1 and D2. This function intersects 
curve C in two more points, which are –R1 and –R2. The two 
points of D3 can easily be found by negating the results [13]. In 
practice, however, doing the calculations on the point 
coordinates is difficult, and therefore, a special representation 
(called the Mumford representation) of the divisors is used. 
This representation results in an efficient algorithm for adding 
the reduced divisors [13]. 

For genus 2 hyperelliptic curves, each reduced divisor on the 
Jacobian (made from two distinct points of the curve) can be 
represented with a pair of polynomials [13], defined in the 
Mumford representation as  
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For the reduced divisors represented in the above form, an 
efficient general formula exists for the divisor addition 
operation [13]. This formula should be written in the explicit 
form for hardware implementation. The ‘divisor doubling’ 
operation for adding a divisor to itself is similarly defined, and 
the corresponding explicit form is written. The details of our 
implemented divisor addition and doubling algorithms for the 
HECC processor will be given in Section V. 

Having defined the divisor addition and also divisor 
doubling operations, next we define a ‘scalar multiplication’ 
operation which multiplies a divisor by an integer using 
repeated additions (and/or doublings):  
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Having the value of k and the divisor D, the resulting divisor 
E can be found in polynomial time by performing the scalar 
multiplication. On the other hand, finding the value of k for two 
known divisors D and E, requires exponential-time calculations. 
Therefore, cryptographic protocols can be designed based on 
the scalar multiplication over Jacobian of a hyperelliptic curve 
as defined above [13]. 

III. Related Work 

In recent years, considerable attention has been given to 
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HECC as a means of enabling PKC in embedded and also 
resource-constrained applications. One line of research has 
focused on finding efficient explicit formulae for calculating 
the group operations on hyperelliptic curves and also 
improving the efficiency of calculations by reducing the 
number of operations. Examples include works presented in 
[16]-[19] which have covered both prime-field and binary-field 
curves. These works have used different coordinate systems 
(both affine and projective) to improve the efficiency of their 
formulae. Another area of research has considered hardware 
implementations of HECC mostly with the goal of improving 
the speed of calculations ([20]-[27]). All of these research 
activities used binary-field curves as a way to reduce the 
hardware area for possible implementations in embedded 
applications. Only [24]-[27] have provided power 
consumption results of their corresponding designs. 

To the best of our knowledge, no report exists on energy-
efficient hardware implementation of HECC using 
hyperelliptic curves defined over prime fields. 

IV. Features of the Proposed Design 

In this section, we describe the features of our HECC 
hardware processor design. 

1. Hyperelliptic Curves of Genus 2 

Hyperelliptic curves of genus 2 (g = 2) and genus 3 (g = 3) 
are considered more secure than g > 3 curves [13][14]. 
Between the genus 2 and the genus 3 curves, the former ones 
have lower complexity and lower calculation times [13] and 
also have been studied more. Therefore, we chose the genus 2 
curves. 

2. Curves Defined over Prime Fields 

It is usually assumed that using the binary fields is the better 
choice when designing curve-based cryptography hardware. 
The main reasons are carry-free addition and simple squaring 
operations in the binary fields [12]. While these are attractive 
features for high-speed designs, they do not have the same 
importance in low-power designs (see, [9].) Since our main 
goal is a low-power design and also based on other reasons 
explained in [9], we chose the prime field over the binary field. 

3. Flexibility in Field and Curve Parameters 

To design a curve-based cryptography processor with low 
power and energy consumption, it is desired to keep the 
hardware as small as possible. One way to achieve this is to fix 

the parameters defining the field and the curve [12]. Fixing the 
parameters, however, has two drawbacks. One is that the 
resulting hardware will be optimized for one particular set of 
parameters, and therefore, cannot be used by other 
systems/users who may want to use other parameters. The 
second drawback is related to the case where a security breach 
occurs in the system making the used set of parameters 
obsolete. In such a condition, since the parameters of the 
hardware are fixed, the existing hardware cannot be re-used. In 
contrast to cryptography processors with fixed parameters, a 
crypto-hardware designed to support arbitrary values of field 
and curve parameters will lower the costs of manufacturing 
(since one hardware can be used for many systems/customers 
and may be re-used by changing the input parameters). Hence, 
we have chosen to implement the HECC processor for 
arbitrary values of parameters. 

4. Implementation of Most Frequent Case Equations 

As was explained in Section II, to achieve an efficient 
formula for adding/doubling the reduced divisors, the 
Mumford representation of the reduced divisors is used. In Eq. 
(3), we only showed the general case of the representation for 
reduced divisors of genus 2 curves. For the field sizes used in 
HECC (in the order of 280 or more members), this general case 
will be encountered most frequently in the calculations and the 
probability of the occurrence of the special cases is too small 
(2-80 or less) [13]. Since the special cases of the reduced 
divisors rarely appear in practice, it is reasonable for a 
hardware implementation to only cover the general case [13]. 
The same approach was also taken in other implementations of 
HECC [19]. 

5. Affine Coordinate Representation in Montgomery 
Domain 

Inspecting Eq. (3) suggests that the reduced divisors in genus 
2 HECC can be stored using four variables which are the 
coefficients of u(x) and v(x). This is called the affine 
representation of the reduced divisors. In the affine form, every 
divisor addition/doubling requires one modulo inversion which 
is usually considered a time-consuming operation [12]. Other 
representations, such as projective, speed up the calculations by 
eliminating the inversions [12]. The resulting faster calculations 
lower the energy consumption by reducing the total calculation 
time, and therefore, many of the energy-efficient hardware 
designs have used inversion-free approaches [13]. It, however, 
should be noted that representations such as projective, which 
eliminate the inversion, usually add to the complexity of the 
explicit formula and need extra temporary variables (that is, 
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more storage space) as shown in [24]. The added complexity 
and extra storage requirement lead to higher power 
consumption, and may also retract the effect of lowering the 
calculation time on reducing the energy consumption. As 
another alternative, there are modulo inversion algorithms, 
such as Montgomery modulo inversion (MMI), which are not 
very time-consuming and can be used for energy-efficient 
implementations [9]. 

Based on the above discussion, and the results of [9] and [24], 
we decided to use the affine representation of divisors. In 
addition, we chose to perform all of the calculations on integers 
in Montgomery domain [13], since this allows us to use 
Montgomery multiplication (thus avoiding a full multiplication 
followed by a modulo reduction) [12] and the MMI algorithm 
[9]. 

6. Design for Low Power using Low Clock Frequency 

Most of the cryptography hardware designed for use in 
RFID systems and WSNs, work at low clock frequencies (< 1 
MHz) [8], which is an effective way of reducing the power 
consumption. The fact that the design will operate only with 
low clock frequencies should also be taken into consideration 
during the design. For example, the critical path of the circuit 
will not be important, and instead of fast adders, simple carry 
propagate adders can be used [9]. The same approach has been 
taken in this work. 

7. Power Consumption as Uniform as Possible 

A uniform power consumption trace for cryptography 
hardware units have the advantages of offering more security 
against simple power attacks (SPAs), resulting in longer battery 
life, and enabling more efficient power profiling and power 
management [28]. In this work, the HECC processor will be 
designed to have a power consumption trace as uniform as 
possible. 

V. Implemented HECC Algorithm 

As mentioned before, the topmost operation of the HECC 
processor is the scalar multiplication of Eq. (4). To obtain 
security against timing attacks, this operation is implemented 
using the double-and-always-add method [13]. The operations 
in the next level are the divisor addition and divisor doubling, 
whose details are given next. 

1. Divisor Addition – Most Frequent Case 

The divisor addition in the most frequent case can be 

performed by the equations shown in Fig. 1(a) [13]. Both the 
inputs and the result are in the form of Eq. (3). Also, the 
equations are based on the polynomial arithmetic in GF(p). 
The equations shown in Fig. 1(a) can be written in the explicit 
form by expanding the polynomial operations using the 
coefficients of the polynomials and integer arithmetic 
operations in GF(p). This results in the algorithm shown in Fig. 
1(b) which consists of integer addition/subtraction, 
multiplication and one inversion [13]. All of the integer 
operations must be performed modulo p. 

In the fourth line of the explicit formula, it is possible that the 
value of s1' becomes zero. This special condition will generate 
a divisor of the form [x+u0, v0] which cannot be used in most 
frequent case calculations [13]. Therefore, this condition will 
not be covered in our design. 
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Fig. 1. Divisor addition (most frequent case), (a) Polynomial 
arithmetic, (b) Explicit formula, [13]. 

2. Divisor Doubling – Most Frequent Case 

The divisor doubling equations in the most frequent case are 
shown in Fig. 2(a) [13]. The explicit form of the equations 
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shown in Fig. 2(a) is also depicted in Fig. 2(b) [13]. Again, we 
have the special condition of s1' becoming zero (sixth line of 
the explicit formula), which will not be covered in our design. 
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Fig. 2. Divisor doubling (most frequent case), (a) Polynomial 
arithmetic, (b) Explicit formula, [13]. 

 
To favor readability in the explicit formulae of Fig. 1(b) and 

Fig. 2(b), many temporary variables are used which are not 
necessary for the actual implementation. The implementation 
and the related issues will be described next. 

VI. Architecture of the HECC Processor 

In this section, we will describe the architecture of the HECC 
processor. 

1. Arithmetic Building Blocks 

We need to perform add/subtract operations modulo an 
arbitrary prime number p. This can be performed by two 
adders in one clock cycle. Also, to avoid a full multiplication 
followed by a modulo reduction, we will use the Montgomery 
multiplication. The Montgomery multiplication of two n-bit 

numbers can be performed in n clock cycles by a circuit 
consisting of two adders, two registers, and some glue logic [9]. 
For the HECC processor design, we can take two different 
approaches. In one approach, we use two separate add/subtract 
and multiply units (‘separate’ units), while in the other 
approach, we make use of the adders of the multiplier unit to 
also perform the add/subtract operations (‘combined’ units). 
The combined modulo add/subtract and Montgomery 
multiplier units are shown in Fig. 3 where the two registers (B 
and M) are used only for the Montgomery multiplication. We 
will implement both approaches and compare the power 
consumption results later. 

 
Fig. 3. Combined modulo-add/sub and Montgomery multiply circuit. 
 
For the divisor addition of Fig. 1(b) and divisor doubling of 

Fig. 2(b), we need a modulo inversion operation due to the use 
of the affine coordinates for the divisors. The Montgomery 
modulo inverse (MMI) algorithm is a good candidate for 
energy-efficient implementations [9]. It can also be realized 
using the add/subtract and multiply units, without any need for 
other arithmetic units [9]. Therefore, we will use the MMI to 
implement the modulo inversion operation. 

To better assess the effect of using separate and combined 
arithmetic units (explained above) on the power consumption, 
we will first use the inversion by exponentiation method 
instead of the MMI. The reason is that, contrary to the MMI, 
the inversion by exponentiation method can be implemented 
without any changes to the arithmetic units [9]. 

2. Temporary Storage 
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Since our HECC processor uses the affine coordinates, we 
need five variables at the top level of our design (see Fig. 4.) 
Four registers hold u and v coefficients of the partially 
multiplied divisor and one register is used for shifting of the 
scalar value (k). It is assumed that the original input divisor is 
fed to the HECC processor during the scalar multiplication. 

In the next level, the hardware performs the algorithms 
shown in Fig. 1(b) and Fig. 2(b). We were able to limit the 
temporary storage of both algorithms to five extra registers. 
This was achieved by re-ordering and repeating some of the 
calculations and using the M-Reg of the multiplier unit (cf. Fig. 
3) as a temporary register. 

For the implementation of the inversion algorithm, we need 
more temporary registers. In the case of inversion by 
exponentiation, one more register is necessary while for the 
MMI, two more registers are needed. Therefore, the total 
number of registers (with a bit-length equal to the length of 
modulus p) in our design is 14 (13) for the case of MMI 
(inversion by exponentiation.) 

2. Overall Architecture 

Figure 4 shows the overall architecture of the proposed 
HECC processor. The field and curve parameters are input to 
the processor. The internal controller, named ‘Divisor 
ADD/DBL Controller’, controls the hardware to perform the 
addition and doubling algorithms, as well as the inversion and 
multiplication operations. 

 

Fig. 4. Overall architecture of the HECC processor. 

VII. Implementation Results 

In this section, the results obtained from different 
implementations of the HECC processor are discussed. In the 
implementation process, we first coded the design in VHDL 
and synthesized it in a 0.13mm low-leakage standard CMOS 
process. Then we used the post-synthesis netlist for simulations 

to capture the activity of all of the circuit nodes (including 
glitches). The activity was then fed to a commercial power 
calculation tool to obtain the power consumption results. All of 
the simulations of our HECC processor were done for a bit-
length of 81 bits, using a 1 MHz clock frequency. We used 
many random values for the scalar (k) and different divisors 
from different curves in the simulations. 

1. Separate vs. Combined Arithmetic Units 

In the first step, we implemented two versions of the HECC 
processor, one with separate add/subtract and multiply units 
and one with the combined unit which was shown in Fig. 3. 
Both used inversion by exponentiation. Note that this inversion 
method is very time consuming, and therefore, we only use it 
for the evaluation and comparison of the arithmetic units. The 
results of these implementations are given in Table 1. 

 

Table 1. Results when using inversion by exponentiation. 

81-bit Flexible Prime-Field genus 2 HECC processor 
0.13mm low-leakage CMOS 

Implementation Separate units Combined unit 

 Area 
 100,518 mm2 
 19739 GE* 

 89,382 mm2 
 17552 GE* 

 Average Power 
 @  f = 1 MHz 

 11.53 mW  13.49 mW 

 Total Clock Cycles** 
 2.037 × 106 
 double & always add 

 2.037 × 106 
 double & always add 

 Total Time** 
 @  f = 1 MHz 

 2037 ms 
 double & always add 

 2037 ms 
 double & always add 

 Total Energy**  23.5 mJ  27.5 mJ 

 Maximum Frequency  34.8 MHz  33.8 MHz 

 Arithmetic Unit Power 
 10 mW (mult) 
 0.15 mW (add/sub) 

 12.08 mW 

 Multiplexers Power  0.74 mW  0.77 mW 

* GE: Gate Equivalent – with 5.0922 mm2 for NAND2X1 cell 
** Values given for one complete divisor scalar multiplication 

 
Table 1 shows that, as expected, using the inversion by 

exponentiation method causes a long calculation time and high 
energy consumption. For the comparison of arithmetic units, 
we see from Table 1 that for the ‘combined unit’ 
implementation, the power consumption is higher. The reason 
is that combining the add/subtract and multiply units adds 
some multiplexers to the arithmetic unit consuming more 
power. Although for combining these two units, the structure of 
the multiplexers at the input ports of the arithmetic units should 
change, Table 1 shows that nearly the same amount of power is 
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consumed in these multiplexers. Based on this comparison, we 
will use separate add/subtract and multiply units for the rest of 
our HECC processor implementations. 

2. Montgomery Modulo Inverse 

The MMI algorithm, which is much faster than the inversion 
by exponentiation technique, can be realized with small 
modifications to the add/subtract unit and temporary registers. 
The price for the higher speed is a more complex controller and 
also one more temporary register, which result in higher area 
and power consumption. Table 2 compares the results of the 
MMI algorithm by those of the inversion by exponentiation 
using separate units. 
 

Table 2. Results when using Montgomery modulo inverse algorithm. 

81-bit Flexible Prime-Field genus 2 HECC processor 
0.13mm low-leakage CMOS 

Inversion method Montgomery Exponentiation 

 Total Area 
 113,539 mm2 

 22296 GE* 
 100,518 mm2 

 19739 GE* 
 Average Power 
 @  f = 1 MHz 

 13.46 mW  11.53 mW 

 Total Clock Cycles** 
 502,800 

 double & always add 
 2.037 × 106 

 double & always add 

 Total Time** 
 @  f = 1 MHz 

 502.8 ms 
 double & always add 

 2037 ms 
 double & always add 

 Total Energy**  6.77 mJ  23.5 mJ 

 Maximum Frequency  34.8 MHz  34.8 MHz 

 Arithmetic Unit Power 
 8.48 mW (mult) 
 1.76 mW (add/sub) 

 10 mW (mult) 
 0.15 mW (add/sub) 

 Temp. Registers 
 Power 

 1.26 mW  0.27 mW 

 Controller and 
 Multiplexers Power 

 1.59 mW  0.74 mW 

* GE: Gate Equivalent – with 5.0922 mm2 for NAND2X1 cell 
** Values given for one complete divisor scalar multiplication 

 

 
The inversion by exponentiation technique repeatedly uses the 
multiplier unit to perform exponentiation while MMI mostly 
uses the add/subtract unit [9]. Also, the latter performs much 
more read/write from/to the temporary registers. Therefore, as 
can be seen in Table 2, the power consumption of the add/sub 
unit and the temporary registers is higher in the MMI-based 
implementation, while the multiplier unit has a lower power 
consumption. The more complex controller and multiplexers 
also give rise to more power consumption in the MMI case. As 
the results reveal, the MMI-based implementation has about 
13% more area and 17% more power. The higher speed of 
MMI, however, leads to more than 71% reduction in the 
energy consumption.  
It should also be noted that, in our implementation, the duration 
of one inversion operation using the MMI algorithm is almost 
seven times the duration of a multiplication. This ratio is lower 
than the values which justify the preference of the inversion-
free coordinate types over the affine coordinates [13]. 

3. Comparison with Previous Work 

As we mentioned in Section III, we are not aware of any other 
energy-efficient HECC implementation over the prime fields. 
Table 3 compares the performance of our HECC processor 
with those of other reported designs (all using binary fields). 
Although a detailed comparison is not possible due to the use 
of different technologies and design types, it can be observed 
that the prime-field HECC processor has lower power and 
energy levels than (or almost equal, in case of [27]) similar-
sized binary-field HECC implementations. The last line of 
Table 3 compares our HECC processor with our previously 
reported ECC processor with the same security level. The 
shorter numbers used in the HECC (half the size used for 
ECC) makes it possible to lower the power by 58% and the 
energy by 48% compared to ECC.

Table 3. Comparison of our HECC processor with related works. 

Design 
CMOS 

Technology 
Type 

Total Energy 
(mJ) 

Reported Average 
Power @ Clock Freq. 

Calculation Time 
(ms) 

Total 
Cycles 

[24] 0.25m GF(289)  g=2 HECC 20.4 396 mW @ 1 MHz 51.55 51,550 

[25] 0.25m GF(283)  g=2 HECC Not reported 80 mW @ 1 MHz Not reported Not reported 

[26] 0.13m GF(283)  g=2 HECC 16.28 22 mW @ 500 KHz 740 370,000 

[27] 0.13m GF(283)  g=2 HECC 6.1 13.4 mW @ 300 KHz 456 136,838 
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This Work 0.13m 
GF(p)   81 bit 

g=2 HECC 
6.77 13.46 mW @ 1 MHz 502.8 502,800 

[11] 0.13m 
GF(p)   168 bit 

ECC 
12.92 32.3 mW @ 1 MHz 400 400,000 

VIII. Power Consumption Redistribution 

In this section, we discuss the importance of uniform power 
consumption in cryptography circuits and describe our efforts 
at making the power consumption of our HECC processor 
more uniform by redistributing the power consumption. 

1. Importance of Uniform Power Consumption 

Paying attention to the temporal behavior of the power 
consumption and moving toward temporally uniform power 
consumption has the following benefits: 

· The maximum value of the power consumption 
becomes closer to the average value preventing a 
waste of battery capacity. A lower maximum power 
value also enables the use of a smaller battery and 
increases the service time of the battery [29]. 

· More uniform power consumption eases the prediction 
of the remaining battery capacity and allows for 
more efficient power profiling and power 
management [29]. 

· More uniform power consumption makes it harder to 
extract information from the details of the power 
consumption diagram and gives more security 
against simple power attacks [28]. 

 
In the following subsection, we describe a technique which 

we applied to make the power consumption of the HECC 
processor more uniform. 

2. Algorithm-based Partitioning of Power 

Arithmetic building blocks and components such as registers 
consume different amounts of power during the execution of 
an algorithm. This originates from different input data values as 
well as the changes in the configuration of the blocks and the 
rate of their usage in the calculations. The changes in the 
configuration and usage rate of the blocks are determined by 
the algorithm. Any implemented arithmetic algorithm can be 
divided into separate parts such that during each part, the 
configuration of the blocks remains unchanged. If we obtain 
the average of the power consumption over each of these 
separated parts of the algorithm (that is, a partitioning of 
power), we can find which part of the algorithm consumes the 

largest amount of power. By focusing on the part of the 
algorithm with the highest average power, we can modify the 
algorithm and/or hardware to lower the power consumption in 
that part. This leads to a more uniform overall power 
consumption. This process may be repeated while 
modifications can be found to make the power consumption 
more uniform. 

In our HECC processor implementation, such partitioning 
can be derived from the register-level operations. Both for the 
divisor addition and divisor doubling, there are two series of 
consecutive add/subtract and Montgomery multiplication 
operations with only one inversion in between. Since we have 
used separate add/subtract and multiply units, the configuration 
remains unchanged except for the inversion. Our 
implementation of the MMI [9] can itself be divided into three 
parts with different configurations. The result of the partitioning 
of power is shown in Table 4, for one doubling and one 
addition. 

Table 4. Partitioning of the power based on the HECC algorithm. 

Divisor Doubling 

# Operations Duration (ms) 
Average Power 

(mW) 
1 add/sub & Mont. mult 1248 12.54 
2 inversion – convert [9] 86 9.92 
3 inversion – calculation [9] 408 16.71 
4 inversion – halving [9] 64 26.22 
5 add/sub & Mont. mult 1328 12.67 

Divisor Addition 

# Operations 
Duration 

(ms) 
Average Power 

(mW) 
1 add/sub & Mont. mult 974 12.61 
2 inversion – convert 86 10.06 
3 inversion – calculation 408 17.40 
4 inversion – halving 64 26.97 
5 add/sub & Mont. mult 1508 12.78 
  
Table 4 shows that the highest value of the average power 

among the algorithm partitions is consumed during the third 
part of the inversion operation, and the next highest value is 
consumed during the second part of the inversion. Therefore, to 
obtain a more uniform power, we should try to lower the 
power consumption during the second and third parts of the 
inversion. It should be noted that, since the higher-power parts 
have short durations, lowering their power consumption will 
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have a small effect on the overall average power. 
The power consumption values obtained for each hardware 

unit show that the main power consuming unit in the second 
and third parts of the inversion is the add/subtract unit. The unit 
uses two adders to perform an add/sub with reduction 
operation during the parts #1 and #5 of Table 4. However, 
during the inversion only one of the two adders is used while 
the other adder is operand-isolated. Our study shows that the 
multiplexers used in this unit are responsible for a relatively 
high portion of the power consumption of the unit during the 
inversion. To lower this power consumption, two different 
modifications to the HECC processor are considered. In the 
first modification, a single adder, as a new unit, is inserted into 
the HECC processor. This unit is only used during the 
inversion. By using a separate adder during the inversion, both 
of the adders of the main add/subtract unit would be always 
used and the operand-isolation multiplexers may be removed. 
In the second modification, instead of inserting a new unit, we 
omitted the second adder and the corresponding multiplexers 
from the original add/subtract unit, to reduce its power 
consumption during the inversion. However, with this change 
in the circuit, an add/subtract with the reduction operation will 
take two clock cycles, causing a negligible increase in the total 
calculation time. 

The results are summarized in Table 5 which shows that both 
approaches lower the power consumption. The first approach 
(Change #1) lowers the power consumption in part #4 (and 
also #3) at the expense of a small area overhead. The second 
approach (Change #2) which is more effective in reducing the 
power during the inversion (parts #4 and #3), also gives a 
reduction in area. Thus, the second change is better. The results 
indicate that the changes also lower the total average power 
consumption of the HECC processor. 

Table 5. Results of lowering power consumption during inversion. 

Design Original Change #1 Change #2 

 Total Area 
 113,539 mm2 
 22296 GE* 

 119,192 mm2 
 23406 GE* 

 111,711 mm2 
 21937 GE* 

 Average Power 
 @  f = 1 MHz 

 13.46 mW  13.17 mW  12.76 mW 

 Total Energy**  6.77 mJ  6.62 mJ  6.55 mJ 

Partitioned Average Power for Divisor Doubling (mW) 

Part #1 12.54 12.67 12.44 

Part #2 9.92 9.95 9.93 

Part #3 16.71 15.08 13.92 

Part #4 26.22 20.11 17.52 

Part #5 12.67 12.65 12.48 

* GE: Gate Equivalent – with 5.0922 mm2 for NAND2X1 cell 
** Values given for one complete divisor scalar multiplication 

 
The partitioned power diagrams of the ‘Original’ and 

‘Change #2’ designs are compared in Fig. 5. It clearly 
demonstrates a more uniform power diagram for the optimized 
‘Change #2’ design. In this figure, the dashed lines show the 
power consumption averaged over much shorter durations, 
which would resemble the instantaneous power consumption. 
For the case of the ‘Change #2’ design, the dashed lines are 
almost uniform, which makes distinguishing between different 
parts of the algorithm more difficult. 

 
Fig. 5. Comparison of Short-term and Partitioned Power for (a) the 

‘Original’ design and (b) the ‘Change #2’ design. 

IX. Conclusion 

In this work, we presented, for the first time, a prime-field 
energy-efficient hyperelliptic-curve cryptography (HECC) 
processor. Our HECC processor performed divisor scalar 
multiplication on the Jacobian of genus 2 hyperelliptic curves 
defined over prime fields. Only the most frequent cases of 
divisor addition and doubling were supported and the processor 
worked with any arbitrary field and curve parameter values. In 
terms of power and energy consumption, the HECC processor 
performed better than or almost equal to other similar designs. 
This shows that a prime-field HECC processor with flexibility 
in design parameters, can perform as good as binary-field 
designs. We also presented a technique to make the average 
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power consumption of the HECC processor more uniform and 
lower the peaks of its power consumption. This technique gave 
more security against simple power analysis attacks and eased 
the power supply requirements. The power and energy levels 
of the suggested processor made it appropriate for WSN and 
RFID-based systems. 
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