
This paper presents an energy-efficient (low power)
prime-field hyperelliptic-curve cryptography (HECC)
processor with uniform power draw. The HECC
processor performs divisor scalar multiplication on the
Jacobian of genus 2 hyperelliptic curves defined over
prime fields for arbitrary field and curve parameters. It
supports the most frequent case of divisor doubling and
addition. The optimized implementation, which is
synthesized in a 0.13 mm standard CMOS technology,
performs an 81-bit divisor multiplication in 503 ms
consuming only 6.55 mJ of energy (average power
consumption is 12.76 mW.) We also present a technique to
make the power consumption of the HECC processor
more uniform and lower the peaks of its power
consumption.

Keywords: Energy-efficient implementation, average
power consumption, uniform power consumption,
arithmetic processors, hyperelliptic curve cryptography
(HECC) processor.

Manuscript received Apr. 04, 2014; revised Sept. 21, 2014; accepted Oct. 2, 2014.
Hamid-Reza Ahmadi (corresponding author, hrahmadi@ut.ac.ir) is with the Faculty of New

Sciences and Technologies, University of Tehran, Tehran, Iran.
Ali Afzali-Kusha (afzali@ut.ac.ir) and Mahdi Mosaffa (m.mosaffa@ut.ac.ir) are with the

School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
Massoud Pedram (pedram@usc.edu) is with the Department of Electrical Engineering,

University of Southern California, Los Angeles, USA.

I. Introduction

Secure communication is an essential part of many current
and anticipated applications of wireless sensor networks
(WSNs) and radio-frequency identification (RFID) systems
[1][2]. Devices used in these systems, including WSN motes,
RFID tags, and contactless smart cards, usually have to operate
with very low power consumption and high energy efficiency
[1]-[3]. Therefore, since the security of digital communications
is based on cryptography algorithms, there will be a need for
energy-efficient (low average power) implementations of
cryptography algorithms for these devices [1]-[3]. To meet the
limitations of these devices, some researchers have proposed
security protocols based on symmetric cryptography (for
example, [4]) while others have used the so-called light-weight
cryptography algorithms and protocols (for example, [5]-[6]).
However, [7] gives reasons why standardized public-key
cryptography (PKC) algorithms should be implemented and
used in power/energy-limited applications and devices. This
line of reasoning is also confirmed by the availability of
commercial solutions equipped with standard PKC hardware
blocks.

Considering similar reasoning to that of [7], many research
groups (for example, [8]-[11]) have tried to implement standard
PKC algorithms for the mentioned power/energy-limited
devices. Among well-known PKC algorithms, the elliptic-
curve cryptography (ECC) and the hyperelliptic-curve
cryptography (HECC) are suitable candidates for energy-
efficient implementations, since they provide higher security
per bit of the operands [12]-[13]. While ECC has received
more attention in recent years (for example, [8]-[9]), only few
reports have been given for energy-efficient designs of HECC
[10][11]. The

A Flexible, Prime-Field, Genus 2 Hyperelliptic-
Curve Cryptography Processor with Low Power

Consumption and Uniform Power Draw

Hamid-Reza Ahmadi, Ali Afzali-Kusha, Massoud Pedram, and Mahdi Mosaffa

교 정: 초벌편집
파 일: 김수영(12-21)

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 1

advantage of HECC is that it only requires half the operand
length (or less) to provide the same security level as that of
ECC with the disadvantage of being more complex than ECC
[13]. Shorter operand length makes HECC more attractive than
ECC for applications with constrained power/energy sources
[13]. In this paper, we present an energy-efficient low-power
HECC processor design.

The rest of this paper is organized as follows. Section II gives
a simplified explanation of the mathematics of HECC and
Section III summarizes the related works. Section IV describes
the characteristics of our HECC processor, while Section V
gives the details of the implemented algorithms. Section VI
describes the architecture of the HECC processor and gives the
exact register-mapping of the algorithms. Section VII discusses
the results obtained for different implementations of the HECC
processor and Section VIII describes a technique used to make
the power consumption of the HECC processor more uniform.
Finally, Section IX concludes the paper.

II. Mathematics of Hyperelliptic-Curve Cryptography

In this section, we present a simplified description of the
underlying mathematics of hyperelliptic curves and HECC.
Our explanations will be focused on genus 2 hyperelliptic
curves defined over fields of odd characteristic (that is, prime
fields) which are the base for our HECC processor design.
More on the theory of hyperelliptic curves and HECC may be
found in [13].

For our purpose, a hyperelliptic curve C of genus 2 defined
over a prime field GF(p), is the set of all points (x , y) with x
and y Î GF(p), satisfying

)mod(01
2

2
3

3
52 pfxfxfxfxy ++++º (1)

where all fi Î GF(p) and the right hand side function should not
have any multiple roots. We also note that, to obtain the above
equation for the curves, some simplifying changes of variables
have been made without altering the hyperelliptic curve
properties [13]. By taking into account a point P∞ on the curve
C, called the ‘point at infinity’, an algebraic group can be
defined. Members of this group, which is called the Jacobian of
C, are finite sums of the points of the hyperelliptic curve [13].

For the curves of genus 2 defined above, each element of the
Jacobian, denoted by JC, is made from a finite sum of two
points of the curve and called a ‘reduced divisor’ [13]. Using
the set of reduced divisors, then, a ‘divisor addition’ operation
can be defined on the Jacobian group as

CyxRyxRJD
JDDDJDD

JDCyxQyxQ

JDCyxPyxP

RRRRC

CC

CQQQQ

CPPPP

Î==®Î
Î=Å®Î

Î®Î==

Î®Î==

),(,),(
,

),(,),(

),(,),(

2211

2211

2211

213

32121

221

121

 (2)

To perform the above divisor addition, in the general case,
first a function y=S(x) of degree 3 in x is found which passes
through the four points of D1 and D2. This function intersects
curve C in two more points, which are –R1 and –R2. The two
points of D3 can easily be found by negating the results [13]. In
practice, however, doing the calculations on the point
coordinates is difficult, and therefore, a special representation
(called the Mumford representation) of the divisors is used.
This representation results in an efficient algorithm for adding
the reduced divisors [13].

For genus 2 hyperelliptic curves, each reduced divisor on the
Jacobian (made from two distinct points of the curve) can be
represented with a pair of polynomials [13], defined in the
Mumford representation as

2211

21

2211

)(,)(,)(

))(()(

])(,)([))(,)((

),(,),(

01

01
2

21

PPPP

PP

CPPPP

yxvyxvvxvxv

xxxxuxuxxu

xvxuxvxudivD

JDCyxPyxP

==+=

--=++=

==

Î®Î==

 (3)

For the reduced divisors represented in the above form, an
efficient general formula exists for the divisor addition
operation [13]. This formula should be written in the explicit
form for hardware implementation. The ‘divisor doubling’
operation for adding a divisor to itself is similarly defined, and
the corresponding explicit form is written. The details of our
implemented divisor addition and doubling algorithms for the
HECC processor will be given in Section V.

Having defined the divisor addition and also divisor
doubling operations, next we define a ‘scalar multiplication’
operation which multiplies a divisor by an integer using
repeated additions (and/or doublings):

444 3444 21 K
timeskadd

DDDDDkE
1

][
-

ÅÅÅÅ== (4)

Having the value of k and the divisor D, the resulting divisor
E can be found in polynomial time by performing the scalar
multiplication. On the other hand, finding the value of k for two
known divisors D and E, requires exponential-time calculations.
Therefore, cryptographic protocols can be designed based on
the scalar multiplication over Jacobian of a hyperelliptic curve
as defined above [13].

III. Related Work

In recent years, considerable attention has been given to

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 2

HECC as a means of enabling PKC in embedded and also
resource-constrained applications. One line of research has
focused on finding efficient explicit formulae for calculating
the group operations on hyperelliptic curves and also
improving the efficiency of calculations by reducing the
number of operations. Examples include works presented in
[16]-[19] which have covered both prime-field and binary-field
curves. These works have used different coordinate systems
(both affine and projective) to improve the efficiency of their
formulae. Another area of research has considered hardware
implementations of HECC mostly with the goal of improving
the speed of calculations ([20]-[27]). All of these research
activities used binary-field curves as a way to reduce the
hardware area for possible implementations in embedded
applications. Only [24]-[27] have provided power
consumption results of their corresponding designs.

To the best of our knowledge, no report exists on energy-
efficient hardware implementation of HECC using
hyperelliptic curves defined over prime fields.

IV. Features of the Proposed Design

In this section, we describe the features of our HECC
hardware processor design.

1. Hyperelliptic Curves of Genus 2

Hyperelliptic curves of genus 2 (g = 2) and genus 3 (g = 3)
are considered more secure than g > 3 curves [13][14].
Between the genus 2 and the genus 3 curves, the former ones
have lower complexity and lower calculation times [13] and
also have been studied more. Therefore, we chose the genus 2
curves.

2. Curves Defined over Prime Fields

It is usually assumed that using the binary fields is the better
choice when designing curve-based cryptography hardware.
The main reasons are carry-free addition and simple squaring
operations in the binary fields [12]. While these are attractive
features for high-speed designs, they do not have the same
importance in low-power designs (see, [9].) Since our main
goal is a low-power design and also based on other reasons
explained in [9], we chose the prime field over the binary field.

3. Flexibility in Field and Curve Parameters

To design a curve-based cryptography processor with low
power and energy consumption, it is desired to keep the
hardware as small as possible. One way to achieve this is to fix

the parameters defining the field and the curve [12]. Fixing the
parameters, however, has two drawbacks. One is that the
resulting hardware will be optimized for one particular set of
parameters, and therefore, cannot be used by other
systems/users who may want to use other parameters. The
second drawback is related to the case where a security breach
occurs in the system making the used set of parameters
obsolete. In such a condition, since the parameters of the
hardware are fixed, the existing hardware cannot be re-used. In
contrast to cryptography processors with fixed parameters, a
crypto-hardware designed to support arbitrary values of field
and curve parameters will lower the costs of manufacturing
(since one hardware can be used for many systems/customers
and may be re-used by changing the input parameters). Hence,
we have chosen to implement the HECC processor for
arbitrary values of parameters.

4. Implementation of Most Frequent Case Equations

As was explained in Section II, to achieve an efficient
formula for adding/doubling the reduced divisors, the
Mumford representation of the reduced divisors is used. In Eq.
(3), we only showed the general case of the representation for
reduced divisors of genus 2 curves. For the field sizes used in
HECC (in the order of 280 or more members), this general case
will be encountered most frequently in the calculations and the
probability of the occurrence of the special cases is too small
(2-80 or less) [13]. Since the special cases of the reduced
divisors rarely appear in practice, it is reasonable for a
hardware implementation to only cover the general case [13].
The same approach was also taken in other implementations of
HECC [19].

5. Affine Coordinate Representation in Montgomery
Domain

Inspecting Eq. (3) suggests that the reduced divisors in genus
2 HECC can be stored using four variables which are the
coefficients of u(x) and v(x). This is called the affine
representation of the reduced divisors. In the affine form, every
divisor addition/doubling requires one modulo inversion which
is usually considered a time-consuming operation [12]. Other
representations, such as projective, speed up the calculations by
eliminating the inversions [12]. The resulting faster calculations
lower the energy consumption by reducing the total calculation
time, and therefore, many of the energy-efficient hardware
designs have used inversion-free approaches [13]. It, however,
should be noted that representations such as projective, which
eliminate the inversion, usually add to the complexity of the
explicit formula and need extra temporary variables (that is,

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 3

more storage space) as shown in [24]. The added complexity
and extra storage requirement lead to higher power
consumption, and may also retract the effect of lowering the
calculation time on reducing the energy consumption. As
another alternative, there are modulo inversion algorithms,
such as Montgomery modulo inversion (MMI), which are not
very time-consuming and can be used for energy-efficient
implementations [9].

Based on the above discussion, and the results of [9] and [24],
we decided to use the affine representation of divisors. In
addition, we chose to perform all of the calculations on integers
in Montgomery domain [13], since this allows us to use
Montgomery multiplication (thus avoiding a full multiplication
followed by a modulo reduction) [12] and the MMI algorithm
[9].

6. Design for Low Power using Low Clock Frequency

Most of the cryptography hardware designed for use in
RFID systems and WSNs, work at low clock frequencies (< 1
MHz) [8], which is an effective way of reducing the power
consumption. The fact that the design will operate only with
low clock frequencies should also be taken into consideration
during the design. For example, the critical path of the circuit
will not be important, and instead of fast adders, simple carry
propagate adders can be used [9]. The same approach has been
taken in this work.

7. Power Consumption as Uniform as Possible

A uniform power consumption trace for cryptography
hardware units have the advantages of offering more security
against simple power attacks (SPAs), resulting in longer battery
life, and enabling more efficient power profiling and power
management [28]. In this work, the HECC processor will be
designed to have a power consumption trace as uniform as
possible.

V. Implemented HECC Algorithm

As mentioned before, the topmost operation of the HECC
processor is the scalar multiplication of Eq. (4). To obtain
security against timing attacks, this operation is implemented
using the double-and-always-add method [13]. The operations
in the next level are the divisor addition and divisor doubling,
whose details are given next.

1. Divisor Addition – Most Frequent Case

The divisor addition in the most frequent case can be

performed by the equations shown in Fig. 1(a) [13]. Both the
inputs and the result are in the form of Eq. (3). Also, the
equations are based on the polynomial arithmetic in GF(p).
The equations shown in Fig. 1(a) can be written in the explicit
form by expanding the polynomial operations using the
coefficients of the polynomials and integer arithmetic
operations in GF(p). This results in the algorithm shown in Fig.
1(b) which consists of integer addition/subtraction,
multiplication and one inversion [13]. All of the integer
operations must be performed modulo p.

In the fourth line of the explicit formula, it is possible that the
value of s1' becomes zero. This special condition will generate
a divisor of the form [x+u0, v0] which cannot be used in most
frequent case calculations [13]. Therefore, this condition will
not be covered in our design.

()

()

() uvlv
monicmadeuu

uvlstu
usl

uuvvs
uvft

xvxuresult
xvxuxvxu

mod)(

/)2(

mod/)(
/)(

)](),([
)](),([)](),([

2

12

2

1221

2
2
2

2211

+-¬
¬

+-¬
¬

-¬
-¬

=
Å

(a)

203200102

2132110112121

5101

5121421110101100

02002002110212

200

2
45241

2
1312

1
11

10320113210311

1130322111120100

10
2
132

211131020221111

0101
2

2211

20212021
2

22

10111011
2

11

,
,,

2
)2(2))((

,,

,,,

)(

,)1())((
,,,

,,
],[],[],[],[:

],[),(:

],[),(:

vwwvlwuw
vwwvluwuwulw

wzsu
wzuwvluzsusu

sulusulsul
wss

wwrwwwswrww

srw
uwwsuwwwwzzs

wzwwzwvvwvvw
uzzzr

zzuzuuzuuz
vxvuxuxvuvuvuoutput

vxvuxuxvudivinput
vxvuxuxvudivinput

-¬¢-¬
-¬¢-+¬-¢¬

--¢¢¬
+++¢+--¢¢-¢¢¬

¢¢¬¢+¢¢¬¢¢¢+¬¢
¢¬¢¢

¬¬¢¬¬

¢¬

-¬¢+--++¬¢
¬¬-¬-¬

+¬

+¬-¬-¬
+++=Å=

+++=

+++=

-

(b)

Fig. 1. Divisor addition (most frequent case), (a) Polynomial
arithmetic, (b) Explicit formula, [13].

2. Divisor Doubling – Most Frequent Case

The divisor doubling equations in the most frequent case are
shown in Fig. 2(a) [13]. The explicit form of the equations

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 4

shown in Fig. 2(a) is also depicted in Fig. 2(b) [13]. Again, we
have the special condition of s1' becoming zero (sixth line of
the explicit formula), which will not be covered in our design.

() uvlv
monicmadeuu

utvssu
usl

uvts
uvft

xvxuresult
xvxuxvxu

~mod)(~
~~

/)2(~

mod)2(/
/)(

)](~),(~[
)](),([)](),([

2

2

+-¬
¬

--¬

¬
¬

-¬

=
Å

(a)

03200102

132110112121

5015141
2

00

0000011012

200

2
45241

2
1312

1
11

010011010101

111000

0234104311

0413330011

30020

11302
2
11

2
10

0101
2

0101
2

~,~
~,~~,~

2~,22~
,,

,,,

)(

,)1())((
,

)2(,2
2,,2,2

)2(2
2,4,,

]~~,~~[],][2[]~,~[:

],[),(:

vwwvlwuw
vwwvluwuwulw
wsuwuwvsu

sulusulsul
wss

wwrwwwswrww

srw
uwwsuwwttiis

itwitw
wfwwutwwwt
uwwfwwvivi

wvvwur
vuwwwuwvw
vxvuxuxvuvuoutput

vxvuxuxvudivinput

-¬¢-¬
-¬¢-+¬-¢¬
-¢¢¬++¢¢¬

¢¢¬¢+¢¢¬¢¢¢+¬¢
¢¬¢¢

¬¬¢¬¬

¢¬

-¬¢+--¢+¢¢+¢¬¢
¢¢¬¢¢¬

-+-¬¢-+¬¢
¬+¬-¬¢-¬¢

-+¬
¬¬¬¬

+++==

+++=

-

(b)

Fig. 2. Divisor doubling (most frequent case), (a) Polynomial
arithmetic, (b) Explicit formula, [13].

To favor readability in the explicit formulae of Fig. 1(b) and

Fig. 2(b), many temporary variables are used which are not
necessary for the actual implementation. The implementation
and the related issues will be described next.

VI. Architecture of the HECC Processor

In this section, we will describe the architecture of the HECC
processor.

1. Arithmetic Building Blocks

We need to perform add/subtract operations modulo an
arbitrary prime number p. This can be performed by two
adders in one clock cycle. Also, to avoid a full multiplication
followed by a modulo reduction, we will use the Montgomery
multiplication. The Montgomery multiplication of two n-bit

numbers can be performed in n clock cycles by a circuit
consisting of two adders, two registers, and some glue logic [9].
For the HECC processor design, we can take two different
approaches. In one approach, we use two separate add/subtract
and multiply units (‘separate’ units), while in the other
approach, we make use of the adders of the multiplier unit to
also perform the add/subtract operations (‘combined’ units).
The combined modulo add/subtract and Montgomery
multiplier units are shown in Fig. 3 where the two registers (B
and M) are used only for the Montgomery multiplication. We
will implement both approaches and compare the power
consumption results later.

Fig. 3. Combined modulo-add/sub and Montgomery multiply circuit.

For the divisor addition of Fig. 1(b) and divisor doubling of

Fig. 2(b), we need a modulo inversion operation due to the use
of the affine coordinates for the divisors. The Montgomery
modulo inverse (MMI) algorithm is a good candidate for
energy-efficient implementations [9]. It can also be realized
using the add/subtract and multiply units, without any need for
other arithmetic units [9]. Therefore, we will use the MMI to
implement the modulo inversion operation.

To better assess the effect of using separate and combined
arithmetic units (explained above) on the power consumption,
we will first use the inversion by exponentiation method
instead of the MMI. The reason is that, contrary to the MMI,
the inversion by exponentiation method can be implemented
without any changes to the arithmetic units [9].

2. Temporary Storage

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 5

Since our HECC processor uses the affine coordinates, we
need five variables at the top level of our design (see Fig. 4.)
Four registers hold u and v coefficients of the partially
multiplied divisor and one register is used for shifting of the
scalar value (k). It is assumed that the original input divisor is
fed to the HECC processor during the scalar multiplication.

In the next level, the hardware performs the algorithms
shown in Fig. 1(b) and Fig. 2(b). We were able to limit the
temporary storage of both algorithms to five extra registers.
This was achieved by re-ordering and repeating some of the
calculations and using the M-Reg of the multiplier unit (cf. Fig.
3) as a temporary register.

For the implementation of the inversion algorithm, we need
more temporary registers. In the case of inversion by
exponentiation, one more register is necessary while for the
MMI, two more registers are needed. Therefore, the total
number of registers (with a bit-length equal to the length of
modulus p) in our design is 14 (13) for the case of MMI
(inversion by exponentiation.)

2. Overall Architecture

Figure 4 shows the overall architecture of the proposed
HECC processor. The field and curve parameters are input to
the processor. The internal controller, named ‘Divisor
ADD/DBL Controller’, controls the hardware to perform the
addition and doubling algorithms, as well as the inversion and
multiplication operations.

Fig. 4. Overall architecture of the HECC processor.

VII. Implementation Results

In this section, the results obtained from different
implementations of the HECC processor are discussed. In the
implementation process, we first coded the design in VHDL
and synthesized it in a 0.13mm low-leakage standard CMOS
process. Then we used the post-synthesis netlist for simulations

to capture the activity of all of the circuit nodes (including
glitches). The activity was then fed to a commercial power
calculation tool to obtain the power consumption results. All of
the simulations of our HECC processor were done for a bit-
length of 81 bits, using a 1 MHz clock frequency. We used
many random values for the scalar (k) and different divisors
from different curves in the simulations.

1. Separate vs. Combined Arithmetic Units

In the first step, we implemented two versions of the HECC
processor, one with separate add/subtract and multiply units
and one with the combined unit which was shown in Fig. 3.
Both used inversion by exponentiation. Note that this inversion
method is very time consuming, and therefore, we only use it
for the evaluation and comparison of the arithmetic units. The
results of these implementations are given in Table 1.

Table 1. Results when using inversion by exponentiation.

81-bit Flexible Prime-Field genus 2 HECC processor
0.13mm low-leakage CMOS

Implementation Separate units Combined unit

 Area
 100,518 mm2
 19739 GE*

 89,382 mm2
 17552 GE*

 Average Power
 @ f = 1 MHz

 11.53 mW 13.49 mW

 Total Clock Cycles**
 2.037 × 106
 double & always add

 2.037 × 106
 double & always add

 Total Time**
 @ f = 1 MHz

 2037 ms
 double & always add

 2037 ms
 double & always add

 Total Energy** 23.5 mJ 27.5 mJ

 Maximum Frequency 34.8 MHz 33.8 MHz

 Arithmetic Unit Power
 10 mW (mult)
 0.15 mW (add/sub)

 12.08 mW

 Multiplexers Power 0.74 mW 0.77 mW

* GE: Gate Equivalent – with 5.0922 mm2 for NAND2X1 cell
** Values given for one complete divisor scalar multiplication

Table 1 shows that, as expected, using the inversion by

exponentiation method causes a long calculation time and high
energy consumption. For the comparison of arithmetic units,
we see from Table 1 that for the ‘combined unit’
implementation, the power consumption is higher. The reason
is that combining the add/subtract and multiply units adds
some multiplexers to the arithmetic unit consuming more
power. Although for combining these two units, the structure of
the multiplexers at the input ports of the arithmetic units should
change, Table 1 shows that nearly the same amount of power is

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 6

consumed in these multiplexers. Based on this comparison, we
will use separate add/subtract and multiply units for the rest of
our HECC processor implementations.

2. Montgomery Modulo Inverse

The MMI algorithm, which is much faster than the inversion
by exponentiation technique, can be realized with small
modifications to the add/subtract unit and temporary registers.
The price for the higher speed is a more complex controller and
also one more temporary register, which result in higher area
and power consumption. Table 2 compares the results of the
MMI algorithm by those of the inversion by exponentiation
using separate units.

Table 2. Results when using Montgomery modulo inverse algorithm.

81-bit Flexible Prime-Field genus 2 HECC processor
0.13mm low-leakage CMOS

Inversion method Montgomery Exponentiation

 Total Area
 113,539 mm2

 22296 GE*
 100,518 mm2

 19739 GE*
 Average Power
 @ f = 1 MHz

 13.46 mW 11.53 mW

 Total Clock Cycles**
 502,800

 double & always add
 2.037 × 106

 double & always add

 Total Time**
 @ f = 1 MHz

 502.8 ms
 double & always add

 2037 ms
 double & always add

 Total Energy** 6.77 mJ 23.5 mJ

 Maximum Frequency 34.8 MHz 34.8 MHz

 Arithmetic Unit Power
 8.48 mW (mult)
 1.76 mW (add/sub)

 10 mW (mult)
 0.15 mW (add/sub)

 Temp. Registers
 Power

 1.26 mW 0.27 mW

 Controller and
 Multiplexers Power

 1.59 mW 0.74 mW

* GE: Gate Equivalent – with 5.0922 mm2 for NAND2X1 cell
** Values given for one complete divisor scalar multiplication

The inversion by exponentiation technique repeatedly uses the
multiplier unit to perform exponentiation while MMI mostly
uses the add/subtract unit [9]. Also, the latter performs much
more read/write from/to the temporary registers. Therefore, as
can be seen in Table 2, the power consumption of the add/sub
unit and the temporary registers is higher in the MMI-based
implementation, while the multiplier unit has a lower power
consumption. The more complex controller and multiplexers
also give rise to more power consumption in the MMI case. As
the results reveal, the MMI-based implementation has about
13% more area and 17% more power. The higher speed of
MMI, however, leads to more than 71% reduction in the
energy consumption.
It should also be noted that, in our implementation, the duration
of one inversion operation using the MMI algorithm is almost
seven times the duration of a multiplication. This ratio is lower
than the values which justify the preference of the inversion-
free coordinate types over the affine coordinates [13].

3. Comparison with Previous Work

As we mentioned in Section III, we are not aware of any other
energy-efficient HECC implementation over the prime fields.
Table 3 compares the performance of our HECC processor
with those of other reported designs (all using binary fields).
Although a detailed comparison is not possible due to the use
of different technologies and design types, it can be observed
that the prime-field HECC processor has lower power and
energy levels than (or almost equal, in case of [27]) similar-
sized binary-field HECC implementations. The last line of
Table 3 compares our HECC processor with our previously
reported ECC processor with the same security level. The
shorter numbers used in the HECC (half the size used for
ECC) makes it possible to lower the power by 58% and the
energy by 48% compared to ECC.

Table 3. Comparison of our HECC processor with related works.

Design
CMOS

Technology
Type

Total Energy
(mJ)

Reported Average
Power @ Clock Freq.

Calculation Time
(ms)

Total
Cycles

[24] 0.25m GF(289) g=2 HECC 20.4 396 mW @ 1 MHz 51.55 51,550

[25] 0.25m GF(283) g=2 HECC Not reported 80 mW @ 1 MHz Not reported Not reported

[26] 0.13m GF(283) g=2 HECC 16.28 22 mW @ 500 KHz 740 370,000

[27] 0.13m GF(283) g=2 HECC 6.1 13.4 mW @ 300 KHz 456 136,838

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 7

This Work 0.13m
GF(p) 81 bit

g=2 HECC
6.77 13.46 mW @ 1 MHz 502.8 502,800

[11] 0.13m
GF(p) 168 bit

ECC
12.92 32.3 mW @ 1 MHz 400 400,000

VIII. Power Consumption Redistribution

In this section, we discuss the importance of uniform power
consumption in cryptography circuits and describe our efforts
at making the power consumption of our HECC processor
more uniform by redistributing the power consumption.

1. Importance of Uniform Power Consumption

Paying attention to the temporal behavior of the power
consumption and moving toward temporally uniform power
consumption has the following benefits:

· The maximum value of the power consumption
becomes closer to the average value preventing a
waste of battery capacity. A lower maximum power
value also enables the use of a smaller battery and
increases the service time of the battery [29].

· More uniform power consumption eases the prediction
of the remaining battery capacity and allows for
more efficient power profiling and power
management [29].

· More uniform power consumption makes it harder to
extract information from the details of the power
consumption diagram and gives more security
against simple power attacks [28].

In the following subsection, we describe a technique which

we applied to make the power consumption of the HECC
processor more uniform.

2. Algorithm-based Partitioning of Power

Arithmetic building blocks and components such as registers
consume different amounts of power during the execution of
an algorithm. This originates from different input data values as
well as the changes in the configuration of the blocks and the
rate of their usage in the calculations. The changes in the
configuration and usage rate of the blocks are determined by
the algorithm. Any implemented arithmetic algorithm can be
divided into separate parts such that during each part, the
configuration of the blocks remains unchanged. If we obtain
the average of the power consumption over each of these
separated parts of the algorithm (that is, a partitioning of
power), we can find which part of the algorithm consumes the

largest amount of power. By focusing on the part of the
algorithm with the highest average power, we can modify the
algorithm and/or hardware to lower the power consumption in
that part. This leads to a more uniform overall power
consumption. This process may be repeated while
modifications can be found to make the power consumption
more uniform.

In our HECC processor implementation, such partitioning
can be derived from the register-level operations. Both for the
divisor addition and divisor doubling, there are two series of
consecutive add/subtract and Montgomery multiplication
operations with only one inversion in between. Since we have
used separate add/subtract and multiply units, the configuration
remains unchanged except for the inversion. Our
implementation of the MMI [9] can itself be divided into three
parts with different configurations. The result of the partitioning
of power is shown in Table 4, for one doubling and one
addition.

Table 4. Partitioning of the power based on the HECC algorithm.

Divisor Doubling

Operations Duration (ms)
Average Power

(mW)
1 add/sub & Mont. mult 1248 12.54
2 inversion – convert [9] 86 9.92
3 inversion – calculation [9] 408 16.71
4 inversion – halving [9] 64 26.22
5 add/sub & Mont. mult 1328 12.67

Divisor Addition

Operations
Duration

(ms)
Average Power

(mW)
1 add/sub & Mont. mult 974 12.61
2 inversion – convert 86 10.06
3 inversion – calculation 408 17.40
4 inversion – halving 64 26.97
5 add/sub & Mont. mult 1508 12.78

Table 4 shows that the highest value of the average power

among the algorithm partitions is consumed during the third
part of the inversion operation, and the next highest value is
consumed during the second part of the inversion. Therefore, to
obtain a more uniform power, we should try to lower the
power consumption during the second and third parts of the
inversion. It should be noted that, since the higher-power parts
have short durations, lowering their power consumption will

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 8

have a small effect on the overall average power.
The power consumption values obtained for each hardware

unit show that the main power consuming unit in the second
and third parts of the inversion is the add/subtract unit. The unit
uses two adders to perform an add/sub with reduction
operation during the parts #1 and #5 of Table 4. However,
during the inversion only one of the two adders is used while
the other adder is operand-isolated. Our study shows that the
multiplexers used in this unit are responsible for a relatively
high portion of the power consumption of the unit during the
inversion. To lower this power consumption, two different
modifications to the HECC processor are considered. In the
first modification, a single adder, as a new unit, is inserted into
the HECC processor. This unit is only used during the
inversion. By using a separate adder during the inversion, both
of the adders of the main add/subtract unit would be always
used and the operand-isolation multiplexers may be removed.
In the second modification, instead of inserting a new unit, we
omitted the second adder and the corresponding multiplexers
from the original add/subtract unit, to reduce its power
consumption during the inversion. However, with this change
in the circuit, an add/subtract with the reduction operation will
take two clock cycles, causing a negligible increase in the total
calculation time.

The results are summarized in Table 5 which shows that both
approaches lower the power consumption. The first approach
(Change #1) lowers the power consumption in part #4 (and
also #3) at the expense of a small area overhead. The second
approach (Change #2) which is more effective in reducing the
power during the inversion (parts #4 and #3), also gives a
reduction in area. Thus, the second change is better. The results
indicate that the changes also lower the total average power
consumption of the HECC processor.

Table 5. Results of lowering power consumption during inversion.

Design Original Change #1 Change #2

 Total Area
 113,539 mm2
 22296 GE*

 119,192 mm2
 23406 GE*

 111,711 mm2
 21937 GE*

 Average Power
 @ f = 1 MHz

 13.46 mW 13.17 mW 12.76 mW

 Total Energy** 6.77 mJ 6.62 mJ 6.55 mJ

Partitioned Average Power for Divisor Doubling (mW)

Part #1 12.54 12.67 12.44

Part #2 9.92 9.95 9.93

Part #3 16.71 15.08 13.92

Part #4 26.22 20.11 17.52

Part #5 12.67 12.65 12.48

* GE: Gate Equivalent – with 5.0922 mm2 for NAND2X1 cell
** Values given for one complete divisor scalar multiplication

The partitioned power diagrams of the ‘Original’ and

‘Change #2’ designs are compared in Fig. 5. It clearly
demonstrates a more uniform power diagram for the optimized
‘Change #2’ design. In this figure, the dashed lines show the
power consumption averaged over much shorter durations,
which would resemble the instantaneous power consumption.
For the case of the ‘Change #2’ design, the dashed lines are
almost uniform, which makes distinguishing between different
parts of the algorithm more difficult.

Fig. 5. Comparison of Short-term and Partitioned Power for (a) the

‘Original’ design and (b) the ‘Change #2’ design.

IX. Conclusion

In this work, we presented, for the first time, a prime-field
energy-efficient hyperelliptic-curve cryptography (HECC)
processor. Our HECC processor performed divisor scalar
multiplication on the Jacobian of genus 2 hyperelliptic curves
defined over prime fields. Only the most frequent cases of
divisor addition and doubling were supported and the processor
worked with any arbitrary field and curve parameter values. In
terms of power and energy consumption, the HECC processor
performed better than or almost equal to other similar designs.
This shows that a prime-field HECC processor with flexibility
in design parameters, can perform as good as binary-field
designs. We also presented a technique to make the average

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 9

power consumption of the HECC processor more uniform and
lower the peaks of its power consumption. This technique gave
more security against simple power analysis attacks and eased
the power supply requirements. The power and energy levels
of the suggested processor made it appropriate for WSN and
RFID-based systems.

References

[1] K. Finkenzeller, RFID Handbook, 3rd ed. John Wiley & Sons
Inc., West Sussex, United Kingdom, 2010.

[2] D. Culler, D. Estrin, and M. Srivastava, "Overview of Sensor
Networks," Computer, vol. 37, no. 8, pp. 41-49, Aug. 2004.

[3] W. Rankl and W. Effing, Smart Card Handbook, 3rd ed. John
Wiley & Sons Inc., West Sussex, United Kingdom, 2003.

[4] A. Perrig et al., "SPINS: Security Protocols for Sensor
Networks," Wireless Networks, vol. 8, issue 5, pp. 521-534, Sep.
2002.

[5] P.P. López, "Lightweight Cryptography in Radio Frequency
Identification (RFID) Systems," Ph.D. dissertation, Computer
Science Department, Carlos III University of Madrid, Madrid,
Spain, Oct. 2008.

[6] J.P. Kaps, G. Gaubatz, and B. Sunar, "Cryptography on a Speck of
Dust," Computer, vol. 40, no. 2, pp. 38-44, Feb. 2007.

[7] M. Aigner, "Seven reasons for application of standardized crypto
functionality on low cost tags," in Proceedings of the 2007 EU
RFID Forum, Brussels, Belgium, March 2007.

[8] Y.K. Lee et al., "Elliptic-Curve-Based Security Processor for
RFID," IEEE Transactions on Computers, vol. 57, no. 11, pp.
1514-1527, Nov. 2008.

[9] H.R. Ahmadi and A. Afzali-Kusha, "A Low-Power and Low-
Energy Flexible GF(p) ECC Processor," Journal of Zhejiang
University - Science C, vol. 11, no. 9, pp. 724-736, Sep 2010.

[10] K. Sakiyama, "Secure Design Methodology and Implementation
for Embedded Public-key Cryptosystems," Ph.D. dissertation,
Katholieke Universiteit Leuven, Leuven, Belgium, Dec. 2007.

[11] J. Fan, L. Batina, I. Verbauwhede, "Light-weight
implementation options for curve-based cryptography: HECC is
also ready for RFID," in Proceedings of the International
Conference for Internet Technology and Secured Transactions
(ICITST) 2009, London, UK, Nov. 2009.

[12] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography, Springer-Verlag New York Inc., New York,
USA, 2004.

[13] H. Cohen et al., Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Chapman and Hall/CRC, Florida, USA, 2006.

[14] P. Gaudry, Hyperelliptic Curves and the HCDLP, in I.F. Blake, G.
Seroussi, and N.P. Smart, editors, Advances in Elliptic Curve

Cryptography, Cambridge University Press, Cambridge, UK,
2005.

[15] N. Koblitz et al., Algebraic Aspects of Cryptography, Springer-
Verlag, Berlin, Germany, 1998.

[16] T. Wollinger, J. Pelzl, and C. Paar, "Cantor versus Harley:
Optimization and Analysis of Explicit Formulae for Hyperelliptic
Curve Cryptosystems," IEEE Transactions on Computers, vol. 54,
no. 7, pp. 861-872, Jul. 2005.

[17] T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic
Curves,” Applicable Algebra in Engineering, Communication and
Computing, vol. 15, no. 5, pp. 295-328, Feb. 2005.

[18] T. Lange, and P.K. Mishra, “SCA Resistant Parallel Explicit
Formula for Addition and Doubling of Divisors in the Jacobian of
Hyperelliptic Curves of Genus 2,” in Proceedings of the 6th
International Conference on Cryptology in India, Bangalore,
India, Dec. 2005.

[19] X. Fan, and G. Gong, “Efficient explicit formulae for genus 2
hyperelliptic curves over prime fields and their implementations,”
in Proceedings of the 14th International Workshop on Selected
Areas in Cryptography (SAC) 2007, Ottawa, Canada, Aug. 2007.

[20] G. Elias, A. Miri, and T.H. Yeap, “FPGA Design of HECC
Coprocessors,” in Proceedings of 2004 IEEE International
Conference on Field-Programmable Technology (FPT) 2004,
Brisbane, Australia, Dec. 2004.

[21] J. Fan, L. Batina, and I. Verbauwhede, "HECC Goes
Embedded: An Area-Efficient Implementation of HECC," in
Proceedings of the 15th International Workshop on Selected
Areas in Cryptography (SAC) 2008, New Brunswick, Canada,
Aug. 2008.

[22] J. Pelzl et al., "Hyperelliptic Curve Cryptosystems: Closing the
Performance Gap to Elliptic Curves," Cryptographic Hardware
and Embedded Systems (CHES) 2003, in Lecture Notes in
Computer Science, vol. 2779/2003, pp. 351-365, 2003.

[23] A. Hodjat et al., "A Hyperelliptic Curve Crypto Coprocessor for
an 8051 Microcontroller," in Proceedings of the IEEE Workshop
on Signal Processing Systems Design and Implementation (SIPS)
2005, Athens, Greece, Nov. 2005.

[24] H. Kim et al., "Hyperelliptic Curve Crypto-Coprocessor over
Affine and Projective Coordinates," ETRI Journal, vol.30, no.3,
pp.365-376, June 2008.

[25] K. Sakiyama et al., "Small-footprint ALU for public-key
processors for pervasive security," in Proceedings of the
Workshop on RFID Security (RFIDSec) 2006, Graz, Austria, Jul.
2006.

[26] L. Batina, K. Sakiyama, and I. Verbauwhede, "Compact Public-
Key Implementations for RFID and Sensor Nodes," Secure
Integrated Circuits and Systems, in Series on Integrated Circuits
and Systems, 2010(4), pp. 179-195, 2010.

[27] J. Fan, L. Batina, and I. Verbauwhede, "Light-weight
Implementation Options for Curve-based Cryptography: HECC

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 10

is Also Ready for RFID," in Proceedings of the 4th International
Conference for Internet Technology and Secured Transactions,
2009. (ICITST 2009), London, UK, 2009, pp. 1-6.

[28] H.R. Ahmadi, A. Afzali-Kusha, and M. Pedram, "A Power-
Optimized Low-Energy Elliptic-Curve Crypto-processor," IEICE
Electronics Express, vol. 7, no. 23, pp. 1752-1759, Dec. 2010.

[29] P. Rong and M. Pedram, "An analytical model for predicting the
remaining battery capacity of Lithium-ion batteries," IEEE
Transactions on VLSI systems, vol. 14, no. 5, pp. 441-451, May
2006.

The article has been accepted for inclusion in a future issue of ETRI Journal, but has not been fully edited. Content may change prior to final publication.
http://dx.doi.org/10.4218/etrij.15.0114.0418

RP1404-0418e © 2014 ETRI 11

