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Abstract—This paper investigates the energy management
problem in hybrid electric vehicles (HEVs) focusing on the
minimization of the operating cost of an HEYV, including both
fuel and battery replacement cost. More precisely, the paper
presents a nested learning framework in which both the optimal
actions (which include the gear ratio selection and the use of
internal combustion engine versus the electric motor to drive
the vehicle) and limits on the range of the state-of-charge of the
battery are learned on the fly. The inner-loop learning process
is the key to minimization of the fuel usage whereas the outer-
loop learning process is critical to minimization of the amortized
battery replacement cost. Experimental results demonstrate a
maximum of 48% operating cost reduction by the proposed HEV
energy management policy.

I. INTRODUCTION

Electric vehicles (EVs) and hybrid electric vehicles (HEVs)
have been gaining market share nowadays in the automotive
market due to the concerns about large amounts of fuel con-
sumption and pollution resulted from the conventional internal
combustion engine (ICE) vehicles [21]. By integrating electric
motors (EMs) into the vehicle propulsion system, EVs and
HEVs achieve higher energy efficiency and lower pollution
emission compared with the conventional vehicles [9].

HEVs, which represent a transition from conventional ICE
vehicles to full electric vehicles, have higher fuel efficiency
than conventional vehicles and fewer battery-related problems
than EVs. However, due to the hybrid structure of the propul-
sion system, advanced HEV energy management techniques
are needed to fully explore the advantages of HEVs [24]. The
hybrid propulsion system of an HEV consists of an ICE and
one or more EMs. The ICE converts chemical energy of the
fuel into mechanical energy to propel the vehicle. The EM
converts electrical energy stored in the battery pack to propel
the vehicle, and it can also operate as a generator collecting
kinetic energy during braking to charge the battery pack, which
is called the regenerative braking, a mechanism improving
the energy efficiency of EVs and HEVs [10]. HEV energy
management techniques coordinate the operation of ICE and
EM to improve the energy efficiency of HEVs.

The fuel cost is one major operating cost component of
the HEV. Therefore, the majority of previous work on HEV
energy management aimed at improving the fuel economy. The
rule-based strategies for HEV energy management interpret
the driver controlled pedal motion into the required propulsion
power, and determine the power split between the ICE and the
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EM based on intuition, human expertise or fuzzy logic [5], [7].
The optimization-based control strategies either minimize the
fuel consumption during a trip with given, predicted or stochas-
tic future driving profile [22], [8], [19], or perform control
by converting battery charge into equivalent fuel consumption
(ECMS and adaptive-ECMS approaches) [11], [20].

The state-of-health (SoH) of the HEV battery pack is
degrading with the operation of an HEV due to the frequent
charging/discharging of the battery pack by the EM. The work
[14], [18] studied the SoH degradation model for the EV/HEV
battery pack as a function of the state-of-charge (SoC) swing,
the number of charging/discharging cycles, etc. The battery
pack will reach its end-of-life when its SoH degrades to 80%
or 70% [17] and the battery pack replacement will result in
additional operating cost of the HEV. Enlarging the battery
pack energy capacity within size, weight and cost constraints
is preferred for exploring the energy storage capability of the
battery pack to improve the HEV fuel economy, and especially
the plug-in HEV (PHEV) employs a higher-capacity battery
pack [27], which is charged using the grid power. The battery
replacement cost increases significantly with enlarged battery
capacity, and therefore the amortized battery replacement cost
must not be neglected in the HEV. There are some work taking
into account battery SoH degradation when optimizing the
fuel efficiency [12], [26], [25]. However, these work have one
or more of the following shortcomings: (i) The HEV energy
management policies they use are based on ECMS or adaptive-
ECMS approaches [11], [20], which rely on the knowledge
of the future driving profile. If the prediction of the future
driving profile is not accurate, the effectiveness of these ECMS
and adapative-ECMS based approaches can be degraded. (ii)
They do not use accurate analytical battery SoH degradation
model in the optimization and evaluation, instead, they use
Ah-throughput or battery output power as the equivalent of
the battery SoH degradation during charging and discharging
processes.

Machine learning provides a powerful tool for the agent
(i.e., decision-maker) to “learn” how to “act” optimally when
the explicit and accurate system modeling is difficult or even
impossible to obtain [4]. The agent can observe the environ-
ment’s state and take an action according to the observed state.
A reward will be given to the agent as a result of the action
taken. Stimulated by the reward, the agent aims to derive a
policy, which is a mapping from each possible state to an ac-
tion, by “learning” from its past experience. The reinforcement
learning has been applied to the HEV energy management



problem [16], such that the HEV energy management policy
does not rely on any knowledge of the future driving profile.
An inverse reinforcement learning technique [29] has been
applied for learning the driver behavior, however, it is out of
our focus.

In this proposed work, we investigate the HEV energy
management problem focusing on the minimization of the op-
erating cost of an HEV, including both fuel cost and amortized
battery replacement cost (i.e., battery purchase plus installation
cost). We present a nested learning framework in which both
the optimal actions (which include the gear ratio selection and
the use of ICE versus EM to drive the vehicle) and limits on the
range of battery SoC are learned on the fly. More precisely, the
inner-loop learning process determines the operation modes of
the HEV components whereas the outer-loop learning process
modulates the battery SoH degradation from a global point of
view. Due to the usage of the machine learning techniques,
the proposed HEV energy management does not rely on
perfect and accurate system modeling (i.e., HEV component
modeling and driving profile modeling.) The proposed nested
learning framework for HEV energy management differs from
the reinforcement learning-based framework [16] in that (i)
the amortized battery replacement cost is incorporated into
the HEV energy management; and (ii) two nested learning
processes are used in which the inner-loop learning process is
the key to minimization of the fuel usage and the outer-loop
learning process is critical to minimization of the amortized
battery replacement cost. Experimental results demonstrate a
maximum of 48% operating cost reduction by the proposed
HEV management policy.

II. SYSTEM DESCRIPTION

Although this work aims to design a smart HEV controller
that discovers the energy management policy by learning from
its experience, it is still necessary to understand the fundamen-
tals of HEV operation. By way of an example and without loss
of generality, we discuss the parallel HEV configuration as in
most of the literature work on HEV energy management [10].
There are five operation modes of a parallel HEV, depending
on the flow of energy: (i) only the ICE propels the vehicle, (ii)
only the EM propels the vehicle, (iii) the ICE and EM propel
the vehicle in parallel, (iv) the ICE propels the vehicle and
at the same time drives the EM to charge the battery pack,
and (v) the EM charges the battery pack when the vehicle is
braking (i.e., regenerative braking mode.)

A. HEV Component Analysis

1) Internal Combustion Engine (ICE): According to the
quasi-static ICE model [15], the fuel efficiency of an ICE is
calculated as

Tice - Opce /(g - Dy). (1)

In (1), Ticeg and jcg are the torque (in N-m) and speed (in
rad/s) of the ICE, respectively, which represent the operation
point of the ICE. 7y is the fuel consumption rate (in g/s) of
the ICE, depending on the ICE operation point. And Dy is the
fuel energy density (in J/g). Figure 1 (a) represents the contour
map of the fuel consumption rate of an example ICE in the ICE
speed-torque plane. Figure 1 (b) shows the corresponding fuel
efficiency contour map. To ensure safe and smooth operation
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Fig. 2. The efficiency map of an EM.

of an ICE, the following constraints should be satisfied:

o < opcp < o, ()
0< Tice <TiEE(ocE).

2) Electric Motor (EM): The EM operates either as a motor
to propel the vehicle or as a generator to charge the battery
pack. The efficiency of the EM is
Tgm >0
Tem <0

(Tem - ©EM) / Poant
Pyas / (Tem - ©pm)

Nem (Tem, Wem) = { 3

where Tgy and Mgy, are respectively the torque and speed of
the EM, and Py is the output power of the battery pack. When
the EM operates as a motor, Tgys is positive and the battery
pack is discharging i.e., Ppy: > 0; when the EM operates as
a generator, Tgys is negtive and the battery pack is charging
i.e., Ppyr < 0. Figure 2 represents the efficiency contour map
of the EM as a motor or a generator. To ensure safe and
smooth operation of an EM, the following constraints should
be satisfied:

0< opy <oy, 4)
o (opm) < Tem < TS (0pm).

3) Vehicle Tractive Force: The vehicle tractive force Frg
to support the vehicle speed and acceleration (which are



determined by the driver through pressing the braking or
acceleration pedal) is derived by

Frr = m-a+F,+Fr+Fap (5
F, = m-g-sin®

Fr = m-g-cos0-Cg

Fap = 0.5-p-Cp-Ap-v?

where m is the vehicle mass, a is the vehicle acceleration, Fg
is the force due to road slope, Fp is the rolling friction force,
Fyp is the air drag force, 0 is the road slope angle, Cg is the
rolling friction coefficient, p is the air density, Cp is the air
drag coefficient, Ar is the vehicle frontal area, and v is the
vehicle speed. Given v, a and 0, the tractive force Frg can
be derived using (5). Then, the vehicle wheel torque 7, and
wheel speed ®,,, are related to Frg, v, and wheel radius r,,
by

Ty =
Oy =

FrR - i, (6)
v/ Twh-
The demanded power for propelling the vehicle i.e., pgem

satisfies
Ddem = Frr - v =Ty - Oyp. (7

4) Drivetrain Coupling: The ICE and EM are coupled
together through the drivetrain to propel the vehicle cooper-
atively. The speed and torque of the ICE, the EM, and the
vehicle wheel obey the following speed and torque relation:

Wice ~ Wpm

,, = ®)
"R R Preg
T = R(K)(Tice +Preg Tem* (Mreg)®) - (M) P
where 1 Tew >0
. EM =
= {"] 2, ®
B: {+1 TICE"‘preg'TEM'(nreg)azo (10)
—1 TICE + preg . TEM : (nreg)a <0

In (8), R(k) is the k-th gear ratio (there are a total number of
four or five gear ratios), P, is the reduction gear ratio, and
Nreg and Mg are the reduction gear efficiency and the gear box
efficiency, respectively.

B. HEV Control Flow

During the actual HEV control process, it is the driver
that determines the speed v and power demand pg., (or
equivalently, the speed v and acceleration a) for propelling the
vehicle on the fly through pressing the acceleration or brake
pedal. Then the HEV controller controls the operation of the
ICE, EM and drivetrain such that the vehicle meets the target
performance (speed v and acceleration a.) Generally, the HEV
controller chooses a couple of control variables, such as the
battery output power Py, (or equivalently, the battery output
current i) and the gear ratio R(k), etc., and then the rest of the
variables (i.e., the ICE torque Tjcg and speed wjcg, the EM
torque Tgy and speed ®gy) become the dependent (associate)
variables, the values of which are determined by Py, and R(k)
according to the operational principle of HEV components as
discussed previously.

There are HEV control strategies that rely on accurate HEV
system modeling, such as the dynamic programming-based

strategy [22], the model predictive control strategy [8], and the
equivalent consumption minimization strategy (ECMS) [11].
And also, there are model-free or partially model-free HEV
control strategies that do not rely on detailed HEV system
modeling or only need partial HEV modeling. For example, the
rule-based strategies [5], [7] only need the battery modeling.
The model-free HEV control strategies are preferred due to
their flexibility and feasibility. The reinforcement learning-
based strategy [16] generally can be a model-free or partially
model-free HEV control framework.

C. Battery SoH Estimation

With the operation of an HEV, the SoH of the HEV battery
is degrading i.e., the battery gradually loses its capacity. We
say a battery reaches its end-of-life when its SoH degrades
to 80% or 70% i.e., the battery capacity fading reaches 20%
or 30% [17]. The battery capacity fading Cyyq. is formally
defined as

Crade = (1 = Crur/Chyj) x 100%, (11)

where Cp,y is the battery full charge capacity and C’}Z;’; is the
nominal value of Cy,y i.e., the full charge capacity of a brand
new battery. The battery capacity fading results from long-term
electrochemical reactions involving the carrier concentration
loss and internal impedance growth. We will discuss in the
following the battery capacity fading model in [18], which
shows a good match with real data but can only be applied for
cycled charging/discharging pattern.

The state-of-charge (SoC) of a battery is given by
SoC = Cha,t/Cfu” X 100%7 (12)

where Cpyy is the amount of charge stored in the battery.
A battery charging/discharging cycle is defined as a charging
process of the battery from SoCj,,, to SoCp;e, and a subsequent
discharging process from SoCp;g, to SoCj,,,. Then the average
SoC and SoC swing in a cycle are calculated as

SOCavg = (SOClow =+ SOChigh)/za (13)
SOCswing = SOChigh —80Cioy-

Reference [18] estimates the capacity fading of a battery in a
charging/discharging cycle i.e., Crage cycie as

Tref T
Dy =Kco- S0Cqpine — 1 0.2 14
1 co CXP[( OLswing )KexTB] + Tiife (14)
Dy =D - exp[4KSOC(SOCan — 0.5)](] — Cfade)
Tref
Cfade,cycle =Dy 'eXP[KT(TB - Tref) Ty ]

where Kco, Kex, Ksoc, and Kr are battery specific parameters;
Tp and T, are the battery temperature and reference tempera-
ture, respectively; T is the duration of this charging/discharging
cycle; Tjis. is the calendar life of the battery. Please note
that Crage,cycte is a function of SoC,,, and SoCgying. The
total capacity fading after M charging/discharging cycles is
calculated by

Cfade = ij‘n/lzlcfade,cycle(m)a (15)

where Cage,cyete(m) denotes the battery capacity fading in the
m-th cycle. The battery capacity fading Cy,q. Will increase over
the battery lifetime from O (brand new) to 100% (no capacity



left.) Generally, Cruq. = 20% or 30% is used to indicate end-
of-life of the battery.

The battery capacity fading model in [18] can only be
applied to the cycled charging/discharging pattern i.e., the
battery experiences the charging/discharging cycles with the
same SoC swing and the same average SoC. However, a battery
may not follow a cycled charging/discharging pattern. A cycle-
decoupling method [30] was proposed which can identify and
decouple cycles from arbitrary battery charging/discharging
patterns. Then, the battery capacity fading in a cycle can be
calculated using (14) and the total capacity fading is derived
using (15). Moreover, the battery internal resistance grows
with increased Cy,q. value and thereby reducing the output
power rating of the battery. This is called the battery power
fading effect [18]. Therefore, the battery end-of-life criterion
ie., Crage = 20% or Cyruq. = 30% also indicates significant
degradation in the battery output power during battery aging
process !

ITII. A NESTED LEARNING FRAMEWORK FOR HEV
ENERGY MANAGEMENT

In this work, we aim to minimize the operating cost
of an HEV including both fuel cost and amortized battery
replacement cost. To achieve this goal, we propose a nested
learning framework for HEV energy management, in which
the optimal actions to propel the vehicle and the limits on
the change in the SoC of the battery are learned on the fly
by the inner-loop reinforcement learning and the outer-loop
adaptive learning, respectively. The inner-loop reinforcement
learning process is the key to minimization of the fuel usage,
whereas the outer-loop adaptive learning process is critical to
minimization of the amortized battery replacement cost.

A. Motivation

We use reinforcement learning in the inner loop due to the
following reasons. (i) The inner-loop HEV energy management
aims to minimize the total fuel consumption during a driving
trip rather than the instantaneous fuel consumption rate at each
time step; the reinforcement learning also aims to optimize
an expected cumulative return (16) rather than an immediate
reward. (ii) During a driving trip, the changes of vehicle
speed, power demand and battery charge level require different
HEV operation modes; the reinforcement learning agent takes
different actions depending on the current state. (iii) The
inner-loop HEV energy management does not have a priori
knowledge of a whole driving trip, while it has only the
knowledge of the current vehicle speed and power demand
values and the current fuel consumption rate as a result of an
action taken previously; the reinforcement learning agent only
needs the knowledge of the current state and the current reward
in order to learn the optimal policy, while it needs not have
knowledge of the system input in prior or the detailed system
modeling. The inner loop is the key to minimization of the
fuel usage, however, we also consider battery SoH degradation
in the inner loop by incorporating the battery capacity fading
term into the reward of the reinforcement learning, such that
the inner loop itself can be used as an independent HEV energy
management framework for minimizing the total operating
cost.

'In addition, the battery calendar life also affects the battery SoH degrada-
tion, but it is out of the focus of this work, since we only focus on the HEV
energy management.

state o action

Environment
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Fig. 3. The interactions between agent and environment.

In the previous work on HEV energy management, a
fixed battery SoC range is used i.e., the battery pack SoC
is clamped by fixed lower bound and upper bound. Then,
the resultant HEV energy management strategies may tend to
use up the available battery energy to improve fuel economy
even for some very short urban trips, which may harm battery
SoH seriously. The battery can obtain significant amount of
energy by regenerative braking in urban trips. It is not always
necessary to use up the available battery energy. Simulation
results demonstrate that the battery SoC swing of <15% is
enough to improve fuel economy in short urban trips due to
the regenerative braking. Therefore, we use adaptive learning
in the outer loop to learn the optimal SoC range for different
types of trips, because the SoC range is an important factor
determining the battery SoH degradation. The outer loop is
critical to minimization of the amortized battery replacement
cost, since it modulates the battery SoH degradation globally.
The outer loop performs better than the inner loop in terms of
reducing the amortized battery replacement cost if it has prior
knowledge of the driving trips such as trip length and average
speed, which are given as input by the driver at the beginning
of each trip. In case such kind of knowledge is inaccurate or
not available, we can rely on the inner loop for reducing the
total operating cost.

B. Inner-Loop Reinforcement Learning Process

1) Reinforcement Learning Background: In reinforcement
learning, the decision-maker is called the agent and everything
outside the agent is called the environment. Figure 3 illustrates
the agent-environment interaction at each of a sequence of
discrete time steps t =0, 1,2,... At each time step ¢, the agent
observes the environment’s state s; € S and on that basis takes
an action a; € 4, where S and A4 are the sets of possible
states and actions, respectively. One time step later, in part as a
consequence of the action taken, the agent receives a numerical
reward r;+1 and finds the environment in a new state ;1.

A policy m of the agent is a mapping from each state s € S
to an action a € 4 that specifies the action a = w(s) that the
agent will choose when the environment is in state s. The
ultimate goal of an agent is to find the optimal policy, such
that

oo

Vis)=E Zyk~r,+k+1 |si=s (16)

k=0

is maximized for each state s € S. The value function V*(s) is
the expected return when the environment starts in state s at
time step ¢ and follows policy ® thereafter. y is a parameter,
0 <y< 1, called the discount rate that ensures the infinite
sum (i.e., Z}’;OY" - F1+k+1) converges to a finite value. More
importantly, y reflects the uncertainty in the future. ryyry1 is
the reward received at time step ¢ +k+ 1.



2) State Space: We define the state space of the inner-loop
reinforcement learning

S= {S = [Pdem,Va‘I]Tlpdem S ?dem7v € (Vaq € Q}a (]7)

where pgen, is the power demand for propelling the HEV, v
is the vehicle speed, and g is the charge stored in the battery
pack. Different actions should be taken under different states.
For example, if the power demand is negative i.e., the vehicle
is braking, the action taken by the agent (i.e., HEV controller)
should be charging the battery by using the EM as a generator.
On the other hand, if the power demand is a very large positive
value, the action should be discharging battery to power the
EM, which propels the vehicle in assistance with ICE.

A reinforcement learning agent should be able to observe
a state. In the actual implementation of the inner-loop re-
inforcement learning, the current power demand level py.,
and vehicle speed level v can be obtained by using sensors
to measure the driver controlled pedal motion. However, the
charge level g cannot be obtained from online measurement
of terminal voltage, since the battery pack terminal voltage
changes with the charging/discharging current and therefore it
cannot be an accurate indicator of g [17]. To observe the charge
level g, the Coulomb counting method [23] is needed by the
agent, which is typically realized using a dedicated circuit [2].

Piems V, and Q in (17) are respectively the finite sets
of power demand levels, vehicle speed levels, and levels of
charge stored in the battery pack. Discretization is required
when defining these finite sets. In particular, Q is defined by
discretizing the range of charge stored in the battery pack i.e.,
[Gmin,Gmax] Into a finite number of charge levels:

Q:{CIhQZa'-wQN}» (18)

where gmin = q1 < 2 < ... < gN = Gmax- Generally, g,; and
gmax are 40% and 80% of the battery pack nominal capacity,
respectively, in the charge-sustaining energy management for
ordinary HEVs [22]; 0% and 80%, respectively, in the charge-
depleting energy management for PHEVs [13]. In the outer-
loop adaptive learning process, we will optimize g, value
to modulate the battery SoH degradation and g4, is usually
fixed in the HEV control.

3) Action Space: We define the action space of the inner-
loop reinforcement learning as a finite number of actions, each
represented by the discharging current of the battery pack and
the gear ratio value:

A= {a=[i,R(k)]"|i € I,R(k) € R}, (19)

where an action a = [i, R(k)]” taken by the agent is to discharge
the battery pack with current i and choose the k-th gear ratio.
The set I contains within it a finite number of current values
in the range of [—luqx, Imax]- Please note that i > 0 denotes
discharging the battery pack; and i < 0 denotes charging the
battery pack. The set R contains the allowable gear ratio values,
which depend on the drivetrain design. Usually, there are four
or five gear ratio values in total [8].

Alternatively, we can define a reduced action space 4., in
which an action a,, = [f] is to discharge the battery pack with
current / (and the gear ratio R(k) is selected by solving an
optimization problem such that the resultant fuel consumption
rate is minimized.) The complexity and convergence speed
of reinforcement learning algorithms are proportional to the

number of state-action pairs [6]. Therefore, the reduced ac-
tion space A4, helps to reduce the complexity and increase
convergence speed by a factor of four or five. However, this
reduced action space relies on HEV component modeling when
solving the optimization problem. In summary, we can either
use the original action space (19) for model-free control or
use the reduced action space 4, for reduced complexity and
increased convergence rate.

4) Reward: The objective of the inner-loop reinforcement
learning is to minimize the HEV operating cost including both
fuel cost and amortized battery replacement cost. Therefore,
we define the reward r that the agent receives after taking
action a in state s as the negative of the weighted sum of
the fuel consumption and battery capacity fading in that time
step i.e., =ity - AT —w - ACfaq., Where AT is the length of
a time step, w is the weight of battery capacity fading (w
is determined by the ratio of the fuel cost to the amortized
battery cost), and 7y and ACyug. are respectively the fuel
consumption rate and battery capacity fading in that time
step. The reinforcement learning agent aims to maximize the
expected return (16), which is a discounted sum of rewards.
Therefore, by using the negative of the weighed sum of the
fuel consumption and battery capacity fading in a time step as
the reward, the fuel consumption and battery capacity fading
will be minimized while maximizing the expected return.

For the implementation of the inner-loop reinforcement
learning, the agent (HEV controller) should be aware of the
reward it receives after taking an action, since the observation
of reward is critical in deriving an optimal policy. In the above-
mentioned reward definition, the 71y - AT part can be obtained
by measuring the fuel consumption directly. The ACyqq4. part
cannot be obtained by online measurement?. A battery SoH es-
timation method is needed. The HEV battery does not follow a
cycled charging/discharging pattern and it could be an arbitrary
charging/discharging pattern. Therefore, the cycle-decoupling
method [30] can be used for the battery SoH estimation.
However, the time complexity of the cycle-decoupling method
is high. We can use the following equivalent cycle method to
derive ACrqge.

The reinforcement learning agent keeps a record of the
battery charging/discharging profile i.e., i(¢) and therefore the
battery SoC profile SoC(¢) from the beginning of a trip. Based
on the discussion in Section II-C, the battery capacity fading in
one charing/discharging cycle is a function of the average SoC
and SoC swing, i.e., Crade,cycte(S0Cavg,S0Csying). The SoCuyg
and SoCgyne values can be approximated by

SoChigh = mtaxSoC(t)7 (20)
SoCipy = mtin SoC(t),
SoCy; SoC,
SOCan _ 4 hlgh;_ 4 low7

SOCswing = SOChigh —80Ciop-

Then, we can calculate the battery capacity fading in a cycle
C'tade,cycle By (14). The total number of cycles that the battery
pack has experienced so far in the trip is approximated as

Ne — Z —i(t)-AT - 1[i(t) < 0]

; 21
Cfull : Socswing

t

The battery SoH can only be measured offline by depleting and recharging
the battery.



where the indicator function I[x]=1 when x is true. The total
battery capacity fading after taking action a is then calculated
by

Cfade = Cfude,cycle (SOCavg7S0Cswing) “Nc. (22)
Therefore, the ACf4q, value can be calculated as
ACfade = Cfade - C}ad@’ (23)

where C%,, and Cyqq, are the battery total capacity fading

before and after taking action a.

The equivalent cycle method can be further improved for
reduced complexity. The reinforcement learning agent does
not need to keep a record of the battery charging/discharging
profile from the beginning of a trip. Instead, only the latest
battery current value i(t) and the observed maximum and
minimum SoC i.e., SoCyg, and SoCj,,, are updated and kept
in record, and then SoCyiyg is updated. The ACy,q. value can
be calculated as

—i(t)-AT -I[i(t) < 0]
Cfull : SOCswing

Acfude = 'Cfade,cycle~ (24‘)
In this way, we reduce a global calculation into a local one
with O(1) complexity.

5) TD(\)-Learning Algorithm: We adopt the TD(A)-
learning algorithm [28] for deriving the optimal policy of the
inner-loop reinforcement learning, due to its relatively higher
convergence rate and higher performance in non-Markovian
environment. In this algorithm, a Q value, denoted by Q(s,a),
is associated with each state-action pair (s,a), where a state s
is represented by the power demand pg.,, the vehicle speed
v, and the battery charge level g, and an action a is to
discharge the battery with current i and choose the k-th gear
ratio. The Q(s,a) value approximates the expected discounted
cumulative reward of taking action a in state s. The TD(A)-
learning algorithm is summarized as follows.

In the TD(A)-learning algorithm, the Q values are initial-
ized arbitrarily at first. At each time step ¢, the agent first
selects an action g, for the current state s; based on the Q(s,a)
values. To avoid the risk of getting stuck in a sub-optimal
solution, the exploration-exploitation policy [28] is employed
for the action selection, i.e., the agent does not always select
the action a that results in the maximum Q(s;,a) value for the
current state s;. After taking the selected action a,, the agent
observes a new state s;11 and receives reward r;1. Then, based
on the observed s;41 and r.y], the agent updates the Q(s,a)
values for all the state-action pairs, in which the eligibility
e(s,a) of each state-action pair is updated and utilized during
the Q value update. The eligibility e(s,a) of a state-action pair
reflects the degree to which the particular state-action pair has
been encountered in the recent past and A is a constant between
0 and 1. Due to the use of the eligibility of the state-action
pairs, we do not need to update Q values and eligibility e of all
state-action pairs. We only keep a list of M most recent state-
action pairs since the eligibility of all other state-action pairs
is at most A, which is negligible when M is large enough.

6) Application Specific Improvement of the TD(\)-Learning
Algorithm: We modify the TD(A)-learning algorithm to im-
prove its performance and convergence rate in the HEV control
scenario by accommodating different operation modes of an
HEV. Specifically, when selecting an action for the current
state, the agent takes into account the actual HEV operation

Algorithm 1 TD(A)-Learning Algorithm for the Inner Loop

1: Initialize Q(s,a) arbitrarily for all the state-action pairs.

2: for each time step ¢ do

3:  Choose action a; for state s; using the exploration-
exploitation policy.

4:  Take action a;, observe reward r;; and next state s;1.
50 8¢ r +y-maxy Q(ser1,a) — Q(st, ar).

6. e(sy,ar) < e(sp,a0)+ 1.

7. for all state-action pair (s,a) do

8: 0O(s,a) <+ QO(s,a) +o.-e(s,a) - d.

9: e(s,a) <y -A-e(s,a).

10:  end for
11: end for

mode besides the stored Q values. For example, if the power
demand is negative i.e., the regenerative braking mode, the
agent will definitely choose the maximum allowable charging
current for the battery pack to harvest the kinetic energy as
much as possible. If the battery charge level is very high, the
agent will use EM power with higher likelihood to propel the
vehicle. And if the battery charge level is very low, the agent is
likely to use more ICE power to propel the vehicle and at the
same time charge the battery. In summary, these application
specific modifications significantly improve performance and
convergence rate of TD(A)-learning algorithm.

7) Complexity and Model-Free Analysis: The time com-
plexity of the TD(A)-learning algorithm at a time step is
0(|4| + M), where |4 is the total number of actions and
M is the number of the most recent state-action pairs kept
in memory. Usually, |4| + M is within a few hundred, and
therefore, the algorithm has negligible computation overhead.
In terms of convergence rate, normally, the TD(A)-learning
algorithm can converge within L time steps, where L is approx-
imately three to five times of the number of state-action pairs.
In simulation, due to the application specific improvement,
the TD(A)-learning algorithm can converge within one hour
driving, which is much shorter than the total lifespan of an
HEV. To further speed up the convergence rate, the Q values
can be initialized by the manufacturers with optimized values.

In theory, the reinforcement learning technique can be
model-free. As long as the agent can observe the current state
and be aware of the reward as a result of an action taken
previously, the agent can find the optimal action selection
policy during this observation-and-estimation process, whereas
the detailed system modeling is not required. Based on the
previous analysis, if the original action space is used, the HEV
component modeling is not required by the agent, whereas
the battery SoH estimation method is needed. If the reduced
action space is used, the inner-loop reinforcement learning
needs partial HEV component modeling (the ICE model, the
EM model and the drivetrain model are needed, whereas the
vehicle tractive force model and driving profile are not needed)
besides the battery SoH estimation method.

C. Outer-Loop Adaptive Learning Process

The battery SoH degradation together with the fuel con-
sumption have been taken into account at each time step in the
driving by the inner-loop reinforcement learning. In this outer-
loop adaptive learning process, the learning agent modulates
the battery SoH degradation from a global point of view by
tuning the maximum SoC range. More specifically, when we



define the state space of the inner loop, we have actually
limited the battery SoC range within [%,%]. We know
from Section II-C that the SoC range (from which SoC swing
and average SoC can be derived) strongly affects the battery
capacity fading. Therefore, in this outer loop the agent tunes
the g, value for different driving trip types such that battery
capacity fading can be reduced.

1) State Space: We define the state s of the outer loop by
using the trip characteristics including the trip length, average
speed, and road condition (urban or highway). In the real im-
plementation in an HEV, the outer-loop agent can obtain such
trip information at the beginning of a trip from driver input.
The battery usage (i.e., charging/discharging profile) should be
different for different driving trip types, and therefore we use
the trip characteristics as the state. For example, a smaller SoC
range is enough for urban trips, whereas a larger SoC range
should be used for highway trips. The state in the supervised
machine learning technique is also called the feature.

2) Action Space: The action taken by the outer-loop agent
is to choose the g, value as discussed in Section III-B2,
whereas ¢, is usually fixed in the HEV control. Therefore,
the SoC range during a trip can be clamped between the
selected g, value and the g,,,. The action in the supervised
machine learning technique is also called the target.

3) C(s,a) Cost Function: If the system is in a state s (i.e.,
a specific trip type) and an action a (i.e., a g, value) is taken
by the learning agent, the agent will observe a cost value C,
which is associated with each state-action pair by the cost
function C(s,a). The learning agent aims at minimizing the
cost value when choosing an action for a state. In order to both
improve the fuel economy and reduce the SoH degradation
during a trip, we use the weighted sum of the fuel consumption
and the SoH degradation during that trip as the cost function.
The agent should be able observe the cost value after taking
an action in a state. In the implementation of the outer-loop
adaptive learning, the fuel consumption is obtained by online
measurement whereas the battery SoH degradation during the
trip is obtained using the SoH estimation method in Section
II-C.

4) Adaptive Learning Algorithm: The outer-loop learning
agent can choose the optimal action for the current state based
on its past experience. When the system is in state s, the agent
chooses the action that results in the minimum cost value,

a <+ argminC(s,d’). (25)
a/

After taking action a, the agent observes the new cost value
and updates the C(s,a) value accordingly.

However, the outer-loop learning agent does not have the
knowledge of the C(s,a) values and therefore could not make
decision on the action selection for a brand new HEV. To
address this issue, the manufacturer can pre-set the C(s,a)
values by performing driving tests on the same type of HEV for
different state and action combinations. This initialization of
the C(s,a) values is called regulation in the supervised machine
learning technique.

The time complexity of the adaptive learning algorithm,
which is performed for each driving trip, is O(|4]|), where
|4| is the number of actions in the action space of the
outer-loop adaptive learning. Normally, we choose the guin
value from a finite set consisting of up to ten allowable

TABLE 1. PHEV KEY PARAMETERS.

Vehicle Tr issi ICE
m = 1254 kg Preg = 1.75 peak power 41kW
Cg =0.009 MNreg = 0.98 peak eff. 34%
Cp =0.335 Ng» = 0.98 EM
Ap =2 m? R(k) =[13.5;7.6; | peak power 56kW
ryn = 0.282 m 5.0;3.8;2.8] peak eff. 92%
[ battery |

[ Capacity 25A-h  Voltage 240V |

qmin levels. Therefore, the adaptive learning algorithm has
negligible computation overhead. In addition, the outer-loop
adaptive learning does not rely on accurate HEV modeling
and only the battery SoH estimation method are needed.

IV. EXPERIMENTAL RESULTS

We simulate the operation of a PHEV, the model of which
is developed in the vehicle simulator ADVISOR [1]. The
key parameters of the PHEV are summarized in Table I. We
test our proposed policy and compare with the reinforcement
learning (RL) policy [16] and the rule-based policy [5]. We
use both real-world and testing driving trip profiles, which are
developed and provided by different organizations and projects
such as U.S. EPA (Environmental Protection Agency) and E.U.
MODEM (Modeling of Emissions and Fuel Consumption in
Urban Areas project).

Table II presents the simulation results of the operating
cost of the PHEV during different driving trips when the
proposed, the RL, and the rule-based policies are adopted. For
example, as shown in Table II, the proposed policy results in
0.0028% battery capacity fading and 344.17g fuel consumption
in the MODEMS5713 driving trip, which correspond to $0.76
amortized battery replacement cost and $0.37 fuel consumption
cost, and the total operating cost is $1.13. When calculating
the operating cost, we use the America average gasoline price
of $3/gal and the total battery replacement cost of $8,000 for
the PHEV. Generally, the battery replacement cost of a PHEV
is in the range $10,000~$12,000 [3] for battery pack with
average capacity of 10kWh. We use the battery replacement
cost of $8,000 for the 6kWh battery. We use the complete
cycle-decoupling method [30] to evaluate the battery capacity
fading during each trip. From Table II we can observe that the
proposed policy consistently achieves the lowest operating cost
comparing with the RL and rule-based policies. The proposed
policy achieves a maximum of 47% operating cost reduction
comparing with the rule-based policy, and a maximum of 48%
reduction comparing with the RL policy.

Based on Table II, we also have the following observations:
(1) For a PHEV, the amortized battery replacement cost is a
large portion of the total operating cost and is even higher than
the fuel cost for some driving trips. (ii) The relative amortized
battery replacement cost is more significant for shorter driving
trip. (iii) Our proposed policy can prolong the battery life
significantly besides reducing the operating cost. (iv) Although
the RL policy can reduce the fuel consumption comparing with
the rule-based policy, in some case the operating cost from
the RL policy is even higher because the RL policy does not
take into account the battery cost when optimizing the fuel
consumption. (v) The amortized battery replacement cost is
non-negligible when optimizing the total operating cost.

Furthermore, we also simulate an HEV (without the plug-
in feature) using the Honda Insight Hybrid model from AD-



TABLE II.

OPERATING COST OF THE PHEV IN DIFFERENT TRIPS

USING THE PROPOSED, RL, AND RULE-BASED POLICIES.

Trip Proposed RL Rule
MODEM 0.0028%($0.76) 0.0045%($1.22) 0.0044%($1.18)
5713 +344.17g($0.37) +310.562($0.33) +383.30g($0.41)
cost =($1.13) =($1.55) =($1.59)
Hyzem 0.0018%($0.50) 0.0048%($1.28) 0.0050%($1.36)
motorway +1991.9g($2.16) +2001.9g($2.17) +2093.62($2.27)
cost =($2.66) =($3.45) =($3.63)
FTP75 0.0027%($0.73) 0.0043%($1.16) 0.0048%($1.30)
+311.40g($0.33) +295.97g($0.32) +623.732($0.67)
cost =($1.06) =($1.48) =($1.97)
Us06 0.0028%($0.74) 0.0043%($1.17) 0.0036%($0.98)
+414.17g($0.45) +354.34g($0.38) +321.02g($0.34)
cost =($1.19) =($1.55) =($1.32)
UDDS 0.0032%($0.85) 0.0044%($1.19) 0.0048%($1.30)
+298.482($0.32) +355.852($0.38) +630.22g($0.68)
cost =($1.17) =($1.57) =($1.98)
OSCAR 0.0021%($0.57) 0.0043%($1.16) 0.0042%($1.12)
+149.51g($0.16) +222.75g($0.24) +242.542($0.26)
cost =($0.73) =($1.40) =($1.38)
TABLE III. OPERATING COST OF THE HEV IN DIFFERENT TRIPS BY
THE PROPOSED, RL, AND RULE-BASED POLICIES.
Trip Proposed RL Rule
LA92 0.0010%($0.07) 0.0039%($0.26) 0.0067%($0.44)
+474.83g($0.51) +460.03g($0.50) +568.43g($0.61)
cost =($0.58) =($0.76) =($1.05)
Artemis 0.0015%($0.10) 0.0028%($0.18) 0.0051%($0.34)
urban +110.34g($0.12) +109.61g($0.11) +209.20g($0.22)
cost =($0.22) =($0.29) =($0.56)
Modem1 0.0009%($0.06) 0.0029%($0.19) 0.0058%($0.39)
+143.25g($0.15) +138.33g($0.15) +215.482($0.23)
cost =($0.21) =($0.34) =($0.62)
Modem? 0.0012%($0.08) 0.0029%($0.19) 0.0056%($0.37)
+221.62g(30.24) | +229.32g($0.24) | +330.26g($0.35)
cost =($0.32) =($0.43) =($0.72)
Modem3 0.0015%($0.10) 0.0026%($0.18) 0.0044%($0.29)
+66.00g($0.07) +58.30g($0.06) +121.21g($0.13)
cost =($0.17) =($0.24) =($0.42)

VISOR. The battery pack replacement of an HEV is $2,000
[3]. Table III presents the operating cost of an HEV. We can
observe that the proposed policy achieves the lowest operating
cost comparing with the RL, and the rule-based policies. We
also find that the amortized battery replacement cost is less
significant for an HEV than for a PHEV.

V. CONCLUSIONS

This paper investigates the HEV energy management prob-
lem for the minimization of the operating cost of an HEV by
using a nested learning framework. The inner loop determines
the operation modes of the HEV components and is the key
to minimization of the fuel usage, whereas the outer loop
modulates the battery SoH degradation globally. Experimental
results demonstrate a maximum of 48% operating cost reduc-
tion by the proposed HEV energy management policy.
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