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Abstract—The oversampling requirement in a delta-sigma 

modulator (DSM) is considered one of the limiting factors toward 
its employment in today’s high-frequency applications, such as 
wireless software defined radio (SDR) systems. This paper 
advances that the critical requirement for DSMs is high-
frequency processing and not a high oversampling ratio. A single-
bit semi-parallel processing structure to accomplish the high-
frequency processing is proposed in this paper. Using the 
suggested low-oversampling digital DSM architecture, high-
speed, high-complexity computations, which are normally 
required for wireless applications, are executed in parallel.  This 
facilitates the design of embedded SDR multi-standard 
transmitters using commercially available digital processors. The 
most favorable application of the proposed single-bit DSM is to 
build an RF transmitter that includes a one-bit quantifier with 
two-level switching power amplifier for both high linearity and 
high efficiency. Performance analysis was carried out by using 
MATLAB simulations, which showed a reduction of the 
oversampling ratio by a factor of 16 (for a baseline oversampling 
ratio of 256) with the same signal to noise (SNR) ratio. The 
proposed DSM was also implemented on a field-programmable 
gate array (FPGA) board and its performance was validated by 
using a code division multiple access (CDMA) signal. Bandwidth 
of the output signal was increased four times without increasing 
the processing frequency. Simultaneously, quality of the output 
signal remained the same but FPGA resource usage was increased 
by a factor of three.  

Index Terms— Delta Sigma Modulation, Parallel Processing, 
FPGA, Oversampling 

I. INTRODUCTION 

VERSAMPLING has become a popular technique for 
data conversion  [1] [2]. The outstanding linearity of delta-

sigma modulators (DSMs) is the main reason for popularity of 
these modulators in modern electronic components such as 
data converters  [3], frequency synthesizers  [4], and switched-
mode power supplies. However, achieving this degree of 
 

Manuscript received April 02, 2012. The Informatics Circle of Research 
Excellence (iCORE), the Natural Sciences and Engineering Research Council 
of Canada (NSERC) and the Canada Research Chairs (CRC) Program 
supported this work.  

M. Helaoui and F. M. Ghannouchi are with Intelligent RF Radio 
Laboratory, Department of Electrical and Computer Eng., University of 
Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4. S. 
Hatami and M. Pedram are with Department of EE-Systems, University of 
Southern California, EEB-344 3740 McClintock Ave., Los Angeles CA, 
90089.(e-mail: shatami@usc.edu, mhelaoui@ucalgary.ca; 
fghannouchi@ieee.org, Pedram@usc.edu.) 

linearity comes at the cost of a large oversampling ratio and, 
therefore, need for high-speed processing. The oversampling 
requirement in a DSM discourages its employment in today’s 
compute-intensive applications, such as software defined radio 
(SDR) systems.  

Emerging applications have encouraged designers to 
develop highly linear converters with large input bandwidths 
 [5] [6] [7] [8]. One approach is through the use of higher order 
modulators and lower oversampling ratios. The disadvantage 
of this approach is the instability of high-order DSMs  [15]. 

Several research works have utilized the concept of multi-
rate signal processing to reduce the oversampling ratio. A 
Hadamard transform was used  [10]  [11] to decompose the 
input spectrum into several sub-bands, which were then 
applied to separate DSMs, whose outputs were subsequently 
recombined. This work used two DSMs per output bit, which 
is inefficient in terms of the die area when implemented using 
radio frequency integrated circuits (RFIC) technology.  

An area-efficient architecture  [12] was developed by 
combining multiple DSMs in parallel, along with analog 
preprocessing of the input signal and digital post-processing of 
the output signals. By using interconnected modulators 
working in parallel with each running at the same clock, a new 
Parallel processing DSM (PDSM) was proposed in  [13]. A 
Time Interleaved Sigma-Delta architecture was used in  [14] to 
increase bandwidth of the converter with a lower hardware 
complexity.  

In this paper, an alternative approach, also based on parallel 
processing, is described. Here, however, multiple DSMs are 
not used. The proposed PDSM implements combined and 
simplified processing steps for n sequential clocks of a regular 
DSM (n closed loop computations.) A PDSM that combines n 
closed loops generates n bits per clock cycle. In fact the 
highest sampling frequency of the proposed PDSM is now 
shifted to one multiplexer, which is the same as the sampling 
frequency of the traditional single-bit DSM. The other 
processing element of PDSM work n times slower compared 
to traditional single-bit DSM. 

The favorable application of the proposed PDSM is an RF 
transmitter which integrates a one-bit quantifier and a two-
level switching power amplifier to attain high linearity. By 
using the proposed low-oversampling DSM, envelope signals 
in wireless applications, e.g., orthogonal frequency-division 
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multiplexing (OFDM) and code division multiple access 
(CDMA), can be modulated to two-level signals. These signals 
can then be amplified with a switch-mode power amplifier 
(PA.) Theoretically, the switch-mode power amplifiers are 
able to obtain 100% power efficiency. Furthermore, two-level 
signals can ideally be processed without any errors (100% 
linearity.) Therefore, by combining the two-level DSM and 
switch-mode PA, it is expected that power efficiency and 
linearity can be simultaneously achieved.  

Performance of the proposed technique has been validated 
through MATLAB simulations as well as field-programmable 
gate array (FPGA) implementation using a CDMA signal. 

Section II provides a brief review of a regular oversampling 
DSM. Section III describes the proposed low-oversampling 
PDSM. Section IV reports the simulation results and discusses 
the advantages of the PDSM. The implementation and 
experimental results are presented in section V. The paper is 
concluded in Section VI. 

II. REVIEW OF OVERSAMPLING LOW-PASS DSM 

This section reviews low-pass digital DSM theory and 
provides an example of a third-order digital DSM.  
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Fig. 1.  General structure of a delta-sigma modulator. 

 
The general structure of a DSM is depicted in Fig. 1. The 

input to the integrator is the difference between the input 
signal, ( )x t , and the quantized output value, ( )y t . The 
quantization noise is represented by the additive term, ( )E t . 
This error is summed in the integrator and then quantized by a 
two-level quantizer. The output signal, ( )y t , is held by DAC 
for a clock period of 1=s sT f , which yields ( )y t . The 
inherent transfer function of the DAC is h(t) and relates ( )y t , 
and ( )y t as follows: 

 
( ) ( ) ( )= ⊗y t h t y t  (1) 

 
where ⊗  denotes the convolution operator. 

 
The output of a DSM is described in the z-domain by: 
  

( ) ( ) ( ) ( ) ( )Y z STF z X z NTF z E z= +  (2) 
 

where ( )X z , ( )Y z  and ( )E z  represent the z-transforms of, 
( )x t , ( )y t , and ( )E t respectively. The signal transfer 

function, ( )STF z , is applied to the signal at the desired 
frequency band whereas the noise transform function, 

( )NTF z , is applied to the quantization noise in order to 

suppress it from the desired band.  
A z-domain representation of a third-order low-pass (LP) 

DSM is depicted in Fig. 2. Details about the calculation of the 
modulator coefficients as well as the seventh order LP DSM 
architecture can be found in [15]. 
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Fig. 2.  Z-domain representation of a third-order low-pass DSM. 

 
For this DSM, the signal and noise transfer functions are 

given in (3) and (4). 
 

( ) 1STF z =  (3) 

( )
( ) ( )

( ) ( )
2

2

1 2 1

0.6694 1.531 0.6639

− − +
=

− − +

z z z
NTF z

z z z
 (4) 

 
The frequency equivalent of the equation (2) is given by (5): 
( ) ( ) ( ) ( )= +Y f X f NTF f E f  (5) 
The frequency domain depiction of this equation is 

illustrated in Fig. 3. 
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Fig. 3.  (a) Signal ( )X f (solid), shaped noise 

( ) ( )NTF f E f (dashed) and frequency response of the sample and 
hold ( )H f (dot-dashed); (b) sample and hold signal ( )Y f . 

 
Fig. 3(a) shows  ( )Y f  and ( )H f  while  Fig. 3 (b) 

shows ( ) ( ) ( )=Y f H f Y f . As shown in Fig. 3(a), the 
shaped noise, ( ) ( )NTF f E f , and signal, ( )X f , are repeated 
at the harmonics of fs. It is evident from Fig. 3(b) that, among 
all these signal replicas, the only undistorted signal is at zero 
frequency. All other replicas are distorted. 

III. LOW-OVERSAMPLING PDSM 

This section explains the idea behind the proposed low-
oversampling architecture for generating two-level delta-sigma 
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output.  
For the regular DSM, the sampling frequency of the input 

signal and clock frequency of the DSM are typically equal 
(this value is fs for previous section.) Now, suppose the 
sampling frequency of the input signal is fs while the clock 
frequency of the DSM is f′s, which may not be equal. 
Furthermore assume that f′s > fs and, for simplicity of analysis, 
f′s/fs is a positive integer value, N; therefore, after the elapse of 
N clock cycles, the DSM processes one constant digital input. 
In next sections, f′s refers to the PDSM output rate which is 
equivalent to the PDSM throughput and output multiplexer 
selection frequency. Also f′s can be considered as the effective 
frequency of PDSM (considering parallel processing.) The 
effective frequency of the PDSM is the alternative name for 
the sampling frequency for the traditional DSM. The 
frequency of all processing elements in PDSM is fs except for 
the frequency of multiplexer which is f′s. 

TABLE I compares the signals and transfer functions for 
regular DSM and PDSM. The frequency for the first row is the 
same for DSM and PDSM. However they have different 
frequencies for second, third, and fourth rows of the table. 

TABLE I  
DIFFERENT DELTA SIGMA ARCHITECTURES 

Signal/ 
Transfer 

i  

DSM PDSM 

( )X f  Repeated at harmonics 
of fs, Fig. 3(a) 

Repeated at harmonics of 
fs, Fig. 4(a.) 

( )E f  Repeated at harmonics 
of fs, Fig. 3(a) 

Repeated at harmonics of 
fs′, Fig. 4(b.) 

( )H f  Zero-crossings at k fs, 
Fig. 3(a) 

Zero-crossings at k f′s 
Fig. 4(c.) 

( )NTF f  Repeated at harmonics 
of fs, Fig. 3(a) 

Repeated at harmonics of 
fs′, Fig. 4(b.) 

( )Y f  Fig. 3(b) Fig. 4(d.) 

 

Note: k is all nonzero integer values. 

Note that the DSM associated with Fig. 4 processes a 
constant input in N clock cycles (in this DSM, N is 2.) It is 
evident from Fig. 4 that, as long as fs is sufficiently larger than 
the Nyquist rate of the input signal, ( )x t , the signal at the 
baseband is of high quality.  

The oversampling ratio formula is given by (6). In 
(6), BW is the double-sided bandwidth of the signal, and OSR 
stands for the oversampling ratio. 

sfOSR
BW

=  (6) 

Typically, fs is eight times greater than the Nyquist rate (). 
In contrast, a regular DSM often has an oversampling ratio 
around 256 in order to generate a good quality signal at the 

output of the DSM. Hence, the sampling frequency of the input 
signal of the DSM is lower by a factor of 32 or more.  
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Fig. 4. (a) Signal ( )X f (solid); (b) shaped noise 

( ) ( )NTF f E f (dashed); (c) frequency response of the sample and 
hold ( )H f  (dot-dashed); (d) output signal when sampling frequency 
fs is different from DSM clock frequency f′s (in this figure, N = f′s/fs 
= 2). 

 
It is clear that an oversampled input signal is not required 

for the DSM to produce a high quality output at baseband. 
However, it is crucial for the DSM to operate at a high 
frequency, say 256 times the Nyquist rate of the input signal, 
in order to stretch the quantization noise in a wide frequency 
range, and thereby, lower its level in the in-band of the useful 
signal. 

The proposed PDSM takes advantage of the fact that the 
DSM can process constant input samples for N clock cycles. 
Therefore, a novel architecture that processes N constant 
samples in parallel by combining N closed loop processing of 
a regular DSM is presented. The order of the PDSM is the 
same as the order of the regular DSM that is used in the 
PDSM. Herein, N will be referred to as the unrolling factor of 
the PDSM.  

In the next sections, a third-order PDSM with N = 4 is 
described; and, finally, the general derivation for the PDSM is 
provided. 

A. Third-order and Four-unrolled PDSM Implementable on 
FPGA or ASIC Designs 
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This section proposes the parallel version of a third-order 
DSM when the unrolling factor, N, is 4. Fig. 5 shows a typical 
third-order and four-unrolled PDSM architecture. The 
different components of this architecture are introduced in 
Figures 7, 9, 10, 11 and 12. The input of delta sigma 
modulator is sampled with the frequency of fs. All processing 
elements are working at clock frequency of fs. The frequency 
of multiplexer, which gives the throughput of PDSM, is 

4s sf f′ = . In fact the effective frequency of PDSM is 4s sf f′ =  
because of parallel processing. 
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Fig. 5. A typical digital implementation of a third-order and four-
unrolled PDSM. 

 
 Fig. 6 shows the parametric version of a third-order DSM, 

which is also shown in Fig. 2 (v = 2.2e-005, p = 0.04, q = 0.29 
and r = 0.8.)  
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Fig. 6. Representation of a third-order low-pass DSM. 

 
It is assumed that the signals a2[n], a5[n], a7[n], a9[n], x[n] and 
y[n] denote the signals at nodes a2, a5, a7, a9, x and y, 
respectively, at time sample n. The signals x[n] and y[n] refer 
to the input and output signals of the DSM. Since it is assumed 
that N = 4, the input signal is constant for four consequent 
clock cycles of fs′, i.e. x[n] = x[n+1] = x[n+2] = x[n+3], where 
n is a multiple of 4.  

The expressions in (7) calculate the values of signals a2, a5 
and a7 at time n+1, by using the signal values in the previous 
time sample, n. The signal value a9[n] is calculated directly 
from a2, a5, a7 and x at time n. The two-level quantizer, Q, 
quantizes a9[n] into -1 or +1 at time n. The quantized value is 
y[n].  
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 (7) 

 
Two last equations in (7) correspond to two parts of PDSM 

in Fig. 5: processing elements (PE0) and the one-bit quantizer 
(comparator0). 

 
The expressions in (8) give the signals a2, a5 and a7 at time 

n+2, by utilizing the signal values at the previous time 
(previous clock cycle), assuming that the input signal, x, is 
constant at time n and n+1, i.e. x[n] = x[n+1]. In order to 
update the signal values for the next clock cycle of fs′, the basic 
expressions in (7) were used, and only the time indexes were 
increased, as shown in (8). 
 

2 2

2

5 5 7 2

2 5 7

7 7 5

2 5 7

[ 2] [ 1] [ 1] [ 1]
[ ] 2 [ ] [ ] [ 1]

[ 2] [ 1] [ 1] [ 1]
2 [ ] ( 1) [ ] 2 [ ] [ ] [ ]
[ 2] [ 1] [ 1]
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+ = + + + + +
= + + + + −

+ = + + +
= + + +

a n a n x n y n
a n x n y n y n

a n a n va n a n
a n v a n va n x n y n

a n a n a n
a n a n v a n

 (8) 

 
The output signal, y, at time n+1 is simply updated as is 

given in (9). 
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(9) 
 
where 1 1 1 11 12, , . , 1 and= + = + = + = + = −r q r q p q p p v q s r s r  

Two equations in (9) correspond to two parts of PDSM in 
Fig. 5: processing elements (PE1) and the one-bit quantizer 
(comparator1), which calculate y at time n+1. It is clear from 
(9) that the process of calculating a9[n+1] can be divided in 
two parts. The first part is dependent on the signal values of a2, 
a5, a7 and x at time n and can be processed at time n. The 
second part depends on y[n], which is processed by PE1, and 
its process is started at time n. The second part is a two-level 
value, and its two possibilities can be pre-calculated and stored 
in two registers. Once y[n] is ready, the second part is 
multiplexed from the two pre-calculated values available in the 
registers. It is noteworthy that the first part is computation 
intensive whose calculation is started at time n.  

 

← PE0 
← Cmp0 

← PE1 
← Cmp1 
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The only computation that depends on y[n] is summation of 
the precalculated term s12y[n] and the calculation of the second 
part of (9). Fig. 7 shows the concept of pseudo-parallel 
processing for computing y[n] and y[n+1] together. The total 
delay associated with the parallel calculation is Tp = tm+3ts+2tc, 
where tm, ts and tc denote parameterized delays of the 
multiplier, adder, and comparator, respectively. The total 
calculation delay for regular DSM, Tr, is Tr = 2tm+5ts+2tc. If 
tm=4ts, tc=0.2ts then Tr/Tp = 13.4/7.4 ≈ 2, which nearly provides 
a factor of two performance improvement for the parallel 
processing method for calculating y[n] and y[n+1]. 

 

A=r1a2[n]
B=q1a5[n]
C=p1a7[n]
D=s11x[n]

E=ra2[n]
F=qa5[n]
G=pa7[n]
H=x[n]

y[n]

y[n+1]
W=A+B

X=C+D

tm ts

Y=E+F

Z=G+H

ts

a9[n]=Z+Y

R=X+W

tc

a9[n+1]
=R+s12y[n]

y[n]
={a9[n]}

ts

Order of processing in Pseudo-Parallel

y[n+1]
={a9[n+1]}

tc

 
Fig. 7. A typical sequencing diagram for pseudo parallel processing. 

 
In the next step, all signal values given in (8) and (9) are 

used to update the signal values for cycle time n+3. The 
updated signal values are given through the expressions in 
(10).  
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[ 2] [ ] [ ] [ ]

[ ] [ ] [

+ = + − − + − +
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a n a n x n y n y n y n
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9
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[ 2] ( [ 2])

+
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n
y n Q a n

 (10) 

 
where 2 2 22 , 2 ( 1) , ( 1) 2= + + = + + = + +r p q r q p v q p v p vq  and 

21 22 232 1, ,and= + + = − − = −s q r s q r s r  
It is evident from the two last expressions that the output 

signal at time n+2 is obtained from signals at time n and the 
output signals y[n] and y[n+1]. Therefore, in a digital 
hardware implementation, the processing of signal a9[n+2] can 
be started at time n, instead of time n+2.  

Furthermore, all significant computations for the a9[n+2] 
calculation are dependent on the signal values at time n. The 
only values from times n+1 and n+2 that contribute in the 
computing of a9[n+2] are the two-level values, y[n] and 
y[n+1], of which the two possibilities of the associated 
products, s22y[n] and s23y[n+1], can be pre-calculated and 
stored in two registers. Therefore, once y[n] and y[n+1] are 
ready, they can be used to evaluate a9[n+2]. Two last 

equations in (10) correspond two parts of PDSM in Fig. 5: 
processing elements (PE2) and the one-bit quantizer 
(comparator2), which processes y[n+2]. 

 
Once again, the basic expressions of (7) are used to 

compute the output signal at time n+3, as given in (11). 
  

9 3 2 3 5 3 7

31 32 33 34
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[ 3] ( [ 3])
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s x n s y n s y n s y n

y n Q a n
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where 31 3 3 1,= + + +s p q r  32 2 ,= − − −s p q r  33 ,= − −s q r  

34 ,= −s r 2
3 (3 1) ( 3 ),= + + +p p v q v v 3 3 ( 3)= + + +r p q v r  and  

3 (3 ) (3 1)= + + +q p v q v . 
 
 

In the signal derivation given in (11), it is supposed that the 
input signal at time n+3 is equal to the signal at time n (x[n] = 
x[n+3].) The signal values a9 and y at time n+3 are given in the 
two last expressions of (11). The evaluation process is started 
at time n and finished when the two-level values, s32 y[n], s33 

y[n+1] and s34 y[n+2], are available. Two equations in (11) 
correspond to two parts of PDSM in Fig. 5: processing 
elements (PE3) and the one-bit quantizer (comparator3), which 
compute y[n+3]. 

In conclusion, the process of calculating four sequential 
outputs of PDSM can be started at the same time and 
accomplished in one clock cycle of fs′. It is evident from (7) 
through (11) that the path delays of the four sequential outputs 
are in the same order as the regular DSM, as given in (7).  

Figures 6, 7, 9 and 10 display how to calculate the four 
sequential outputs of PDSM. However, signals a2, a5 and a7 
are computed through (12), which is to be used for the next 
four cycles.  
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(12) 
The equations are simply driven by updating the basic 
expression of (7) for time n+4 and utilizing signal values from 
(8) to (11). A typical implementation of (12) is depicted in Fig. 
8. This hardware is referred to as the last processor element 
(last PE) which is part of Fig. 5. 

Fig. 5 which shows block diagram of a third-order and four-
unrolled PDSM architecture contains PE0, PE1, PE2, PE3 and 
last PE. The result of an FPGA (field-programmable gate 
array) implementation of the PDSM shown in Fig. 5 is given in 
next section. 

 

← PE3 

← Cmp3 

← PE2 
← Cmp2 
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Fig. 8. Digital implementation of equation (12): last processing 
element of a third-order and four-unrolled PDSM. 
 

B. nth-Order and N-unrolled PDSM  
This section proposes the general formulation for the 

PDSM. Suppose that the digital input sequence is x, where x(i) 
is the ith element of this sequence. The variable y is the two-
level output of DSM, and ya is its output before quantization to 
two levels, -1 and 1. The array [m]n×1 indicates the values of 
registers in the DSM, where n is the order of the DSM. The 
matrices A, B and C describe the coefficients of the DSM.  

The expressions in (13) present an nth-order DSM, when the 
ith input is fed to the modulator  [15]. A gives the feedback 
values, whereas B describes the coefficients from the input and 
output to the registers. The output value is calculated from the 
input and the register values by using the coefficient matrix C.  
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Let us assume that f′s/fs = N, meaning that the input of the 
modulator is constant for each N clock cycle of f′s. We want to 
calculate the feedback values for clock cycle N+1 and all 
output values from the first clock cycle to the Nth clock cycle 
of f′s. In the PDSM structure, the output calculations for all N 
sequential outputs are started at the same time and carried out 
in one clock cycle of f′s.  

First clock cycle of f′s 
The following expressions describe signals for the first 

clock cycle of f′s. 
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Second clock cycle of f′s 
Assuming x(0) = x(1), (13) and (14) are used to calculate 

signals for the second clock cycle of f′s, as given in (15):  
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 (15) 

Third clock cycle of f′s 
For the third clock cycle of f′s, the signal values can be 

calculated by using (13) to (15), as given in (16): 
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Therefore, ya(N) and m(N), the output and feedback values 
at the Nth clock period of f′s, respectively, can be expressed as 
in (17). 
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(17) 
 

The signals that should be calculated in the PDSM for N 
clock cycles of f′s are the output signal values, ya(i) (i 
=1,…,N), and the feedback values at the Nth clock cycle of f′s, 
m(N), which is used for cycle N+1. Considering the two last 
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equations, it is evident that ya(i) and m(N) can be rewritten as 
given in (18), where wi, bi, ei and di are calculated from (17). 
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The calculations of ya and the last feedback values [m(N)] 

are divided each into two expressions. The first expression 
only depends on the feedback values, m(0), which can be 
processed in one clock cycle of f′s. Hence, in order to evaluate 
N sequential outputs of the DSM (N bits), for each bit, there 
are n multiplications for the feedback coefficients and one 
multiplication for the inputs that can be calculated in parallel. 
The results of the n+1 multiplications must be added by using 
n adders. The same situation is valid for the computation of the 
last feedback values.  

In the second expression, y(i) is a two-level value, so its 
multiplication is simple. The results for the two expressions 
must finally be added together. Notice that the calculation of 
ya(i) requires y(i-1) from the last ya calculation. Fig. 9 depicts a 
hardware implementation of a PDSM, based on (14) to (18). 
The architecture is an extension of the third-order and four-
unrolled PDSM shown in Fig. 5. It shows that N processor 
elements calculate N outputs in parallel. One processor 
calculates the states of the registers for the cycle N+1. The 
frequency of input sampling and for processing elements is fs. 
The PDSM output rate, which is equivalent to the PDSM 
throughput and output multiplexer selection frequency, is f′s. f′s 
can be called the effective frequency of PDSM, which 
considers parallel processing.  
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Fig. 9. Typical implementation of PDSM. 

IV. SIMULATION RESULTS  

This section gives simulation results for the proposed 
PDSM and compares these results with the conventional DSM. 
A hardware implementation of the DSM is presented in this 

section. The suggested architecture is implementable with 
today’s digital CMOS (complementary metal-oxide-
semiconductor) technology and can be utilized in radio 
frequency (RF) wireless applications. 

A. Simulation Results For Low-Pass DSM 
The criterion for comparison is the signal-to-noise ratio 

(SNR) shown in (19), where MS is the mean square. SNR is 
defined as the ratio of the in-band signal power to the in-band 
and out-of-band noise power of modulated signal. 

 
( )
( )

10log
MS Signal

SNR
MS Noise

 
=   

 
 (19) 

  
TABLE II  

SIMULATED SNR OF DS TRANSMITTERS WITH CDMA SIGNAL FOR 
DIFFERENT DSM ORDERS AND UNROLLING FACTOR VALUES 

Exp. Type  Order SNR 
(dB) OSR N 

fs=Clock 
freq. 

(MHz) 
1 

DSM 

2 

54.7 512 

1 

2.097 
2 37.8 256 2.097 
3 22.7 128 2.097 
4 9.7 64 2.097 
5 2.0 32 2.097 
6 

PDSM 

54.7 512 1 2.097 
7 54.5 256 2 1.048 
8 54.6 128 4 0.524 
9 55.0 64 8 0.262 

10 55.2 32 16 0.131 
11 

DSM 

3 

64.7 512 

1 

2.097 
12 44.9 256 2.097 
13 23.3 128 2.097 
14 7.8 64 2.097 
15 1.4 32 2.097 
16 

PDSM 

66.7 512 1 2.097 
17 66.4 256 2 1.048 
18 67.0 128 4 0.524 
19 67.7 64 8 0.262 
20 67.6 32 16 0.131 
21 

DSM 

5 

65.9 512 

1 

2.097 
22 40.0 256 2.097 
23 8.2 128 2.097 
24 4.2 64 2.097 
25 1.1 32 2.097 
26 

PDSM 

67.9 512 1 2.097 
27 67.3 256 2 1.048 
28 67.3 128 4 0.524 
29 68.1 64 8 0.262 
30 68.7 32 16 0.131 

 
A PDSM and regular DSM have been implemented in 

MATLAB for first- to seventh-order DSMs. Simulations using 
a CDMA modulated signal were carried out and the results are 
shown in TABLE II for three different DSM orders for both 
the regular DSM and the proposed PDSM. N is the unrolling 
factor of the PDSM. The frequency column is the DSM and 
PDSM processing element clock frequency of processing, fs. 
The multiplexer selection frequency is f′s = 5.12 MHz and the 



IEEE Trans. on VLSI Systems, 2014 
 

8 

PA Class F-1  

Driver 
GHz Multiplexer 

FPGA to 
implement PDSMs 

DSP  
Module 

I / Q 

Low pass  
   DSM/PDSM 

Mux 

f′s 

Low pass  
   DSM/PDSM 

f′s 

1 

2 

3 

f′s = fs ×Ν 
2f′s 

Mux 

Mux 

frequency bandwidth is 2.048 kHz. It is noteworthy that the 
frequency of processing for PDSM changes from 0.131 MHz 
to 2.097 MHz but its throughput is 2.097 MHz. For SNR 
calculation given in (19), the single sided bandwidth for in-
band signal and out-of-band noise are 20kHz. For example, the 
table reports that the SNR of modulated signal for the second 
order DSM is 64.7 dB and reduces about 15dB for each 
folding of OSR (experiments 11 to 15). It also shows that SNR 
is about 65 dB for second order PDSM with N×OSR=512 for 
N=2, 4, 8, 16 (experiments 16 to 20). Similar results are 
included in TABLE II for the second, third and fifth order 
DSM and PDSM. Fig. 10 (a) and Fig. 10 (b) show the 
spectrum of the modulated CDMA signals at the output of the 
DSM for experiments 11 and 20, respectively. While PDSM 
allowed reducing the sampling frequency by 16 times by using 
parallel processing, the SNR remained at about the same level 
– 64.7 dB for DSM against 67.6 dB for PDSM. 
 

 
(a) 

 

 
(b) 

 
Fig. 10. Spectrum of 3th-order DSMs for a CDMA input signal: (a) 
DSM:  f′s = 2.097 MHz, OSR = 512, SNR = 64.7 dB; (b) PDSM: f′s = 
2.097 MHz and fs = 0.131 MHz, OSR = 32, SNR = 67.6 dB and 
unrolling factor of 16. 

V. EXPERIMENTAL VALIDATION USING DS TRANSMITTER 

A GHz PDSM based transmitter was developed, prototyped 
and used to validate the approach proposed in this paper. Fig. 
11 shows the block diagram of the demonstrator. The PDSM 
transmitter is implemented in two blocks. The baseband signal 

processing part is implemented using a FPGA block. The 
modulation and up-conversion is implemented using a high-
speed dedicated logic stage. 

 
 
 
 
 
 
 
 

 
Fig. 11. Block diagram delta-sigma based transmitter. 

 
The two third-order DSMs and PDSMs shown in Fig. 6 and 

Fig. 5 were implemented on a Stratix II EP2S60 DSP 
development board  [16] and tested with a CDMA signal. The 
baseband in-phase (I) and quadrature (Q) signals were read 
from two on-board memories and fed through the low-pass 
DSMs/PDSMs. Three multiplexers were used for up-
conversion and in- I/Q modulation at carrier frequency. The 
binary RF output signal was fed to a vector signal analyzer 
(VSA), which was used to capture, filter and analyze the 
signal.  

 
Proposed

 PDSM Driver Switching-Mode 
Power Amplifier

RF Output 
Signal

 
 

Fig. 12. Block diagram of setup to test PDSM-based transmitter 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 13. Setup used to test PDSM-based transmitter 
The main advantage of PDSM is to achieve higher SNR 

output signal using lower processing frequency compared to a 
regular DSM. One of the most favorable applications of the 
proposed single-bit PDSM is to make an RF transmitter which 
includes a one-bit quantizer delta sigma and two-level 
switching power amplifier, which results in a high efficiency 
and high linear transmitter. A two-level switching Power 
Amplifier Class D, E, F, F-1 or S can be driven with the two-
level output of PDSM  [1] [2] [5] [6]. Fig. 12 shows a block 
diagram of the setup used to evaluate the performance of the 
PDSM-based transmitter. Fig. 13 shows a photo of the 
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measurement setup for a prototype DSM/PDSM based RF 
transmitter. 

 

        
(a) 

 
(b) 

Fig. 14. Spectrum of the output signal (the signal BW for the PDSM 
is four times the signal BW for the DSM): (a) 3rd-order PDSM with a 
unrolling factor of 4; (b) 3rd-order DSM. 
 
The unrolling factor of the implemented PDSM was selected 
to be four. The PDSM and DSM were fed by CDMA signals 
with bandwidths of 1600 kHz and 400 kHz, respectively. The 
clock frequencies (sampling frequency) of the DSM and 
PDSM were 25 MHz. As shown in Fig. 14, with the help of 
parallel processing, the PDSM allows for an increase of the 
modulation bandwidth by a factor of 4 compared to DSM, 
while maintaining a comparable noise shaping performance. In 
fact, the SNRs of the output signals for both cases were 
approximately the same level, 49 dB for DSM and 47 dB for 
PDSM, and are given in TABLE III.  

TABLE III  
SNR COMPARISON OF THE THIRD-ORDER DSM AND PDSM (THE 

SIGNAL BW FOR PDSM IS FOUR TIMES THE SIGNAL BW FOR DSM) 

Structure Processing Clock SNR BW 
DSM 25 MHz 49 dB 400 kHz 

PDSM 25 MHz 47 dB 1600 kHz 
 

 
Area and Power: 

TABLE IV shows the evaluation of the resources occupied 
in the FPGA, in terms of number of logic cells for gates, 
register and arithmetic logic units (ALUs.) The improvement 
in performances in the PDSM architecture (N = 4) comes with 
an increase in the resources required for implementation. It is 
shown that the resources are increased about three times for 
N=4. In general, based on the methodology presented in 

Section III.A, the architecture of a PDSM with unrolling factor 
N is obtained by unrolling structures of N regular DSM. As 
shown in equations (7) to (12) the summation and 
multiplication operations are simplified and optimized. 
Therefore hardware of a PDSM with unrolling factor N is 
smaller than N×A∆Σ, where A∆Σ refers to the area of regular 
DSM with same order of noise shaping. The FPGA area for 
N=4 and 3rd-order PDSM as reported in TABLE IV is 
approximately (3/4)×N×A∆Σ. 

The power consumption of the development board and 
multiplexer is of the order of 100 mW. This includes PDSM 
components and other unused components on FPGA 
development board. The power consumption of power 
amplifier in a PDSM based transmitter is of the order of 10 
Watt. Therefore power consumption of PDSM is negligible 
compared to total power consumption of the transmitter. 
 

TABLE IV  
RESOURCE UTILIZATION OF THE THIRD-ORDER DSM AND PDSM (N=4) 

Structure Other Logic 
Cells 

Logic Cell for 
Registers 

Logic Cell 
for ALU 

DSM 95 376 334 

PDSM 62 1246 970 
 

Comparison: 
 
TABLE V compares different single-bit parallel processing 

DSM structures. For comparison, it is assumed the order of 
different delta sigma architectures is the same. References  [12] 
and  [13] implemented PDSM using analog circuits and 
references  [10] and  [11] only reported simulation results. 
Since each design was implemented on different technology, 
design areas are compared parametrically. The power 
consumption values are not available for every referenced 
design. The first row of TABLE V considers a regular DSM 
with processing frequency fs′ and area A∆Σ. The throughput of 
different delta sigma architectures is fs′. However processing 
frequencies of different designs are different which are 
reported in third column. Gain of SNR for each design 
compared to regular DSM is reported in fourth column. The 
structure proposed in  [10],  [11]and  [12] have larger area 
compared to the proposed PDSM. These designs need FIR 
filters and Hadamard modulators which make PDSM design 
more complicated. Design of  [13] has larger area compared to 
the proposed PDSM but it perform 20 db better than regular 
DSM. Using architecture proposed in  [14] the input signal is 
decimated by a factor of N and is processed through N parallel 
channels. Input signal of each channel is interpolated by a 
factor of M. This architecture results in a scalable scheme. 
Although the unrolling methodology proposed in III.A is 
general, the coefficient calculation is different for different 
unrolling factors and different DSM orders. This makes the 
proposed PDSM less scalable compared to other referenced 
designs.  
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TABLE V  
DIFFERENT DELTA SIGMA ARCHITECTURES 

Structure Area 
Proc.  

Freq. 

PDSMSNR
-DSMSNR 

(db) 
Complexity 

DSM A∆Σ fs′ 0 low 

PDSM 
 [10] 

N×(A∆Σ+7Mul 

+6Add+3Del) 
fs′/N < -4 high 

PDSM 
 [11]  [12] 

N×(A∆Σ+1Mul 

+5.5Add+20Del) 
fs′/N 0 high 

PDSM 
 [13] ≈ N2×A∆Σ fs′/N 20 high 

PDSM 
 [14] 

N×(A∆Σ+Mul 

+Demux) 
Mfs′/N - middle 

Proposed 
PDSM 

< N×A∆Σ 

≈(3/4)×N×A∆Σ 
(for PDSM in 

Fig. 5) 

fs′/N 2~22 middle 

 
It is worthwhile to mention that there are multi-bit DSM 

structures which lower required processing frequency. 
However the focus of this paper is single-bit DSM which are 
most applicable in RF transmitter with one-bit quantizer and 
two-level switching mode power amplifier. For example multi-
bit quantizer delta sigma is a structure that ensures linearity 
with a lower processing frequency and a lower OSR value 
compared to regular DSM. The multi-stage noise shaping 
(MASH) structure is also an alternative delta sigma structure 
which is simple for implementation and it is unconditionally 
stable  [15]. 

VI. CONCLUSION 
A new DSM architecture has been introduced. This 

structure performs delta-sigma modulation with a smaller 
oversampling rate. The proposed architecture uses the concept 
of parallel processing to achieve the effect of oversampling 
without the need for a high sampling frequency. The analysis 
presented is general and is applicable for LP and band-pass 
DSMs. The proposed structure has been validated through 
MATLAB simulation. Simulation results show that for a DSM 
with OSR = 256, the proposed structure is able to fold the 
required OSR 16 times while maintaining the same signal to 
noise (SNR) ratio. A 1 GHz carrier frequency transmitter with 
a CDMA signal was implemented on FPGA using pseudo-
parallel processing low-oversampling DSM and regular DSM. 
The proposed architecture was able to increase the bandwidth 
of the output signal four times without increasing the 
processing frequency while producing the same quality of 
output signal.  
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