
To appear in IEEE Trans. on VLSI Systems, 2008 1

Abstract - This paper tackles the problem of dynamic power

management (DPM) in nanoscale CMOS design technologies that
are typically affected by increasing levels of process and
temperature variations and fluctuations due to the randomness in
the behavior of silicon structure. This uncertainty undermines the
accuracy and effectiveness of traditional DPM approaches. This
paper presents a stochastic framework to improve the accuracy of
decision making during dynamic power management, while
considering manufacturing process and/or environment induced
uncertainties. More precisely, variability and uncertainty at the
system level are captured by a partially observable semi-Markov
decision process with interval-based definition of states while the
policy optimization problem is formulated as a mathematical
program based on this model. Experimental results with a RISC
processor in 65nm technology demonstrate the effectiveness of the
technique and show that the proposed uncertainty-aware power
management technique ensures system-wide energy savings under
statistical circuit parameter variations.

Index Terms — Dynamic power management, stochastic
control, POMDP, uncertainty

I. INTRODUCTION
C designers are seeking high-performance and reliable
electronic circuits and systems. As we start to design with the

nanometer process technology nodes, IC design methodologies
based on zero guard band or design margins are becoming
unsatisfactory due in part to the increasing levels of process
variations (i.e., oxide thickness and channel length variations)
and random circuit parameter fluctuations (i.e., dopant
fluctuations). These variations, especially within-chip
variations, pose a major challenge to the design of low-power
and high-performance circuits and systems. Uncertainties
which arise either from environmental changes (i.e.,
temperature gradients or voltage droops) or are application
(workload) dependent also give rise to additional complications
when trying to optimize the energy consumption and
performance of a state-of-the-art electronic system.

Variability means that different applications or situations
produce different numerical values for a quantity. Specifying
an exact value for a quantity may be difficult because the value
depends on something else. For example, the amount of power
consumed by a system depends upon the chip temperature and

the workload mix of the applications running on that system.
The existence of variability in a population implies that a single
action or strategy may not emerge as optimal for each of the
individuals, and consequently any decision made will go too far
for some and not far enough for others. Uncertainty arises due
to lack of knowledge regarding the true value of a quantity for a
given member of a population. When making observations of
past events or speculating about the future, imperfect
knowledge is the rule rather than the exception. For example,
the workload attributed to a particular functional unit is not
directly recorded very often. Rather, this workload is usually
recorded at fixed intervals and then extrapolated based upon
historical data and trend lines. Note that direct measurements
also have some margin of error. When estimating numerical
values expected for workload at some future date, the exact
outcome is rarely known in advance. More generally, sources
of uncertainty include: uncertainty of data and parameters of
models, uncertainty about choice of models, and uncertainty
about the future. Uncertainty implies that we might make a
non-optimal choice because we may expect one outcome but
something quite different might actually occur.

Uncertainty and variability typically require different
treatments. For example, if we seek to develop a dynamic
power management (DPM) methodology that can optimize
energy dissipation and performance of different instances of
the same system design, it is important that we separate sources
of uncertainty (which affect the underlying system state) from
sources of variability (which affect the cost rate for being in any
state) so that we can properly model the system, and hence
perform policy optimization accurately and reliably. This
statement is true although variability contributes to uncertainty,
and the amount of variability is generally itself an uncertain
parameter.

Most of the previous work on variability has focused on the
variability modeling and analysis at the lower levels of design
abstraction [1]-[3], and the corresponding circuit-level or
physical design optimization techniques [4]-[7]. It is only
recently that people have started paying attention to the effects
of variability on optimization processes and tradeoffs as we go
up in the design abstraction hierarchy [8]-[10]. It is prudent to
account for various sources of variability even earlier in the
design process and for the whole design when developing
resource management and power control strategies. It is
important to note that some variations at the higher levels of
design abstraction are translated into uncertainty because the
underlying RT-level/physical realization is not available. At the
same time, measurements made about the current state of the
system tend to be imperfect, which in turn gives rise to

Uncertainty-Aware Dynamic Power Management in
Partially Observable Domains

Hwisung Jung, Student member, IEEE, Massoud Pedram, Fellow, IEEE

I

Manuscript received July 27, 2007; revised January 18, 2008. This work

was supported in part by the National Science Foundation under grant no.
0509564.

The authors are with the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA 90007 USA
 (e-mail: hwijung@usc.edu; pedram@usc.edu).

To appear in IEEE Trans. on VLSI Systems, 2008 2

uncertainty about the system state. Improving the accuracy and
robustness of decision making by modeling and assessing the
variability and uncertainty is an important step in guaranteeing
the quality of system-level resource management algorithms,
including DPM.

This papers tackles the problem of system-level dynamic
power management (DPM) in systems which are manufactured
in nanoscale CMOS technologies and are operated under
widely varying conditions over the lifetime of the system. Such
systems are greatly affected by increasing levels of process
variations typically materializing as random or systematic
sources of variability in device and interconnect characteristics,
and widely varying workloads and temperature fluctuations
usually appearing as sources of uncertainty. At the system level
this variability and uncertainty is beginning to undermine the
effectiveness of traditional DPM approaches. It is thus
critically important that we develop the mathematical basis and
practical applications of a variability-aware,
uncertainty-reducing DPM approach with the following unique
feature: Utilization of a stochastic modeling framework based
on the theory of partially observable semi-Markovian Decision
Model (POSMDP) [11], which can efficiently cope with
uncertainty. We also present uncertainty-aware offline/online
dynamic power management techniques to illustrate the
effectiveness of the uncertainty management framework. A
preliminary version of this research appeared in [12].

The remainder of this paper is organized as follows. The
related work is discussed in section II. In section III, the
preliminaries of the paper are presented. The details of the
stochastic uncertainty management framework are given in
section IV. The policy representation for the proposed
framework is described in section V. Section VI presents
uncertainty-aware dynamic power management techniques.
Experimental results and conclusion are given in section VII
and section VIII.

II. RELATED WORK
Increasing attention has been given to the problem of reducing
variability in the circuit design parameters. In the following, we
provide a brief overview of these works. The work presented in
[13] studies the impact of leakage reduction techniques on the
delay uncertainty. By emphasizing that the leakage is critically
dependent on the operating temperature and power supply, the
authors in [14] present a full chip leakage estimation technique
which accurately accounts for power supply and temperature
variations. In [15], the authors discuss process, voltage, and
temperature variations and their impacts on circuit and
micro-architectures beyond the 90nm technology node.
Probabilistic models are introduced in [16] to account for the
impact of threshold voltage variations on the leakage power.
These models are subsequently employed to minimize the
leakage power, while satisfying a given performance
requirement. Reference [17] presents a technique to optimize
supply and threshold voltage in high-performance circuits. The
authors show that interactions between supply voltage,
frequency, power, and temperature significantly impact the
energy-delay-product of a target design. None of these works
has considered the effect of variability on system-level

dynamic power management.
A lot of research has been devoted to optimizing DPM

policies, resulting in both heuristics and stochastic approaches.
While the heuristic approaches are easy to implement, they do
not provide and power/performance assurances. In contrast, the
stochastic approaches guarantee optimality under performance
constraints although they are more complex to implement [18].
To overcome the limitations of heuristic “time-out”-based
power management techniques, an approach based on
discrete-time Markovian decision processes (DTMDP) was
proposed in [19]. This approach outperforms the previous
heuristic techniques because of its solid theoretical framework
for system modeling and policy optimization. We introduced a
power management approach based on continuous-time
Markovian decision processes (CTMDP) in [20]. The policy
change framework this model is asynchronous and thus more
suitable for implementation as part of a real-time operating
system environment.

Reference [21] also improved on the modeling technique of
[19] by using time-indexed semi-Markovian decision processes
(SMDP). An SMDP is a stochastic process where the next state
depends on the current state and how long the current state has
been active. A non-stationary process based power
management technique is introduced in [22], where the
workload requests are modeled as a Markov-modulated
stochastic process. In [23] we introduced a hierarchical power
management architecture which aims to facilitate
power-awareness in a system with multiple components, each
having a built-in local power manager. The proposed
architecture divides the power management function into two
layers: system-level and component-level. The system-level
power management is formulated as a concurrent service
request flow regulation and application scheduling problem.

The above-mentioned stochastic power management
techniques enjoy desirable features of flexibility, global
optimality, and mathematical robustness. In general, however,
these models are somewhat limited in their reach and
applicability because they assume that various variables of the
system are directly observable and thus are deterministic and
that there are no sources of variability in the design.

These works do not make a distinction between uncertainty
and variability. They typically assume that all system
parameters are either precisely known scalar values or are
random variables with known mean and an irreducible
variance. They thus miss out on the importance of identifying
sources of uncertainty in the distributions that can be reduced
or even eliminated through measurements/observations and
accurate modeling.

In summary, to the best of our knowledge, there has been no
reported work on DPM with stochastic modeling and
appropriate treatment of uncertainty and variability. This is the
aim of the present proposal. An integrated dynamic power
management framework makes it possible to consider the
stochastic behavior of power dissipation and performance of a
system and provide the computational tractability of the
randomness to treat the many sources of variability and utilize
direct observations and models to control sources of
uncertainty, bringing the underlying variability and

To appear in IEEE Trans. on VLSI Systems, 2008 3

randomness effects to the forefront of power management
policy optimization.

III. PRELIMINARIES
As nanoscale VLSI circuits are becoming sensitive to the rising
levels of variability in process and design parameters,
guaranteeing the quality of system-level performance
optimization techniques is becoming of great concern.
Within-chip variations are typically passed into the delay
budget of each circuit [26]. However, the worst-case behavior
of the circuit (e.g., critical path delay) does not always
correspond to the combination of worst-case points of
individual parameters, e.g., load capacitance, intrinsic delay,
and slew rate. Furthermore, a lot of Silicon performance is left
untapped under the worst-case assumption. IC designers can no
longer afford to lose performance due to unacceptable levels of
inaccuracy in their estimation/modeling techniques [27]. Thus,
it is important to do rigorous modeling of variability early in the
design cycle.

A. Effect of PVT Variations on the Performance State
Although performance analysis tools provide reliable bounds
on the delay of circuits, they cannot properly account for the
variability inherent in the semiconductor process. For example,
Fig. 1 illustrates the effect of variations on propagation delays
of logic gates (e.g., 2-input NAND gate driving FO4 load) as
calculated by 2-D lookup tables, which are used in
conventional performance analysis tools (e.g., PrimeTime [28])
under the worst corner case (125°C, 1.08V for Vdd) of 65nm
CMOS technology. Every point in the table represents
characterized spice delay for the logic gate for a particular input
transition time and output capacitance pair.

Fig. 1. Effect of process variations on circuit delay.

Obviously, not all possible input transitions and output
capacitance values for a given cell can be characterized. In this
figure, the closet four characterized points in the table are
interpolated to provide a desired output delay value. Thus,
although these analysis tools can provide estimates of
performance parameters at design time, they cannot guarantee
that the expected performance prediction is accurate in
manufactured designs.

We reiterate the obvious fact that voltage (V) and
temperature (T) variations are dynamic, i.e., they occur during
the circuit operation, whereas process (P) variations are static
and get introduced during the manufacturing. The strong

impact of PVT variations on performance of a VLSI circuit
renders the traditional optimization techniques ineffective. This
phenomenon has resulted in a move toward stochastic
optimization strategies, i.e., techniques that treat design
parameters as random values whose values are described by
probability distribution functions. As an example, Fig. 2 shows
a number of leakage power-delay tradeoff curves for a RISC
processor that we designed in 65nm CMOS technology, where
the delay represents execution time of a target task by the
processor. The curves are obtained by running the Synopsys
Power Compiler [29] for three different process conditions.
Note that SS, TT, and FF conditions represent [1.08Vdd,
125°C], [1.20Vdd, 25°C], and [1.29Vdd, -40°C], respectively.

Fig. 2. Power-delay curves of a RISC processor corresponding to different
process corners in a 65nm CMOS process technology node (S, T and F stand
for Slow, Typical and Fast nMOS or pMOS transistors).

The task of computing power management policies that
cope with uncertainty and non-determinism require the
construction of a stochastic framework with which one can
predict the effect of various actions on the performance state of
the system. A stochastic approach to system-level performance
modeling and optimization (e.g., one based on the Markovian
decision process model) enables us to apply mathematical
optimization techniques to derive optimal policies for DPM.

B. Temperature Calculation
The major source of heat generation in a die is the power
dissipation of transistors whose active regions are implemented
in the substrate [30]. Some amount of power dissipation also
results from Joule heating (or self-heating) caused by the flow
of current in the interconnections. This effect is ignored in our
simulations.

Temperature of a VLSI chip can be calculated as follows:

total
chip J

PT T R
Aθ

⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

 (1)

where Tchip is the temperature of the case top, TJ is the junction
temperature, Rθ is the equivalent junction-to-case thermal
resistance of the substrate (Si) layer plus the package (cm2 °C /
W), Ptotal is the total power consumption (W), and A is the chip
area (cm2). In this paper, it is assumed that power density can

To appear in IEEE Trans. on VLSI Systems, 2008 4

serve as a proxy for temperature variations although a change
in instantaneous power dissipation does not give rise to an
immediate temperature change due to a low-pass filtering effect
in translating power variations into temperature variations [31].

IV. STOCHASTIC DECISION MAKING FRAMEWORK

In this section, we first present the idea of using a stochastic
model for dealing with the uncertainty in observations made by
a power manager, and then introduce a theoretical framework
for constructing the model of power manager operating in such
an uncertain environment.

A. Partially Observable Environments
Generally speaking, at specific instances in time called decision
epochs, a power manager observes some characteristic of the
system, estimates the system performance state (e.g., its
execution delay and power dissipation) on the basis of this
observation, and issues a command (i.e., action) to force a state
transition according to a power management policy that
maximizes (or minimizes) a user-specified reward (or cost)
function. The concept is that the actual state of the system,
which is not directly observable, is estimated by observing
some other system characteristic.

A Markov decision process (MDP) model facilitates
reasoning in domains where actions change the system states
and where a reward (or cost) is utilized to optimize the system
performance. The simple MDP is directly observable in the
sense that its execution hinges on the assumption that the
current system state can be determined without any errors and
that the reward (cost) of an action can be calculated exactly. In
partially observable environments, where performance states of
the system cannot be identified exactly, observations made by a
power manager about the state of the system are indirect and
may even be noisy, and therefore, they only provide incomplete
information. A naive strategy for dealing with this uncertainty
is to ignore the problem altogether, that is, to treat the
observations as if they provide accurate and complete
information about the actual state of the system and act on them.
This strategy can result in undesirable decisions based on
erroneous readings of the current and next states of the system.

A more sophisticated strategy resorts to stochastic
modeling and decision making. One way to deal with
uncertainty under a wide range of operating conditions and
environments is to rely on the history of previous actions and
observations to disambiguate the current state. For example, we
can adopt a hidden Markov model (HMM), where the state is
not directly observable but variables influenced by the state are
observable, to learn a model of the environment, including the
hidden states [12]. Note that in an HMM each state has a
probability distribution over the possible actions, resulting in
the fact that the sequence of actions generated by the HMM
gives some information about the sequence of states. Thus, a
power manager in the HMM reasons about the state of the
system indirectly through the observed variables, which
captures complex system dynamics which are not completely
observable.

B. Sequential Decision Making under Uncertainty
The decision making in a partially observable environment is
achieved by combining aspects of HMMs and MDPs.
Specifically, we start with a semi-Markov decision process
(SMDP), a generalization of MDPs, to model the decision
making strategy, and then combine it with a HMM to consider
the uncertainty in parameter observation. We call this
combination a partially observable semi-Markov decision
process (POSMDP) model. Recall that inter-arrival times of
requests in the SMDP model follow an arbitrary distribution,
which is a more realistic assumption than an exponential
distribution used in the conventional MDP model.

Definition 1: Partially Observable Semi-Markov Decision
Process. A POSMDP is a tuple (S, A, O, T, Z, k) such that

1) S is a finite set of states,
2) A is a finite set of actions,
3) O is a finite set of observations,
4) T is a transition probability function,
5) Z is an observation function, and
6) k is a cost function,

The state space S comprises of a finite set of state, where s ∈ S
can be defined as performance state of the system. The action
space A consists of a finite set of action a ∈ A, e.g., dynamic
voltage and frequency scaling (DVFS) values which control the
performance state of the system. The observation space O
contains a finite set of observation o ∈ O, e.g., on-chip
temperature measurement. The state transition probability
function, T(st+1, at, st) 1 , determines the probability of a
transition from a state st to another state st+1 after executing
action at, i.e., the system transits to the state st+1 at time t+1
with probability Pr(st+1 | st, at) = T(st+1, at, st). An observation
function, Z(ot+1, st+1, at), which captures the relationship
between the actual state and the observation, is defined as the
probability of making observation ot+1 after taking action at that
has landed the system in state st+1, i.e., state st+1 generates
observation ot+1 at time t+1 with probability Pr(ot+1 | st+1, at) =
Z(ot+1, st+1, at). We consider a cost function that assigns a
real-valued number to each state and action pair whereby an
immediate cost, k(s, a), is incurred when action a is chosen in
state s. A solution to a POMDP is a policy (a procedure for
selecting an action in every state) that minimizes some measure
of aggregate cost, called objective function.

The objective function maps infinite sequences of costs to a
single value, which is typically infinite. How do we compare
policies of infinite cost? We have three options: (i) Set a finite
horizon and simply sum the cost, (ii) Discount to prefer earlier
costs, and (iii) Use the average cost in the limit. A value
function, Vπ, represents the expected objective function value
obtained following policy π starting from each state in S. Value
functions partially order the policies, but at least one optimal
policy exists, and all optimal policies have the same value
function, V*. Bellman equations [36] relate the value function
to itself via the problem dynamics. For the discounted objective
function, with a discount rate of 0 ≤ γ < 1, they are:

1 In this paper, subscripts denote state information whereas superscripts denote
time stamp.

To appear in IEEE Trans. on VLSI Systems, 2008 5

'

* *

'

: () (,) (', ,) (') with ()

() min (,) (', ,) (')

s S

a A s S

s V s C s a T s a s V s a s

V s C s a T s a s V s

π πγ π

γ

∈

∈
∈

∀ = + =

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑

∑

Instead of making decisions based on the current perceived
state of the system, the POSMDP maintains a belief, i.e., a
probability distribution over the possible (nominal) states of the
system, and makes decisions based on its current belief. The
belief state at time t is a |S|×1 vector of probabilities defined as:
bt := [bt(s)], ∀s∈S, where bt(s) is the posterior probability
distribution of state s at time t. Note that Σs∈S bt(s) = 1 [32].
Based on the belief state, an action at is chosen from a set of
available actions. A policy is defined as a sequence of
mappings from the belief states to actions π = {πt}.

In this paper, we consider a design scenario where actions
incur a cost (i.e., energy dissipation), and the power manager’s
goal is to devise a policy that minimizes the total expected
energy dissipation. Fig. 3 illustrates the basic structure of a
POSMDP-based power manager. The proposed power
manager interacts with an uncertain environment and
statistically variable state variables and tries to minimize the
system cost over time by choosing appropriate actions. The
frequency-voltage level assignment actions issued by the
power manager change the performance state (power
dissipation and speed) of the system and lead to quantifiable
rewards/penalties.

Fig. 3. Structure of a POSMDP-based power manager.

In our formulation of the decision-making strategy, we
define state s ∈ S as the dissipated power level and largest stage
delay of the circuit. Furthermore, we use an observation, i.e., a
temperature measurement to help determine the system state.2
The power manager consists of two functional components.
The first component is the belief state estimation block which
computes the system’s belief state, while the second component
is the decision making block which assigns optimal actions to
the system based on a value-iteration policy optimization
algorithm.

Consider a three-state DPM problem as an example. A
graphical representation of the belief state and its evolution is
provided in Fig. 4. In this figure, starting in some current belief
state, we show the next belief states depending on the action.

2 Note that other runtime observations/measurements may be used to help
with this determination, for example, it is possible to replicate the worst-case
execution path of a circuit and monitor its actual delay at runtime. This,
however, has hardware overhead.

(a) (b)

Fig. 4. A graphical representation of the belief state: (a) current belief (b) its
one-step evolution for three different actions.

C. POSMDP Framework for Dynamic Power Management
The rationale for developing a POSMDP framework for
dynamic power management is depicted in Fig. 5. First, since
the performance state of a system cannot be directly determined
by the PM, it uses temperature readings to help estimate the
current system state in the form of a belief state. We assume
that the chip temperature at time t is one of three observations:
o1, o2, and o3 corresponding to different, but well-specified,
temperature ranges. The system state at time t is defined as a
combination of delay (e.g., d1, d2, or d3, where d1 < d2 < d3) and
power dissipation (e.g., p1, p2, or p3, where p1 < p2 < p3) values.
Starting from system state st(d2, p3) at time t, the power manager
issues an action, at = (Vdd1, freq2), and as a result, the system is
expected to move into a new state st+1 (d3, p2) at time t+ε. Let’s
assume that, due to variations, the resulting system state is
actually st+1 (d3, p3). Since state st+1 is not directly observable,
the PM must rely on observation ot+1 at time t+1 to estimate the
state that it is in.

Fig. 5. State estimation and state transition in the POSMDP-based DPM.

Fig. 6 illustrates yet another uncertainty effect. More
precisely, the figure shows three scenarios where starting from
current state st(d2, p2) with an action a2, e.g., [1.20V / 650MHz]
issued at time t, the next system state may be any one of three
possible states at time t+1, that is, the power manager cannot
know for certain which next state will occur, although it will
have some information from the observation, ot+1. For example,
in case (a), the system remains in the same active state after a2 is
chosen, resulting in the same performance (i.e., st+1(d2, p2)).
That is why decisions will be made based on the probability

To appear in IEEE Trans. on VLSI Systems, 2008 6

distribution vector of the belief state, bt+1.

 (a) (b) (c)

Fig. 6. Example of three possible observations at time t+1 from which the
belief state is calculated.

V. POLICY REPRESENTATION IN POSMDP
We provide a policy representation of the proposed power
management framework by presenting a belief-state SMDP,
and derive the optimal power management policy.

A. Conversion to Belief-state SMDP
In partially observable environment, a power manager can
make decisions based on the observed system state history H
since the underlying performance state of the system cannot be
fully observed. Note that the system history H is a sequence of
state and action pair such as <s0, a0>, <s1, a1>,…, <st, at>. Thus,
the power manager’s behavior is determined by its policy,
which is a mapping from the set of observable history H to the
action set A, where the power manager can only base its
decisions on the history of its actions and states. This means
that complete history of system states is relevant to predicting
the future state of the system, which makes this decision
making process a non-Markovian process [11]. Fortunately, the
power management problem may also be formulated as a
Markovian process-based optimization problem as proved in
[33]. More precisely, we can convert the above-mentioned
non-Markovian process into a Markovian process when
formulating the power management problem as follows. To
achieve the Markovian property, we make use of the belief state,
b. It has been shown that the belief state is sufficient in the
sense that it completely captures the power manager’s
knowledge about the current state and past history [34].

Given belief state bt and an action at resulting in
observation ot+1, we can compute the successor belief state bt+1
as follows:

()()1

'

1 1

1
'

" (, ",) (') (", , ')

() (| , ,)

(, ,) (') (, , ')
t t t t

s

t t t t

t t t t
s

s Z To s a b s s a s

b s Pr s o a b

Z o s a b s T s a s
+

+ +

+

=

⋅ ⋅
=

⋅∑ ∑
∑ (2)

In (2), the numerator consists of the product of the probability
that observation ot+1 is made in state s after action at is taken,
and the probability that starting from belief state bt, we end up
in state s under action at. The denominator denotes the
probability of perceiving ot+ given action at and belief state bt.
Note that the |S|-dimensional belief state is continuous.

The belief state transition function, Tb(bt+1, at, bt), which
provides the probability of a transition from current belief state
bt to next belief state bt+1 after executing action at, is given by:

1 1

1

(, ,) (| ,)

(| , ,) (| ,)

t t t t t t
b

t t t t t
o

T b a b Pr b b a

Pr b a b o Pr o a b

+ +

+

=

= ⋅∑
 (3)

The probability of perceiving o, given action at and belief state
bt, is given by summing over all the actual states that may be
reached, i.e.,

'
(| ,) (, ',) (', ,) ()t t t t t

s s
Pr o a b Z o s a T s a s b s= ⋅∑ ∑

As stated earlier, the key result is that if we maintain and
update the belief state and transition probabilities according to
(2) and (3), then the belief state will give us with just as much
information as the entire action-observation history. This
shows that the optimal POSMDP solution is Markovian over
the belief space. Hence, by using the belief space B, we can
convert the original POSMDP into a completely observable,
regular (albeit continuous state space) semi-Markov decision
process (SMDP), the so-called belief state SMDP, defined as
follows.

Definition 2: Belief state SMDP is a tuple (B, A, Tb, Cb) such
that
1) B is the belief space,
2) A is the set of actions,
3) Tb is the belief state transition function, and
4) Cb is the cost function,

where the updated belief state after action a can be calculated
from the previous belief state from (2). The belief state
transition function is given by (3). We also need a model for
system cost based on belief states:

(,) () (,)t t t t
b s

C b a b s k s a= ∑ (4)

which denotes the immediate cost incurred by action at issued
in current state bt. Here, k(s,at) denotes the immediate cost of
action at in state s.

We have thus transformed the problem formulation based
on the POSMDP model to one based on belief-state SMDP
model. The optimal policy, π*(b) of the belief-state SMDP
representation is also optimal for the physical-state POSMDP
representation. Notice that the belief-state SMDP model is
deterministic and fully observable because it already takes into
account the uncertainty.

B. Policy Representation
Finding an optimal power management policy requires a
decision-making strategy which maps the belief states to
actions. In this paper, we develop a policy generation technique
by using well-known dynamic programming method, which in
turn relies on principles of overlapping subproblems, optimal
substructures, and memorization. We speak of the minimum
value of a system state as the expected infinite discounted sum
of cost that the system will accrue if it starts in that state and
executes the optimal policy [35]. The goal is to minimize some
cumulative function of the costs, typically the infinite-horizon
sum under a discounting factor γ (usually just under 1). This
would look like:

To appear in IEEE Trans. on VLSI Systems, 2008 7

*

0

1

0 ,

() min ()

min (, ,) (,)
t t

t
b

t

t t t t t t
b b

t b a

V E C t

T b a b C b a

π

π

π γ

γ

∞

=

∞
+

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑

∑ ∑
 (5)

where γ is a discount factor, 0 ≤ γ < 1, the exponent t denotes the
duration of time that the system spends in the belief state b

before an action a causes a transition to another state b’, and
Cb(t) is the cost at time t. E(.) denotes the expectation value.

The standard family of algorithms [36] to calculate the
policy requires storage for two arrays indexed by state: value V,
which contains real values, and policy π which contains actions.
At the end of the algorithm, π will contain the solution and V(s0)
will contain the discounted sum of the costs to be accrued (on
average) by following that solution. The algorithm then has the
following two kinds of steps, which are repeated in some order
for all the states until no further changes take place.

'

'

(', ,) (')

() (,) (', ,) (')

() arg min

()

b
b B

t t
b b

b B

a
b T b a b b

V b C b a T b b b V bγ

π

π
∈

∈

⎛ ⎞
Φ⎜ ⎟

⎝ ⎠
= +

= ∑

∑
 (6)

In value iteration (cf. Fig. 7), the π array is not used; instead,
the value of π(s) is calculated whenever it is needed.
Substituting the calculation of π(s) into the calculation of V(s)
gives the combined step:

* *

'

* *

'

() min (,) (', ,) (')

() arg min (,) (', ,) (')

b

b

t t

t t

ba b B

a b B

b

b b b b b

V b C a T b a b V b

C a T a V

γ

π γ

∈

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

= +

= +

∑

∑

(7)

The first equation asserts that the value of a state b is the
expected immediate cost plus the expected discounted cost of
the next state, using the best available action. Assuming that the
value function V is additive, which is reasonable in our problem
context since the cost is defined as the energy dissipation of the
system over time, the second equation specifies the optimal
policy based on the optimal value function.

Simply stated, the power manager determines the optimal
action based on Eqn. (7) at each (e.g., time-based or
interrupt-based) decision epoch. The task of casting the
decision epochs to absolute time units is achieved by the system
developer. In this paper, we consider battery operated systems
that strive to conserve energy to extend the battery life.

Unfortunately, it is not obvious when to stop the value
iteration algorithm. A key result bounds the performance of the
current greedy policy as a function of the Bellman residual of
the current cost function [37]. It states that if the maximum
difference between two successive cost functions is less than ε,
then the cost of the greedy policy (i.e., the policy obtained by
choosing, in every state, the action that minimizes the estimated
discounted cost, using the current estimate of the cost function)
differs from the cost function of the optimal policy by no more
than 2εγ/(1-γ) at any state. This provides a stopping criterion for
the algorithm.

Fig. 7. The value iteration algorithm.

C. POSMDP-based DPM by Example
An example of value iteration for the POSMDP model is given
next. The purpose of the example is to show how to find the
best action by building value functions. We consider the
POSMDP framework of a power manager with two system
states, S = {s1, s2}, where s1 denotes a low-power
(low-performance) system state whereas s2 corresponds to a
high-power (high-performance state; two actions, A = {a1, a2},
where a1 commands a low-voltage, low-frequency setting
whereas a2 commands a high-voltage, high-frequency
assignment to the system; and finally two temperature
observations, O = {o1, o2}, where o1 corresponds to a low
temperature range whereas o2 denotes a high temperature
reading.

The parameter values are given in TABLE I. We also
specify the immediate values of the two actions. Let action a1
have a value of 1.0 if it is issued in state s1 and 0.8 in state s2.
Similarly, let action a2 have a value of 0.4 and 1.5 in states s1
and s2, respectively, i.e., k(s1, a1) = 1.0, k(s2, a1) = 0.8, k(s1, a2) =
0.4, and k(s2, a2) = 1.5. (cf. Fig. 8).

TABLE I
PARAMETER VALUES FOR THE EXAMPLE PROBLEM

Fig. 8. State transition diagram for the example problem.

Referring to Fig. 9, the two actual system states {s1, s2} are
labeled by belief states [1, 0] on the left (i.e., state is s1 with
probability 1), and [0, 1] on the right (i.e., state is s2 with
probability 1). The solid line represents the value of taking
action a1, while the dashed line represents the value of taking
action a2. The actual belief state is a probability distribution
over the two states, s1 and s2. Assuming that the initial belief
state is [0.7 0.3], we will show how to construct the value
function from which we determine the best action (i.e., one

To appear in IEEE Trans. on VLSI Systems, 2008 8

with the lowest value) when we consider only a sequence of
two actions from any belief state (i.e., the horizon length is 2).

The first step is to find the immediate values of choosing
actions. For example, by applying (4), the immediate value of
doing action a1 in the initial belief state b is
(0.7×1.0)+(0.3×0.8) = 0.94. Similarly, the immediate value of
performing action a2 is (0.7×0.4)+(0.3×1.5) = 0.73. Fig. 9 (a)
graphically depicts the immediate values over the belief space
at the current belief state. The immediate cost (horizon length 1
value) for each action defines a linear function over belief
space. We want to choose the action that gives the lowest value
depending on the particular belief state. In the figure, we also
show the partition of belief space which this value function
imposes. The gray region denotes all the belief states where
action a2 is the best strategy to use while the white region is the
belief states where action a1 is the best strategy. Since the
current belief state lies in the gray region, action a2 is the best
available action for belief state b.

 (a) (b)

Fig. 9. A graphical representation of the belief states and value functions: (a)
the current belief state and immediate values over the belief space, (b) next
belief state and horizon-1 value function.

We next show how to compute the horizon 2 value of belief
state b given an action a2 and an observation o2 (which
corresponds to a high temperature reading). The horizon 2
value of a belief state is simply the value of the immediate
action plus the value of the next action. In general, we would
like to find the best possible value which would include
considering all possible sequences of two actions. However,
since in this restricted problem our immediate action is fixed,
the immediate value is fully determined. The only question is
what the best attainable value for the initial belief state b is
when we perform action a2 and observe o2. We assume that
with this information by using (2), the next belief state b’ is
computed as [0.3 0.7]. This new belief state is the belief state
we are in when we have one more action to perform. We know
what the best values are for every belief state when there is a
single action left to perform; this is exactly what our horizon 1
value function tells us. Note that from looking at where b' is in
the belief space, we immediately know that the best action we
should take is a1. Therefore, the best horizon 2 value of belief
state b, given action a2 and observation o2, is
0.73+(0.3×1.0)+(0.7×0.8)=1.59. This value corresponds to the
sequence of two actions: a2 followed by a1. Fig. 9 (b) illustrates
the horizon-1 value function at the next belief state for initial
action a2 and observation o2.

Next we show how to compute the value of belief state b
given only an action a2. In our problem setup, there are two
possible observations o1 and o2. Even though we know the
action with certainty, the observation we get is not known a
priori. For the given belief state b, each observation has a
certain probability associated with it. Since we know the value
of the resulting belief state given the observation, to obtain the
value of the belief state without knowing the observation, we
simply weigh each resulting value by the probability that we
will get that observation. Continuing with the previous example,
let’s assume that when we observe o1 after action a2, from (2),
the next belief state b’ is [0.6 0.4]. Looking at where b' is in the
belief space, we know that the best action is a2. Therefore, the
horizon 2 value of belief state b, given a2 and o1, is
0.73+(0.6×0.4)+(0.4×1.5)=1.57. To summarize, starting in b
and fixing the initial action to a2, the next best action to do is a2
if we observe o1 and it is a1 if we observe o2.

Similarly, we can compute the optimal strategy for b given
the initial action is a1. More precisely, assume that if we
observe o1 after action a1, the next belief state b’ will be [0.9
0.1], whereas if we observe o2 after action a1, the next belief
state b’ is [0.5 0.5]. Then, the horizon 2 value of the belief state
b when we fix the action at a1 and observe o1 is 0.94+
(0.9×0.4)+(0.1×1.5)=1.45 corresponding to action a2 whereas
if we observe o2 after a1, the horizon 2 value is 0.94+(0.5×1)
+(0.5×0.8)=1.84 corresponding to action a1. To summarize,
starting in b and fixing the initial action to a1, the next best
action is a2 if we observe o1 and it is a1 if we observe o2.

Suppose now the probabilities of getting observations o1
and o2 for the given belief state b and action a2 are 0.45 and
0.55, respectively. These probabilities for the given belief state
b and action a1 are 0.75 and 0.25, respectively. Hence, the
horizon 2 value of the belief state b when we fix the action at a2
is (0.45×1.59)+(0.55×1.57)=1.58 and that when we fix the
action at a1 is (0.75×1.45)+(0.25×1.84)=1.55. The optimal
strategy for b is the one that yields the least horizon 2 value. In
this case, the strategy whereby we “do a1 and then do a2 if o1
and do a1 if o2” is the optimal strategy for b.

Now if we fix the current action to be a1 and the future
action to be the same as it is at point b (i.e., o1:a2, o2:a1), we can
find the value of every single belief point for that particular
strategy. This is the best strategy to use for b, but may not be the
best strategy for other points in the belief space. To efficiently
compute the optimal strategy for all belief points, we utilize
“transformed horizon 1 value functions” for different initial
actions and partition the 1-D continuous belief space into a set
of segments, where one optimal strategy holds within each
segment. The value function transformation and partitioning
procedure are straightforward and omitted here for brevity.

VI. DYNAMIC POWER MANAGEMENT
We introduce two techniques that incorporate the proposed
uncertainty management framework: offline and online DPM
techniques. The offline DPM technique finds an optimal action,
assuming that the inputs to the power manager are known in
advance. Our approach for offline DPM is similar to
conventional offline DPM techniques [19]-[21] in the sense
that entire input values are known before making any decisions;

To appear in IEEE Trans. on VLSI Systems, 2008 9

the difference is that in our offline DPM framework we
consider uncertainty in reported power and delay values. On
the other hand, the online DPM technique refers to strategies
that attempt to find an optimal action based on information
available at runtime. The proposed online DPM utilizes a
Kalman filter based technique for belied state estimation to
reduce the computational complexity.

A. Offline Dynamic Power Management
We construct offline a collection of policies, where a policy is a
list of state-action pairs, usually implemented as a hash table
with key being the state and the value being the action. Policies
are generated in advance through extensive offline simulations
as explained in section V. Various policies are organized into a
decision tree where each leaf node represents a policy, as
illustrated in Fig. 10 (a). Nodes in the decision tree are indexed
by the parameters that characterize the performance state of the
system, where we use the power dissipation and execution
delay values, e.g., [18mW 20mw] and [4ns 8ns]. The best
policy can be found by tracing the appropriate path from the
root node to a leaf node in the decision tree using the given
parameter values. Once a policy is located, the belief state
probability is used as the key into the policy hash table to find
the optimal action.

 (a) (b)
Fig. 10. (a) A decision tree of policy tables (b) probability density function of
power and delay values used to trace a path from root to a leaf node in the tree.

In the aforementioned approach, we assume that power
dissipation and execution times are given in the form of
probability density functions (e.g., normal distribution) based
on state-action pairs, as shown in Fig. 10 (b), where s1, s2, and
s3 are defined as, <[18mW 20mW], [4ns 8ns]>, <(20mW
22mW], (8ns 12ns]>, and <(22mW 24mW], (12ns 16ns]>,
respectively. By doing so, we consider uncertainty in
performance state while indexing the level of power dissipation
and execution delay. For example, device power P is assumed
to be a normally distributed random variable with a mean value
of Psim and a standard deviation of ΔP induced by uncertainty,
as illustrated in top of Fig. 10 (b).

In our problem setup, Psim is the simulated power number
while ΔP is the standard deviation of power values, which is
calculated by running different tasks on the system at different
process corners (e.g., fast, typical, and slow) available with the
TSMC 65nm library. Furthermore, we can vary the ranges of
power values for states (e.g., range of 2mW in [18mW 20mW]
can be changed to the range of 4mW resulting in [17mW

21mW]), considering a higher standard deviation (i.e.,
uncertainty). The execution times are treated in the same way.
Then, belief state which represents the probabilities of being in
each of the performance states is obtained as a key to policy
hash table. For example, referring to Fig. 10 (b), suppose that
the probabilities of being in s1, s2, and s3 are 0.3, 0.6, and 0.1 in
terms of the power dissipation level, and 0.1, 0.5, and 0.4 in
terms of the execution delay. Then, the belief state [b(s1) b(s2)
b(s3)] is calculated simply as [0.2 0.55 0.25] by taking the
average value of the two probability vectors.

Fig. 11 summarizes the offline power management
technique with a decision tree-based policy selection, where
power and delay values are given as N(Psim, (ΔP)2) and N(Dsim,
((ΔD)2). Similar to the power values, Dsim denotes the simulated
delay number while ΔD is the standard deviation of delay
values. When the power manager receives a performance state
with the knowledge of previously assigned action-state pairs,
an optimal action is selected by the PM based on the policy
hash table, and issued to the system, which causes the system
state to change.

Fig. 11. An offline power management technique.

B. Online Dynamic Power Management
For an online power management, belief-state transition
probabilities are not given in advance. Note that the complexity
of computation required by Eqn. (2) for updating the belief
state grows rapidly with the number of state variables, making
it infeasible for real-time applications, e.g., online DPM
techniques. In addition, calculating exact solutions for the
finite-horizon stochastic POSMDP problems is P-SPACE hard
[11]. Therefore, exact solutions cannot be found for belief-state
SMDP with more than a handful of states. Indeed, solving a
belief-state SMDP problem is extremely expensive because of
the complexity of calculating the exact belief state [38]. To
overcome this difficulty, one is usually forced to estimate the
system state by some other approaches. By doing so, the
overwhelming complexity in deriving a power management
policy for every possible situation is avoided.

The basic idea of our online power management technique
is to use the estimation of the unknown state based on a
look-ahead search technique which also includes a step to
predict an unknown error while estimating. Hence, we
interleave state estimation based on “Kalman filter” technique
[39] and policy optimization based on the value iteration
algorithm. Details are provided below.

We present a prediction-based online DPM technique,
which is analytically and statistically tractable. First, assuming

To appear in IEEE Trans. on VLSI Systems, 2008 10

that we know the distribution of PVT variation and observation
noise, we can define the state and observation models simply in
accordance with our proposed framework as follows:

1 , ~ (0,)t t t t t tb b a u u N Q+ = + +X Y (8)
1 1 1 1, ~ (0,)t t t t to b v v N R+ + + += +Z (9)

where t denotes a time step, ut is a state noise induced by PVT
variation which is normally distributed with zero mean and
variance Qt, vt+1 is a temperature observation noise normally
distributed with zero mean and variance Rt. The state transition
matrix X includes the probabilities of transitioning from state bt
to another state bt+1 when action at is taken, the action-input
matrix Y relates the action input to the state, whereas the
observation matrix Z, which maps the true state space into the
observed space, contains the probabilities of making
observation ot+1 when action at is taken, leading the system to
enter state st+1. In practice, X, Y, and Z might change with each
time step or measurement, but here we assume they are
constant.

Fig. 12. The structure of online power management.

With above-mentioned parameters, the structure of our
proposed online DPM is provided in Fig. 123. The estimation
algorithm performs the state estimation based on KF as follows.
a) Initialize: The algorithm initializes the first state bt as b0,

and the error covariance matrix Et, which is a measure of the
estimated accuracy of the state prediction, to a diagonal
matrix where the diagonal elements are set to some fixed
value, signifying that the initial system state is uncertain.

b) Predict: The algorithm computes the predicted (a priori)
state 1tb +

− and the predicted (a priori) error covariance

matrix 1tE +

−
.

c) Update: The algorithm first computes the optimal Kalman
gain Kt+1 and uses it to produce an updated (a posteriori)
state estimate, bt+1, as a linear combination of 1tb +

− and the

3 The subscript “-“denotes that the value calculated at the prediction stage will
be updated in the correction stage.

Kalman gain-weighted residue between an actual
observation ot+1 and the predicted observation 1tb +

−Z . The
algorithm also updates the error covariance matrix.

This iterative approach is one of the appealing features of the
Kalman filter.

Simply speaking, the proposed online DPM technique
estimates the next belief state based on the KF technique, and
computes the belief-state transition probabilities and
observation functions by simply deriving the maximum
likelihood estimates, while storing the occurrence frequencies.
Fig. 13 shows the proposed online DPM technique based on the
Kalman filter technique, where an appropriate action is given to
the system by utilizing the value iteration algorithm (see Fig. 7)
after estimating the belief state.

Fig. 13. An online power management technique.

VII. EXPERIMENTAL RESULTS
In the experimental setup, we implemented a 32bit RISC
processor compatible with [40] in TSMC 65nmLP library,
which has 3 optional operating voltages (1.08V, 1.20V, and
1.29V) and dual threshold voltages. We developed the
proposed framework in Matlab, which allows us to rapidly
consider multiple scenarios with respect to the magnitude and
distribution of PVT variations.

To achieve accurate power values for dynamic power and
leakage power consumption, we first generated a forward SAIF
(Switching Activity Interchange File) after synthesizing into
gate-level netlist. Second, we obtained a backward SAIF by
back-annotated RTL simulation with the Specman function
simulator [41], and then executed the Power Compiler [29],
where the switching activities of the netlist are incorporated so
as to calculate accurately the dynamic and static power
consumption (cf. Fig. 14).

Fig. 14. Flow of power simulation.

In the first experiment, we analyzed characteristics of the
designed processor in terms of power dissipation by executing

To appear in IEEE Trans. on VLSI Systems, 2008 11

SPECint2000 benchmark programs [42] where we include data
for only three of the benchmark programs: gcc, gap, and gzip.
TABLE II reports the power dissipation distribution of the
processor, indicating that certain components of the processor
such as the execution units and the register units have a very
high power density. Fig. 15 shows leakage power variation on
the processor, obtained by varying the process corner cases.

TABLE II
THE DISTRIBUTION IN PERCENTAGE OF POWER DISSIPATION IN THE PROCESSOR

(NO CACHE)

Fig. 15. Leakage power for different levels of variability.

The second experiment is to demonstrate the effectiveness
of the proposed DPM under uncertainty management
framework. First, we set the parameter values for the evaluation
of the proposed framework as shown in TABLE III, where we
have sets of three actions {a1, a2, a3}, where a1 = [1.08V /
500MHz], a2 = [1.20V / 650MHz], and a3 = [1.29V / 800MHz],
and observations {o1, o2, o3}. The range of observations is
defined by the temperature thresholds based on the ACPI
(Advanced Configuration and Power Interface) specification
[43]. The expected cost rate is defined as the power-delay
product (PDP) of the processor for each state and action pair,
where we set the range of performance states {s1, s2, s3} as a
combination of power dissipation and execution delay values
for the processor. For example, cost k(s1, a1) is the power-delay
product of the system that stays in state s1 when action a1 is
taken, i.e., 18mW (least power) × 12nS (highest delay) = 216pJ.
Similarly, k(s1, a2) and k(s1, a3) are calculated as 20.75mW
(medium power) × 10.5nS (medium delay) ≈ 218pJ, and
23.5mW (highest power) × 9nS (least delay) = 212pJ,
respectively. Note that we define different cost values for a
system state (e.g., s1), since different actions (e.g., a1, a2, or a3)
can cause the system to transition into the same system state

(i.e., the system maintains the same range of performance
values) with difference cost values. We achieved these values
by running the Power Compiler while varying the levels of
operating voltage and frequency.

TABLE III
PARAMETER VALUES FOR A GIVEN EXPERIMENT

We arbitrarily chose a sequence of 50 application program
runs, comprising of instances of gcc, gap, and gzip benchmarks,
e.g., gap1 - gzip2 - gap3 - gcc4 -…- gap50, where programi is the
i-th program in the sequence. The sequence of 50 application
programs is executed on the processor to calculate the belief
states based on the estimated temperature which serves as the
observation. Because we do not have a packaged IC equipped
with a thermal sensor to report the on-chip temperature, we
estimate the on-chip temperature by utilizing

()chip A JA JTT T P θ ψ= + ⋅ − (10)

based on the parameter values extracted from the commercial
data sheet for a PBGA package [44]. Note that TA is the ambient
temperature, θJA is the thermal resistance for
junction-to-ambient, ψJT denotes the junction-to-top of package
thermal characterization parameter, and P is the power
dissipation. Next, the belief states are evaluated based on the
actions and observations over the state space as the processor
executes the sequence of programs.

Fig. 16 shows the trace of belief state for state s1, s2, and s3,
where we use the Kalman filter estimation technique of the
proposed online DPM framework. We set that the values of
PVT variation variance Q and observation noise variance R
equal to 1.1, where we achieved the probability density
function for the power consumption of the processor such that
the mean value is 25mW and covariance is 1.1 (i.e., N(25 1.1).
In our experiment, the time steps are abstractly defined and the
power manager issues a command at each time step (i.e.,
decision epochs), where observations are made when each
program in the sequence has been completed.

To appear in IEEE Trans. on VLSI Systems, 2008 12

Fig. 16. Trace of belief state for state estimation.

Simulations reported in Fig. 17 show the results of the
policy generation algorithm based on the information provided
in TABLE III and Fig. 16. We set the discount factor as 0.5
when evaluating the value function. The optimal action is
chosen to minimize the value function.

Fig. 17. Evaluation of policy generation algorithm.

In the third experiment, we investigate how robustly the
proposed approach can handle variability during the power
management process by comparing with various operating
conditions (i.e., worst and best corners). The optimal DPM
policy is achieved by evaluating the value function with the
derived state transition probabilities. In our approach, we
performed tasks while varying the operating conditions, and
identifies the most probable system state given noisy
temperature observations. Table IV summarizes these
simulation results in terms of power, energy, and normalized
energy-delay-product (EDP) as the figure of merit. Clearly, the
uncertainty-aware DPM approach cannot do any better than a
conventional DPM at the best corner case. The expectation,
however, is that it will outperform the conventional DPM at the
worst corner case, while ensuring energy efficiency. It is also
clearly seen that a lot of silicon performance is left untapped
under the worst corner-case assumption.

Table IV
COMPARING RESULTS OF OUR PROPOSED APPROACH WITH THE CORNER-BASED

RESULTS

The fourth experiment is designed to evaluate the proposed
offline/online DPM techniques by capturing the energy-saving
opportunities of the system. In both DPM policies, we compare
the performance of the proposed technique with a conventional
DPM approach, similar to that presented in [45], which can be
defined simply as follows (denoted by Greedy), where DVFS1
< DVFS2 < DVFS3 in terms of operating voltage and frequency
values.
Greedy: Apply the following DPM strategy.
- When the workload of tasks (e.g., the arrival rate of tasks) is

low, we use the lowest DVFS1 value.
- When the workload of tasks is high, we use the highest

DVFS3 value. Otherwise, we use the DVFS2 value.

Fig. 18. Power consumption of offline / online DPM policies.

Note that we consider the overhead of power-mode transitions
during simulation as illustrated in [46]. The simulation results
for the proposed offline and online DPM technique are shown
in Fig. 18, where the online DPM policy tends to dynamically
adapt to environmental changes, which can incur a mode
transition penalty. This is because the online DPM algorithm
performs prediction-correction procedure to react to the
environmental changes. Table V presents the simulation results
in terms of power savings (%). It includes the specific power
saving result for each performance state. For example, there is
10.5% power savings in the state s3 by the offline DPM,
whereas there is 7.4% power penalty in the state s1. The table
shows that the proposed DPM policies result in power savings
when the system is in the state s2 and s3. However, there is no
significant impact for online DPM in terms of average power
savings.

To appear in IEEE Trans. on VLSI Systems, 2008 13

Table V
COMPARISON OF OUR DPM POLICIES WITH THE CONVENTIONAL APPROACH IN

TERMS OF POWER SAVINGS

Table VI gives the result of the energy savings by the
proposed DPM techniques. Contrary to the little impacts on
power savings, this result demonstrates that our approaches
greatly reduce the total energy dissipation especially in the state
s1 and s2. For example, there is 21.1% energy savings in state s1
by the offline DPM policy, although we have 7.4% power
penalty by running the same DPM policy. The conventional
DPM approach (which is unaware of the PVT variations),
however, can outperform slightly our DPM technique in terms
of energy savings only for the case that the system is in state s3,
where our online DPM technique produces an a priori estimate
for the next time step which may result in energy waste.

Overall, the proposed DPM techniques achieve energy
savings in the presence of the PVT variations up to average of
10.3% and 6.8% in the case of offline and online policies,
respectively. Furthermore, it is clearly seen that if we focus on
conserving energy in low performance settings, we can achieve
energy saving up to 21.1%, and 16.8% in the case of offline and
online policies, respectively (see energy saving in state s1). This
scenario typically occurs in applications that require low
voltage-frequency value for their operations.

Table VI
COMPARISON OF OUR DPM POLICIES WITH THE CONVENTIONAL APPROACH IN

TERMS OF ENERGY SAVINGS

VIII. CONCLUSION
We addressed the problem of system-level power management
subject to variability in system performance parameters and
uncertainty in observations made on the system. In particular,
we presented a system-level power management approach
based on a stochastic decision making framework i.e., a
partially observable Markovian decision process model, which
is capable of coping with uncertainty in system state and
observations. This uncertainty management framework
guarantees to find an optimal power management policy by
utilizing a value iteration algorithm. We implemented both
offline and online DPM techniques and reported experimental
results demonstrating their effectiveness in robustly reducing
total system energy dissipation when running a variety of
applications.

REFERENCES
[1] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within

die parameter fluctuations on the maximum clock frequency distribution,”
Proc. of International Solid-State Circuits Conference, 2001, pp.
278–279.

[2] S. Mukhopadhyay and K. Roy, “Modeling and estimation of total leakage
current in nano-scaled CMOS devices considering the effect of parameter
variation,” Proc. of Symposium on Low Power Electronics and Design,
Aug. 2003, pp. 172–175.

[3] S. Abbaspour, H. Fatemi, and M. Pedram, “Parameterized block-based
non-Gaussian variational gate timing analysis,” IEEE Trans. on Computer
Aided Design, Vol. 26, No. 8, Aug. 2007, pp. 1495-1508.

[4] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan,
and V. De, “Adaptive body bias for reducing impacts of die-to-die and
within-die parameter variations on microprocessor frequency and
leakage,” Journal of Solid State Circuits, vol. 37, no. 11, 2002, pp.
1396–1402.

[5] Y. Komatsu, K. Ishibashi, et al., “Substrate-noise and
random-fluctuations reduction with self-adjusted forward body bias,”
Proc. of Custom Integrated Circuits Conference, 2005, pp. 35–38.

[6] M. Mani, A. Singh, and M. Orshansky, “Joint Design-Time and
Post-Silicon Minimization of Parametric Yield Loss using Adjustable
Robust Optimization,” Proc. of International Conference on Computer
Aided Design, 2006, pp. 19-26.

[7] N. Azizi, M. M. Khellah, V. De, and F. N. Najm, “Variations-aware
low-power design with voltage scaling,” Proc. of Design Automation
Conference, 2005, pp. 529–534.

[8] D. Marculescu and E. Talpes, “Variability and energy awareness: a
microarchitecture-level perspective,” Proc. of Design Automation
Conference, 2005, pp. 11–16.

[9] N. S. Kim, T. Kgil, K. Bowman, V. De, and T. Mudge, “Total power
optimal pipelining and parallel processing under process variations in
nanometer technology,” Proc. of Int’l Conference on Computer Aided
Design 2005, pp. 535–540.

[10] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and
Optimization for VLSI: Timing and Power. Springer, 2005.

[11] M.L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Publisher, New York, 1994.

[12] H. Jung, and M. Pedram, “Dynamic Power Management under Uncertain
Information,” Proc. of Design Automation and Test in Europe, Apr. 2007,
pp.1060 - 1065.

[13] Y.F. Tsai, N. Vijaykrishnan, Y. Xie, and M.J Irwin, “Influence of Leakage
Reduction Techniques on Delay/Leakage Uncertainty,” Proc. of IEEE
18th Int’l Conference on VLSI Design, Jan. 2005, pp.374-379.

[14] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full Chip Leakage
Estimation Considering Power Supply and Temperature Variations,”
Proc. of International Symposium on Low Power Electronics and Design,
Aug. 2003, pp. 78-83.

[15] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Kehavarzi, and V. De,
“Parameter Variations and Impact on Circuits and Microarchitecture,”
Proc. of Design Automation Conference, Jun. 2003, pp.338-342.

[16] M. Lie, W.S. Wang, and M. Orshansky, “Leakage Power Reduction by
Dual-Vth Designs Under Probabilistic Analysis of Vth Variation,” Proc.
of International Symposium on Low Power Electronics and Design, Aug.
2004, pp. 2-7.

[17] A. Basu, S-C. Lin, V. Wason, A. Mehrotrat, and K. Nanerjee,
“Simultaneous Optimization of Supply and Threshold Voltages for
Low-Power and High-Performance Circuits in the Leakage Dominant
Era,” Proc. of Design Automation Conference, Jun. 2004, pp. 884-887.

[18] L. Benini, and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1998.

[19] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
Optimization for Dynamic Power Management,” IEEE Trans. on
Computer Aided Design of Integrated Circuits and Systems, Vol. 18,
Issue 6, pp. 813-833, Jun. 1999.

[20] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic Modeling of a
Power-Managed System – Construction and Optimization,” IEEE Trans.
on Computer-Aided Design, Vol. 10, No. 10, pp. 1200-1217, Oct. 2001.

[21] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven Power
Management,” IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems, Vol. 20, Issue 21, pp. 840-857, Jul. 2001.

To appear in IEEE Trans. on VLSI Systems, 2008 14

[22] Z. Ren, B. H. Krogh, and R. Marculescu, “Hierarchical Adaptive
Dynamic Power Management,” IEEE Trans. on Computer, Vol. 15, Issue
4, pp. 409-420, Apr. 2005.

[23] P. Rong and M. Pedram, “Hierarchical dynamic power management with
application scheduling,” Proc. of Symposium on Low Power Electronics
and Design, Aug. 2005, pp. 269-274.

[24] Y.F. Tsai, N. Vijaykrishnan, Y. Xie, and M.J Irwin, “Influence of
Leakage Reduction Techniques on Delay/Leakage Uncertainty,” Proc. of
IEEE 18th International Conference on VLSI Design, Jan. 2005,
pp.374-379.

[25] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full Chip Leakage
Estimation Considering Power Supply and Temperature Variations,”
Proc. of International Symposium on Low Power Electronics and Design,
Aug. 2003, pp. 78-83.

[26] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Kehavarzi, and V. De,
“Parameter Variations and Impact on Circuits and Microarchitecture,”
Proc. of Design Automation Conference, Jun. 2003, pp.338-342.

[27] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and
Optimization for VLSI: Timing and Power, Springer, 2005.

[28] Synopsys Prime Time. http://www.synopsys.com.
[29] Synopsys Power Compiler Documents. http://www.synopsys.com.
[30] M. Pedram, and S. Nazarian, “Thermal Modeling, Analysis, and

Management in VLSI Circuits: Principles and Methods,” Proc. of IEEE,
Special Issue on Thermal Analysis of ULSI, Vol. 94, No. 8, pp.
1487-1501, Aug. 2006.

[31] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-Aware Microarchitecture,” Proc. of
International Symposium on Computer Architecture, Jun. 2003, pp. 2-13.

[32] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman., “Acting Optimally in
Partially Observable Stochastic Domains,” Proc. of 12th National
Conference on Artificial Intelligence, Aug. 1996, pp. 1023-1028.

[33] R.D. Smallwood and E.J. Sondik, “The optimal control of partially
observable Markov decision processes over a finite horizon,” Operations
Research, 21, 1071-1088, 1973.

[34] K. J. Astron, “Optimal Control of Markov Decision Processes with
Incomplete State Estimation,” Journal of Mathematical Analysis and
Application, Vol. 10, pp. 174-205, 1965.

[35] A Gosavi, Simulation-based Optimization: Parameter Optimization
Techniques and Reinforcement Learning, Kluwer Publishers, 2003.

[36] R.E. Bellman, Dynamic Programming. Princeton University Press,
Princeton, 1957.

[37] R. Williams, and L. Baird, “Tight Performance Bounds on Greedy
Policies based on Imperfect Value Functions,” Technical report
NU-CCS-93-14, Northeastern University, Nov. 1993.

[38] S. Paquet, G. Gordon, and S. Thrun, “Point-based Value Iteration: An
Anytime Algorithm for POMDPs,” Proc. of International Joint
Conference on Artificial Intelligence, Aug. 2003, pp.1025-1032.

[39] R.E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Trans. of the ASME – Journal of Basic Engineering, Vol. 82,
Series D, pp. 35-45, 1960.

[40] OpenRISC 1000 processor. http://www.opencores.org.
[41] Specman HDL simulator. http://www.cadence.com.
[42] CPU SPECint2000 document. http://www.spec.org.
[43] Advanced Configuration and Power Interface Specification, Rev. 3.0b,

Oct. 2006. http://www.acpi.info/spec.htm.
[44] Y. Cheng, C. Tsai, C. Teng, and S. Kang, Electrothermal Analysis of VLSI

Systems. Kluwer Academic Publishers, 2000.
[45] R. Jejurikar, and R. Gupta, “Dynamic Voltage Scaling for System-wide

Energy Minimization in Real-time Embedded Systems,” Proc. of
International Symposium on Low Power Electronics and Design, Aug.
2004, pp. 78 - 81.

[46] T. D. Burd, and R. W. Brodersen, “Design Issues for Dynamic Voltage
Scaling,” Proc. of International Symposium on Low Power Electronics
and Design, Aug. 2000, pp. 9 - 14.

Hwisung Jung (S’ 99) received B.S. and M.S.
degree in electrical engineering from Yonsei
University, Korea in 1996 and 2001, respectively.
He is currently pursuing the Ph.D. degree in
electrical engineering at the University of
Southern California, Los Angeles. He was with
LG semiconductor and Samsung electronics from
1995 to 1999 and from 2001 to 2003, respectively,

where he worked as a research engineer in the field of low-power ASIC design.
He was also with Broadcom as a research intern during the summer of 2006 and
2007. He has authored more than 10 papers in the several conferences,
including Design Automation Conference, Design and Test in Europe, and
Asia-Pacific Design Automation Conference.

His research interests are in the area of system-level power management and
low-power design.

Massoud Pedram (S’88 – M’90 – SM’98 – F’01)
received B.S. degree in Electrical Engineering
from the California Institute of Technology in
1986. Subsequently, he received M.S. and Ph.D.
in Electrical Engineering and Computer Sciences
from the University of California, Berkeley in
1989 and 1991, respectively. In September 1991,
he joined the Department of Electrical
Engineering at the University of Southern
California where he is currently a professor and
Chair of the Computer Engineering division. Dr.
Pedram is a recipient of the National Science

Foundation's Young Investigator Award (1994) and the Presidential Early
Career Award for Scientists and Engineers (a.k.a. the Presidential Faculty
Fellows Award) (1996). His research has received a number of awards
including two Best Paper Awards from the International Conference on
Computer Design, two Design Automation Conference Best Paper Awards, an
IEEE Transactions on VLSI Systems Best Paper Award, and an IEEE Circuits
and Systems Society Guillemin-Cauer Award.

Dr. Pedram has served on the technical program committee of a number of
conferences and workshops, including Design Automation Conference (DAC),
Design and Test in Europe (DATE), Asia-Pacific Design Automation
Conference (ASP-DAC), International Conference on Computer Aided Design
(ICCAD), International Symposium on Low Power Electronics and Design
(ISLPED), International Symposium on Physical Design (ISPD), and
International Workshop on Logic Synthesis (IWLS). Dr. Pedram was a
co-founder and general chair of the 1995 International Symposium on Low
Power Design and the technical co-chair and general co-chair of the 1996 and
1997 International Symposium on Low Power Electronics and Design,
respectively. He was the Technical Chair of the 2002 International Symposium
on Physical Design and is the General Chair of the 2003 symposium. Dr.
Pedram has given several tutorials on low power design at major CAD
conferences and forums including, DAC, ICCAD, and ASP-DAC. He has
published more than 300 journal and conference papers and written four books
on various aspects of low power design.

Dr. Pedram is an IEEE Fellow and an ACM member and currently serves on
the Advisory Board of the ACM Special Interest Group on Design Automation.
He served as an Associate Editor of the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems and ACM Transactions on Design
Automation of Electronic Systems. He received the 2000 Distinguished Service
Award of ACM - SIGDA for contributions in developing the SIGDA
Multimedia Monograph Series and organizing the Young Student Support
Program. Dr. Pedram was a member of the Board of Governors of the IEEE
Circuits and Systems Society from 2000 to 2002, Chair of the Distinguished
Lecturer Program of the IEEE CASS for 2003 and 2004, and the CASS VP of
Publications in 2005 and 2006.

