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Abstract - This paper tackles the problem of dynamic power 

management (DPM) in nanoscale CMOS design technologies that 
are typically affected by increasing levels of process and 
temperature variations and fluctuations due to the randomness in 
the behavior of silicon structure. This uncertainty undermines the 
accuracy and effectiveness of traditional DPM approaches. This 
paper presents a stochastic framework to improve the accuracy of 
decision making during dynamic power management, while 
considering manufacturing process and/or environment induced 
uncertainties. More precisely, variability and uncertainty at the 
system level are captured by a partially observable semi-Markov 
decision process with interval-based definition of states while the 
policy optimization problem is formulated as a mathematical 
program based on this model. Experimental results with a RISC 
processor in 65nm technology demonstrate the effectiveness of the 
technique and show that the proposed uncertainty-aware power 
management technique ensures system-wide energy savings under 
statistical circuit parameter variations. 
 

Index Terms — Dynamic power management, stochastic 
control, POMDP, uncertainty  

I. INTRODUCTION 
C designers are seeking high-performance and reliable 
electronic circuits and systems. As we start to design with the 

nanometer process technology nodes, IC design methodologies 
based on zero guard band or design margins are becoming 
unsatisfactory due in part to the increasing levels of process 
variations (i.e., oxide thickness and channel length variations) 
and random circuit parameter fluctuations (i.e., dopant 
fluctuations). These variations, especially within-chip 
variations, pose a major challenge to the design of low-power 
and high-performance circuits and systems. Uncertainties 
which arise either from environmental changes (i.e., 
temperature gradients or voltage droops) or are application 
(workload) dependent also give rise to additional complications 
when trying to optimize the energy consumption and 
performance of a state-of-the-art electronic system. 

Variability means that different applications or situations 
produce different numerical values for a quantity. Specifying 
an exact value for a quantity may be difficult because the value 
depends on something else. For example, the amount of power 
consumed by a system depends upon the chip temperature and 

the workload mix of the applications running on that system. 
The existence of variability in a population implies that a single 
action or strategy may not emerge as optimal for each of the 
individuals, and consequently any decision made will go too far 
for some and not far enough for others. Uncertainty arises due 
to lack of knowledge regarding the true value of a quantity for a 
given member of a population. When making observations of 
past events or speculating about the future, imperfect 
knowledge is the rule rather than the exception. For example, 
the workload attributed to a particular functional unit is not 
directly recorded very often. Rather, this workload is usually 
recorded at fixed intervals and then extrapolated based upon 
historical data and trend lines. Note that direct measurements 
also have some margin of error. When estimating numerical 
values expected for workload at some future date, the exact 
outcome is rarely known in advance. More generally, sources 
of uncertainty include: uncertainty of data and parameters of 
models, uncertainty about choice of models, and uncertainty 
about the future. Uncertainty implies that we might make a 
non-optimal choice because we may expect one outcome but 
something quite different might actually occur.  

Uncertainty and variability typically require different 
treatments. For example, if we seek to develop a dynamic 
power management (DPM) methodology that can optimize 
energy dissipation and performance of different instances of 
the same system design, it is important that we separate sources 
of uncertainty (which affect the underlying system state) from 
sources of variability (which affect the cost rate for being in any 
state) so that we can properly model the system, and hence 
perform policy optimization accurately and reliably. This 
statement is true although variability contributes to uncertainty, 
and the amount of variability is generally itself an uncertain 
parameter.   

Most of the previous work on variability has focused on the 
variability modeling and analysis at the lower levels of design 
abstraction [1]-[3], and the corresponding circuit-level or 
physical design optimization techniques [4]-[7]. It is only 
recently that people have started paying attention to the effects 
of variability on optimization processes and tradeoffs as we go 
up in the design abstraction hierarchy [8]-[10]. It is prudent to 
account for various sources of variability even earlier in the 
design process and for the whole design when developing 
resource management and power control strategies. It is 
important to note that some variations at the higher levels of 
design abstraction are translated into uncertainty because the 
underlying RT-level/physical realization is not available. At the 
same time, measurements made about the current state of the 
system tend to be imperfect, which in turn gives rise to 
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uncertainty about the system state. Improving the accuracy and 
robustness of decision making by modeling and assessing the 
variability and uncertainty is an important step in guaranteeing 
the quality of system-level resource management algorithms, 
including DPM.   

This papers tackles the problem of system-level dynamic 
power management (DPM) in systems which are manufactured 
in nanoscale CMOS technologies and are operated under 
widely varying conditions over the lifetime of the system. Such 
systems are greatly affected by increasing levels of process 
variations typically materializing as random or systematic 
sources of variability in device and interconnect characteristics, 
and widely varying workloads and temperature fluctuations 
usually appearing as sources of uncertainty. At the system level 
this variability and uncertainty is beginning to undermine the 
effectiveness of traditional DPM approaches. It is thus 
critically important that we develop the mathematical basis and 
practical applications of a variability-aware, 
uncertainty-reducing DPM approach with the following unique 
feature: Utilization of a stochastic modeling framework based 
on the theory of partially observable semi-Markovian Decision 
Model (POSMDP) [11], which can efficiently cope with 
uncertainty. We also present uncertainty-aware offline/online 
dynamic power management techniques to illustrate the 
effectiveness of the uncertainty management framework. A 
preliminary version of this research appeared in [12]. 

The remainder of this paper is organized as follows. The 
related work is discussed in section II. In section III, the 
preliminaries of the paper are presented. The details of the 
stochastic uncertainty management framework are given in 
section IV. The policy representation for the proposed 
framework is described in section V. Section VI presents 
uncertainty-aware dynamic power management techniques. 
Experimental results and conclusion are given in section VII 
and section VIII. 

II. RELATED WORK  
Increasing attention has been given to the problem of reducing 
variability in the circuit design parameters. In the following, we 
provide a brief overview of these works. The work presented in 
[13] studies the impact of leakage reduction techniques on the 
delay uncertainty. By emphasizing that the leakage is critically 
dependent on the operating temperature and power supply, the 
authors in [14] present a full chip leakage estimation technique 
which accurately accounts for power supply and temperature 
variations. In [15], the authors discuss process, voltage, and 
temperature variations and their impacts on circuit and 
micro-architectures beyond the 90nm technology node. 
Probabilistic models are introduced in [16] to account for the 
impact of threshold voltage variations on the leakage power. 
These models are subsequently employed to minimize the 
leakage power, while satisfying a given performance 
requirement. Reference [17] presents a technique to optimize 
supply and threshold voltage in high-performance circuits. The 
authors show that interactions between supply voltage, 
frequency, power, and temperature significantly impact the 
energy-delay-product of a target design. None of these works 
has considered the effect of variability on system-level 

dynamic power management. 
A lot of research has been devoted to optimizing DPM 

policies, resulting in both heuristics and stochastic approaches. 
While the heuristic approaches are easy to implement, they do 
not provide and power/performance assurances. In contrast, the 
stochastic approaches guarantee optimality under performance 
constraints although they are more complex to implement [18]. 
To overcome the limitations of heuristic “time-out”-based 
power management techniques, an approach based on 
discrete-time Markovian decision processes (DTMDP) was 
proposed in [19]. This approach outperforms the previous 
heuristic techniques because of its solid theoretical framework 
for system modeling and policy optimization. We introduced a 
power management approach based on continuous-time 
Markovian decision processes (CTMDP) in [20]. The policy 
change framework this model is asynchronous and thus more 
suitable for implementation as part of a real-time operating 
system environment.  

Reference [21] also improved on the modeling technique of 
[19] by using time-indexed semi-Markovian decision processes 
(SMDP). An SMDP is a stochastic process where the next state 
depends on the current state and how long the current state has 
been active. A non-stationary process based power 
management technique is introduced in [22], where the 
workload requests are modeled as a Markov-modulated 
stochastic process.  In [23] we introduced a hierarchical power 
management architecture which aims to facilitate 
power-awareness in a system with multiple components, each 
having a built-in local power manager. The proposed 
architecture divides the power management function into two 
layers: system-level and component-level. The system-level 
power management is formulated as a concurrent service 
request flow regulation and application scheduling problem. 

The above-mentioned stochastic power management 
techniques enjoy desirable features of flexibility, global 
optimality, and mathematical robustness. In general, however, 
these models are somewhat limited in their reach and 
applicability because they assume that various variables of the 
system are directly observable and thus are deterministic and 
that there are no sources of variability in the design. 

These works do not make a distinction between uncertainty 
and variability. They typically assume that all system 
parameters are either precisely known scalar values or are 
random variables with known mean and an irreducible 
variance. They thus miss out on the importance of identifying 
sources of uncertainty in the distributions that can be reduced 
or even eliminated through measurements/observations and 
accurate modeling.  

In summary, to the best of our knowledge, there has been no 
reported work on DPM with stochastic modeling and 
appropriate treatment of uncertainty and variability. This is the 
aim of the present proposal. An integrated dynamic power 
management framework makes it possible to consider the 
stochastic behavior of power dissipation and performance of a 
system and provide the computational tractability of the 
randomness to treat the many sources of variability and utilize 
direct observations and models to control sources of 
uncertainty, bringing the underlying variability and 
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randomness effects to the forefront of power management 
policy optimization. 

III. PRELIMINARIES 
As nanoscale VLSI circuits are becoming sensitive to the rising 
levels of variability in process and design parameters, 
guaranteeing the quality of system-level performance 
optimization techniques is becoming of great concern. 
Within-chip variations are typically passed into the delay 
budget of each circuit [26]. However, the worst-case behavior 
of the circuit (e.g., critical path delay) does not always 
correspond to the combination of worst-case points of 
individual parameters, e.g., load capacitance, intrinsic delay, 
and slew rate. Furthermore, a lot of Silicon performance is left 
untapped under the worst-case assumption. IC designers can no 
longer afford to lose performance due to unacceptable levels of 
inaccuracy in their estimation/modeling techniques [27]. Thus, 
it is important to do rigorous modeling of variability early in the 
design cycle. 

A. Effect of PVT Variations on the Performance State 
Although performance analysis tools provide reliable bounds 
on the delay of circuits, they cannot properly account for the 
variability inherent in the semiconductor process. For example, 
Fig. 1 illustrates the effect of variations on propagation delays 
of logic gates (e.g., 2-input NAND gate driving FO4 load) as 
calculated by 2-D lookup tables, which are used in 
conventional performance analysis tools (e.g., PrimeTime [28]) 
under the worst corner case (125°C, 1.08V for Vdd) of 65nm 
CMOS technology. Every point in the table represents 
characterized spice delay for the logic gate for a particular input 
transition time and output capacitance pair. 

 

 
Fig. 1.  Effect of process variations on circuit delay. 

Obviously, not all possible input transitions and output 
capacitance values for a given cell can be characterized. In this 
figure, the closet four characterized points in the table are 
interpolated to provide a desired output delay value. Thus, 
although these analysis tools can provide estimates of 
performance parameters at design time, they cannot guarantee 
that the expected performance prediction is accurate in 
manufactured designs. 

We reiterate the obvious fact that voltage (V) and 
temperature (T) variations are dynamic, i.e., they occur during 
the circuit operation, whereas process (P) variations are static 
and get introduced during the manufacturing. The strong 

impact of PVT variations on performance of a VLSI circuit 
renders the traditional optimization techniques ineffective. This 
phenomenon has resulted in a move toward stochastic 
optimization strategies, i.e., techniques that treat design 
parameters as random values whose values are described by 
probability distribution functions. As an example, Fig. 2 shows 
a number of leakage power-delay tradeoff curves for a RISC 
processor that we designed in 65nm CMOS technology, where 
the delay represents execution time of a target task by the 
processor. The curves are obtained by running the Synopsys 
Power Compiler [29] for three different process conditions. 
Note that SS, TT, and FF conditions represent [1.08Vdd, 
125°C], [1.20Vdd, 25°C], and [1.29Vdd, -40°C], respectively.  

 

 
Fig. 2.  Power-delay curves of a RISC processor corresponding to different 
process corners in a 65nm CMOS process technology node (S, T and F stand 
for Slow, Typical and Fast nMOS or pMOS transistors). 

The task of computing power management policies that 
cope with uncertainty and non-determinism require the 
construction of a stochastic framework with which one can 
predict the effect of various actions on the performance state of 
the system. A stochastic approach to system-level performance 
modeling and optimization (e.g., one based on the Markovian 
decision process model) enables us to apply mathematical 
optimization techniques to derive optimal policies for DPM.  

B. Temperature Calculation 
The major source of heat generation in a die is the power 
dissipation of transistors whose active regions are implemented 
in the substrate [30]. Some amount of power dissipation also 
results from Joule heating (or self-heating) caused by the flow 
of current in the interconnections. This effect is ignored in our 
simulations.  

Temperature of a VLSI chip can be calculated as follows: 

total
chip J

PT T R
Aθ

⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

 (1) 

where Tchip is the temperature of the case top, TJ is the junction 
temperature, Rθ is the equivalent junction-to-case thermal 
resistance of the substrate (Si) layer plus the package (cm2 °C / 
W), Ptotal is the total power consumption (W), and A is the chip 
area (cm2). In this paper, it is assumed that power density can 
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serve as a proxy for temperature variations although a change 
in instantaneous power dissipation does not give rise to an 
immediate temperature change due to a low-pass filtering effect 
in translating power variations into temperature variations [31]. 

IV. STOCHASTIC DECISION MAKING FRAMEWORK 

In this section, we first present the idea of using a stochastic 
model for dealing with the uncertainty in observations made by 
a power manager, and then introduce a theoretical framework 
for constructing the model of power manager operating in such 
an uncertain environment.  

A. Partially Observable Environments 
Generally speaking, at specific instances in time called decision 
epochs, a power manager observes some characteristic of the 
system, estimates the system performance state (e.g., its 
execution delay and power dissipation) on the basis of this 
observation, and issues a command (i.e., action) to force a state 
transition according to a power management policy that 
maximizes (or minimizes) a user-specified reward (or cost) 
function. The concept is that the actual state of the system, 
which is not directly observable, is estimated by observing 
some other system characteristic.  

A Markov decision process (MDP) model facilitates 
reasoning in domains where actions change the system states 
and where a reward (or cost) is utilized to optimize the system 
performance. The simple MDP is directly observable in the 
sense that its execution hinges on the assumption that the 
current system state can be determined without any errors and 
that the reward (cost) of an action can be calculated exactly. In 
partially observable environments, where performance states of 
the system cannot be identified exactly, observations made by a 
power manager about the state of the system are indirect and 
may even be noisy, and therefore, they only provide incomplete 
information. A naive strategy for dealing with this uncertainty 
is to ignore the problem altogether, that is, to treat the 
observations as if they provide accurate and complete 
information about the actual state of the system and act on them. 
This strategy can result in undesirable decisions based on 
erroneous readings of the current and next states of the system. 

A more sophisticated strategy resorts to stochastic 
modeling and decision making. One way to deal with 
uncertainty under a wide range of operating conditions and 
environments is to rely on the history of previous actions and 
observations to disambiguate the current state. For example, we 
can adopt a hidden Markov model (HMM), where the state is 
not directly observable but variables influenced by the state are 
observable, to learn a model of the environment, including the 
hidden states [12]. Note that in an HMM each state has a 
probability distribution over the possible actions, resulting in 
the fact that the sequence of actions generated by the HMM 
gives some information about the sequence of states. Thus, a 
power manager in the HMM reasons about the state of the 
system indirectly through the observed variables, which 
captures complex system dynamics which are not completely 
observable. 

B. Sequential Decision Making under Uncertainty 
The decision making in a partially observable environment is 
achieved by combining aspects of HMMs and MDPs. 
Specifically, we start with a semi-Markov decision process 
(SMDP), a generalization of MDPs, to model the decision 
making strategy, and then combine it with a HMM to consider 
the uncertainty in parameter observation. We call this 
combination a partially observable semi-Markov decision 
process (POSMDP) model. Recall that inter-arrival times of 
requests in the SMDP model follow an arbitrary distribution, 
which is a more realistic assumption than an exponential 
distribution used in the conventional MDP model.  

Definition 1: Partially Observable Semi-Markov Decision 
Process. A POSMDP is a tuple (S, A, O, T, Z, k) such that 

1) S is a finite set of states, 
2) A is a finite set of actions, 
3) O is a finite set of observations, 
4) T is a transition probability function, 
5) Z is an observation function, and  
6) k is a cost function, 

The state space S comprises of a finite set of state, where s ∈ S 
can be defined as performance state of the system. The action 
space A consists of a finite set of action a ∈ A, e.g., dynamic 
voltage and frequency scaling (DVFS) values which control the 
performance state of the system. The observation space O 
contains a finite set of observation o ∈ O, e.g., on-chip 
temperature measurement. The state transition probability 
function, T(st+1, at, st) 1 , determines the probability of a 
transition from a state st to another state st+1 after executing 
action at, i.e.,  the system transits to the state st+1 at time t+1 
with probability Pr(st+1 | st, at) = T(st+1, at, st). An observation 
function, Z(ot+1, st+1, at), which captures the relationship 
between the actual state and the observation, is defined as the 
probability of making observation ot+1 after taking action at that 
has landed the system in state st+1, i.e., state st+1 generates 
observation ot+1 at time t+1 with probability Pr(ot+1 | st+1, at) = 
Z(ot+1, st+1, at). We consider a cost function that assigns a 
real-valued number to each state and action pair whereby an 
immediate cost, k(s, a), is incurred when action a is chosen in 
state s. A solution to a POMDP is a policy (a procedure for 
selecting an action in every state) that minimizes some measure 
of aggregate cost, called objective function. 

The objective function maps infinite sequences of costs to a 
single value, which is typically infinite. How do we compare 
policies of infinite cost? We have three options: (i) Set a finite 
horizon and simply sum the cost, (ii) Discount to prefer earlier 
costs, and (iii) Use the average cost in the limit. A value 
function, Vπ, represents the expected objective function value 
obtained following policy π starting from each state in S. Value 
functions partially order the policies, but at least one optimal 
policy exists, and all optimal policies have the same value 
function, V*. Bellman equations [36] relate the value function 
to itself via the problem dynamics. For the discounted objective 
function, with a discount rate of  0 ≤ γ < 1, they are: 

 
1 In this paper, subscripts denote state information whereas superscripts denote 
time stamp.  
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Instead of making decisions based on the current perceived 
state of the system, the POSMDP maintains a belief, i.e., a 
probability distribution over the possible (nominal) states of the 
system, and makes decisions based on its current belief. The 
belief state at time t is a |S|×1 vector of probabilities defined as: 
bt := [bt(s)], ∀s∈S, where bt(s) is the posterior probability 
distribution of state s at time t. Note that Σs∈S bt(s) = 1 [32]. 
Based on the belief state, an action at is chosen from a set of 
available actions. A policy is defined as a sequence of 
mappings from the belief states to actions π = {πt}. 

In this paper, we consider a design scenario where actions 
incur a cost (i.e., energy dissipation), and the power manager’s 
goal is to devise a policy that minimizes the total expected 
energy dissipation. Fig. 3 illustrates the basic structure of a 
POSMDP-based power manager. The proposed power 
manager interacts with an uncertain environment and 
statistically variable state variables and tries to minimize the 
system cost over time by choosing appropriate actions. The 
frequency-voltage level assignment actions issued by the 
power manager change the performance state (power 
dissipation and speed) of the system and lead to quantifiable 
rewards/penalties. 

 

Fig. 3.  Structure of a POSMDP-based power manager. 

In our formulation of the decision-making strategy, we 
define state s ∈ S as the dissipated power level and largest stage 
delay of the circuit. Furthermore, we use an observation, i.e., a 
temperature measurement to help determine the system state.2 
The power manager consists of two functional components. 
The first component is the belief state estimation block which 
computes the system’s belief state, while the second component 
is the decision making block which assigns optimal actions to 
the system based on a value-iteration policy optimization 
algorithm.  

Consider a three-state DPM problem as an example. A 
graphical representation of the belief state and its evolution is 
provided in Fig. 4. In this figure, starting in some current belief 
state, we show the next belief states depending on the action. 
 

2 Note that other runtime observations/measurements may be used to help 
with this determination, for example, it is possible to replicate the worst-case 
execution path of a circuit and monitor its actual delay at runtime. This, 
however, has hardware overhead. 

 

 
(a)                                                 (b) 

Fig. 4.  A graphical representation of the belief state: (a) current belief (b) its 
one-step evolution for three different actions. 

C. POSMDP Framework for Dynamic Power Management 
The rationale for developing a POSMDP framework for 
dynamic power management is depicted in Fig. 5. First, since 
the performance state of a system cannot be directly determined 
by the PM, it uses temperature readings to help estimate the 
current system state in the form of a belief state. We assume 
that the chip temperature at time t is one of three observations: 
o1, o2, and o3 corresponding to different, but well-specified, 
temperature ranges. The system state at time t is defined as a 
combination of delay (e.g., d1, d2, or d3, where d1 < d2 < d3) and 
power dissipation (e.g., p1, p2, or p3, where p1 < p2 < p3) values. 
Starting from system state st(d2, p3) at time t, the power manager 
issues an action, at = (Vdd1, freq2), and as a result, the system is 
expected to move into a new state st+1 (d3, p2) at time t+ε. Let’s 
assume that, due to variations, the resulting system state is 
actually st+1 (d3, p3). Since state st+1 is not directly observable, 
the PM must rely on observation ot+1 at time t+1 to estimate the 
state that it is in.  
 

Fig. 5.  State estimation and state transition in the POSMDP-based DPM. 

Fig. 6 illustrates yet another uncertainty effect. More 
precisely, the figure shows three scenarios where starting from 
current state st(d2, p2) with an action a2, e.g., [1.20V / 650MHz] 
issued at time t, the next system state may be any one of three 
possible states at time t+1, that is, the power manager cannot 
know for certain which next state will occur, although it will 
have some information from the observation, ot+1. For example, 
in case (a), the system remains in the same active state after a2 is 
chosen, resulting in the same performance (i.e., st+1(d2, p2)). 
That is why decisions will be made based on the probability 
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distribution vector of the belief state, bt+1.  

 

 

  (a)                                 (b)                                (c) 

Fig. 6.  Example of three possible observations at time t+1 from which the 
belief state is calculated. 

V. POLICY REPRESENTATION IN POSMDP 
We provide a policy representation of the proposed power 
management framework by presenting a belief-state SMDP, 
and derive the optimal power management policy. 

A. Conversion to Belief-state SMDP 
In partially observable environment, a power manager can 
make decisions based on the observed system state history H 
since the underlying performance state of the system cannot be 
fully observed. Note that the system history H is a sequence of 
state and action pair such as <s0, a0>, <s1, a1>,…, <st, at>. Thus, 
the power manager’s behavior is determined by its policy, 
which is a mapping from the set of observable history H to the 
action set A, where the power manager can only base its 
decisions on the history of its actions and states. This means 
that complete history of system states is relevant to predicting 
the future state of the system, which makes this decision 
making process a non-Markovian process [11]. Fortunately, the 
power management problem may also be formulated as a 
Markovian process-based optimization problem as proved in 
[33]. More precisely, we can convert the above-mentioned 
non-Markovian process into a Markovian process when 
formulating the power management problem as follows. To 
achieve the Markovian property, we make use of the belief state, 
b. It has been shown that the belief state is sufficient in the 
sense that it completely captures the power manager’s 
knowledge about the current state and past history [34].  

Given belief state bt and an action at resulting in 
observation ot+1, we can compute the successor belief state bt+1 
as follows: 
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In (2), the numerator consists of the product of the probability 
that observation ot+1 is made in state s after action at is taken, 
and the probability that starting from belief state bt, we end up 
in state s under action at. The denominator denotes the 
probability of perceiving ot+ given action at and belief state bt. 
Note that the |S|-dimensional belief state is continuous.  

The belief state transition function, Tb(bt+1, at, bt), which 
provides the probability of a transition from current belief state 
bt to next belief state bt+1 after executing action at, is given by: 

1 1

1
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The probability of perceiving o, given action at and belief state 
bt, is given by summing over all the actual states that may be 
reached, i.e., 

'
( | , ) ( , ', ) ( ', , ) ( )t t t t t

s s
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As stated earlier, the key result is that if we maintain and 
update the belief state and transition probabilities according to 
(2) and (3), then the belief state will give us with just as much 
information as the entire action-observation history. This 
shows that the optimal POSMDP solution is Markovian over 
the belief space. Hence, by using the belief space B, we can 
convert the original POSMDP into a completely observable, 
regular (albeit continuous state space) semi-Markov decision 
process (SMDP), the so-called belief state SMDP, defined as 
follows. 

Definition 2: Belief state SMDP is a tuple (B, A, Tb, Cb) such 
that 
1) B is the belief space, 
2) A is the set of actions, 
3) Tb is the belief state transition function, and  
4) Cb is the cost function, 

where the updated belief state after action a can be calculated 
from the previous belief state from (2). The belief state 
transition function is given by (3). We also need a model for 
system cost based on belief states: 

( , ) ( ) ( , )t t t t
b s

C b a b s k s a= ∑  (4) 

which denotes the immediate cost incurred by action at issued 
in current state bt. Here, k(s,at) denotes the immediate cost of 
action at in state s.  

We have thus transformed the problem formulation based 
on the POSMDP model to one based on belief-state SMDP 
model. The optimal policy, π*(b) of the belief-state SMDP 
representation is also optimal for the physical-state POSMDP 
representation. Notice that the belief-state SMDP model is 
deterministic and fully observable because it already takes into 
account the uncertainty.  

B. Policy Representation 
Finding an optimal power management policy requires a 
decision-making strategy which maps the belief states to 
actions. In this paper, we develop a policy generation technique 
by using well-known dynamic programming method, which in 
turn relies on principles of overlapping subproblems, optimal 
substructures, and memorization. We speak of the minimum 
value of a system state as the expected infinite discounted sum 
of cost that the system will accrue if it starts in that state and 
executes the optimal policy [35]. The goal is to minimize some 
cumulative function of the costs, typically the infinite-horizon 
sum under a discounting factor γ (usually just under 1). This 
would look like: 
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where γ is a discount factor, 0 ≤ γ < 1, the exponent t denotes the 
duration of time that the system spends in the belief state b 

before an action a causes a transition to another state b’, and 
Cb(t) is the cost at time t. E(.) denotes the expectation value. 

The standard family of algorithms [36] to calculate the 
policy requires storage for two arrays indexed by state: value V, 
which contains real values, and policy π which contains actions. 
At the end of the algorithm, π will contain the solution and V(s0) 
will contain the discounted sum of the costs to be accrued (on 
average) by following that solution. The algorithm then has the 
following two kinds of steps, which are repeated in some order 
for all the states until no further changes take place. 
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In value iteration (cf. Fig. 7), the π array is not used; instead, 
the value of π(s) is calculated whenever it is needed. 
Substituting the calculation of π(s) into the calculation of V(s) 
gives the combined step: 
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(7) 

The first equation asserts that the value of a state b is the 
expected immediate cost plus the expected discounted cost of 
the next state, using the best available action. Assuming that the 
value function V is additive, which is reasonable in our problem 
context since the cost is defined as the energy dissipation of the 
system over time, the second equation specifies the optimal 
policy based on the optimal value function. 

Simply stated, the power manager determines the optimal 
action based on Eqn. (7) at each (e.g., time-based or 
interrupt-based) decision epoch. The task of casting the 
decision epochs to absolute time units is achieved by the system 
developer. In this paper, we consider battery operated systems 
that strive to conserve energy to extend the battery life.  

Unfortunately, it is not obvious when to stop the value 
iteration algorithm. A key result bounds the performance of the 
current greedy policy as a function of the Bellman residual of 
the current cost function [37]. It states that if the maximum 
difference between two successive cost functions is less than ε, 
then the cost of the greedy policy (i.e., the policy obtained by 
choosing, in every state, the action that minimizes the estimated 
discounted cost, using the current estimate of the cost function) 
differs from the cost function of the optimal policy by no more 
than 2εγ/(1-γ) at any state. This provides a stopping criterion for 
the algorithm.  

 

Fig. 7.  The value iteration algorithm. 

C. POSMDP-based DPM by Example  
An example of value iteration for the POSMDP model is given 
next. The purpose of the example is to show how to find the 
best action by building value functions. We consider the 
POSMDP framework of a power manager with two system 
states, S = {s1, s2}, where s1 denotes a low-power 
(low-performance) system state whereas s2 corresponds to a 
high-power (high-performance state; two actions, A = {a1, a2}, 
where a1 commands a low-voltage, low-frequency setting 
whereas a2 commands a high-voltage, high-frequency 
assignment to the system; and finally two temperature 
observations, O = {o1, o2}, where o1 corresponds to a low 
temperature range whereas o2 denotes a high temperature 
reading.  

The parameter values are given in TABLE I. We also 
specify the immediate values of the two actions. Let action a1 
have a value of 1.0 if it is issued in state s1 and 0.8 in state s2. 
Similarly, let action a2 have a value of 0.4 and 1.5 in states s1 
and s2, respectively, i.e., k(s1, a1) = 1.0, k(s2, a1) = 0.8, k(s1, a2) = 
0.4, and k(s2, a2) = 1.5. (cf. Fig. 8). 

TABLE I 
PARAMETER VALUES FOR THE EXAMPLE PROBLEM 

 

 

 

 

Fig. 8.  State transition diagram for the example problem. 

Referring to Fig. 9, the two actual system states {s1, s2} are 
labeled by belief states [1, 0] on the left (i.e., state is s1 with 
probability 1), and [0, 1] on the right (i.e., state is s2 with 
probability 1). The solid line represents the value of taking 
action a1, while the dashed line represents the value of taking 
action a2. The actual belief state is a probability distribution 
over the two states, s1 and s2. Assuming that the initial belief 
state is [0.7 0.3], we will show how to construct the value 
function from which we determine the best action (i.e., one 
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with the lowest value) when we consider only a sequence of 
two actions from any belief state (i.e., the horizon length is 2).  

The first step is to find the immediate values of choosing 
actions. For example, by applying (4), the immediate value of 
doing action a1 in the initial belief state b is 
(0.7×1.0)+(0.3×0.8) = 0.94. Similarly, the immediate value of 
performing action a2 is (0.7×0.4)+(0.3×1.5) = 0.73. Fig. 9 (a) 
graphically depicts the immediate values over the belief space 
at the current belief state. The immediate cost (horizon length 1 
value) for each action defines a linear function over belief 
space. We want to choose the action that gives the lowest value 
depending on the particular belief state. In the figure, we also 
show the partition of belief space which this value function 
imposes. The gray region denotes all the belief states where 
action a2 is the best strategy to use while the white region is the 
belief states where action a1 is the best strategy. Since the 
current belief state lies in the gray region, action a2 is the best 
available action for belief state b.  

 

 

                      (a)                                                    (b) 

Fig. 9.  A graphical representation of the belief states and value functions: (a) 
the current belief state and immediate values over the belief space, (b) next 
belief state and horizon-1 value function. 

We next show how to compute the horizon 2 value of belief 
state b given an action a2 and an observation o2 (which 
corresponds to a high temperature reading). The horizon 2 
value of a belief state is simply the value of the immediate 
action plus the value of the next action. In general, we would 
like to find the best possible value which would include 
considering all possible sequences of two actions. However, 
since in this restricted problem our immediate action is fixed, 
the immediate value is fully determined. The only question is 
what the best attainable value for the initial belief state b is 
when we perform action a2 and observe o2. We assume that 
with this information by using (2), the next belief state b’ is 
computed as [0.3 0.7]. This new belief state is the belief state 
we are in when we have one more action to perform. We know 
what the best values are for every belief state when there is a 
single action left to perform; this is exactly what our horizon 1 
value function tells us. Note that from looking at where b' is in 
the belief space, we immediately know that the best action we 
should take is a1. Therefore, the best horizon 2 value of belief 
state b, given action a2 and observation o2, is 
0.73+(0.3×1.0)+(0.7×0.8)=1.59. This value corresponds to the 
sequence of two actions: a2 followed by a1. Fig. 9 (b) illustrates 
the horizon-1 value function at the next belief state for initial 
action a2 and observation o2. 

Next we show how to compute the value of belief state b 
given only an action a2. In our problem setup, there are two 
possible observations o1 and o2. Even though we know the 
action with certainty, the observation we get is not known a 
priori. For the given belief state b, each observation has a 
certain probability associated with it. Since we know the value 
of the resulting belief state given the observation, to obtain the 
value of the belief state without knowing the observation, we 
simply weigh each resulting value by the probability that we 
will get that observation. Continuing with the previous example, 
let’s assume that when we observe o1 after action a2, from (2), 
the next belief state b’ is [0.6 0.4]. Looking at where b' is in the 
belief space, we know that the best action is a2. Therefore, the 
horizon 2 value of belief state b, given a2 and o1, is 
0.73+(0.6×0.4)+(0.4×1.5)=1.57. To summarize, starting in b 
and fixing the initial action to a2, the next best action to do is a2 
if we observe o1 and it is a1 if we observe o2.  

Similarly, we can compute the optimal strategy for b given 
the initial action is a1. More precisely, assume that if we 
observe o1 after action a1, the next belief state b’ will be [0.9 
0.1], whereas if we observe o2 after action a1, the next belief 
state b’ is [0.5 0.5]. Then, the horizon 2 value of the belief state 
b when we fix the action at a1 and observe o1 is 0.94+ 
(0.9×0.4)+(0.1×1.5)=1.45 corresponding to action a2 whereas 
if we observe o2 after a1, the horizon 2 value is 0.94+(0.5×1) 
+(0.5×0.8)=1.84 corresponding to action a1. To summarize, 
starting in b and fixing the initial action to a1, the next best 
action is a2 if we observe o1 and it is a1 if we observe o2. 

Suppose now the probabilities of getting observations o1 
and o2 for the given belief state b and action a2 are 0.45 and 
0.55, respectively. These probabilities for the given belief state 
b and action a1 are 0.75 and 0.25, respectively. Hence, the 
horizon 2 value of the belief state b when we fix the action at a2 
is (0.45×1.59)+(0.55×1.57)=1.58 and that when we fix the 
action at a1 is (0.75×1.45)+(0.25×1.84)=1.55. The optimal 
strategy for b is the one that yields the least horizon 2 value. In 
this case, the strategy whereby we “do a1 and then do a2 if o1 
and do a1 if o2” is the optimal strategy for b. 

Now if we fix the current action to be a1 and the future 
action to be the same as it is at point b (i.e., o1:a2, o2:a1), we can 
find the value of every single belief point for that particular 
strategy. This is the best strategy to use for b, but may not be the 
best strategy for other points in the belief space. To efficiently 
compute the optimal strategy for all belief points, we utilize 
“transformed horizon 1 value functions” for different initial 
actions and partition the 1-D continuous belief space into a set 
of segments, where one optimal strategy holds within each 
segment. The value function transformation and partitioning 
procedure are straightforward and omitted here for brevity. 

VI. DYNAMIC POWER MANAGEMENT 
We introduce two techniques that incorporate the proposed 
uncertainty management framework: offline and online DPM 
techniques. The offline DPM technique finds an optimal action, 
assuming that the inputs to the power manager are known in 
advance. Our approach for offline DPM is similar to 
conventional offline DPM techniques [19]-[21] in the sense 
that entire input values are known before making any decisions; 
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the difference is that in our offline DPM framework we 
consider uncertainty in reported power and delay values. On 
the other hand, the online DPM technique refers to strategies 
that attempt to find an optimal action based on information 
available at runtime. The proposed online DPM utilizes a 
Kalman filter based technique for belied state estimation to 
reduce the computational complexity.  

A. Offline Dynamic Power Management  
We construct offline a collection of policies, where a policy is a 
list of state-action pairs, usually implemented as a hash table 
with key being the state and the value being the action. Policies 
are generated in advance through extensive offline simulations 
as explained in section V. Various policies are organized into a 
decision tree where each leaf node represents a policy, as 
illustrated in Fig. 10 (a). Nodes in the decision tree are indexed 
by the parameters that characterize the performance state of the 
system, where we use the power dissipation and execution 
delay values, e.g., [18mW 20mw] and [4ns 8ns]. The best 
policy can be found by tracing the appropriate path from the 
root node to a leaf node in the decision tree using the given 
parameter values. Once a policy is located, the belief state 
probability is used as the key into the policy hash table to find 
the optimal action.  

 

 

                           (a)                                          (b) 
Fig. 10.  (a) A decision tree of policy tables (b) probability density function of 
power and delay values used to trace a path from root to a leaf node in the tree. 

In the aforementioned approach, we assume that power 
dissipation and execution times are given in the form of 
probability density functions (e.g., normal distribution) based 
on state-action pairs, as shown in Fig. 10 (b), where s1, s2, and 
s3 are defined as, <[18mW 20mW], [4ns 8ns]>, <(20mW 
22mW], (8ns 12ns]>, and <(22mW 24mW], (12ns 16ns]>, 
respectively. By doing so, we consider uncertainty in 
performance state while indexing the level of power dissipation 
and execution delay. For example, device power P is assumed 
to be a normally distributed random variable with a mean value 
of Psim and a standard deviation of ΔP induced by uncertainty, 
as illustrated in top of Fig. 10 (b).  

In our problem setup, Psim is the simulated power number 
while ΔP is the standard deviation of power values, which is 
calculated by running different tasks on the system at different 
process corners (e.g., fast, typical, and slow) available with the 
TSMC 65nm library. Furthermore, we can vary the ranges of 
power values for states (e.g., range of 2mW in [18mW 20mW] 
can be changed to the range of 4mW resulting in [17mW 

21mW]), considering a higher standard deviation (i.e., 
uncertainty). The execution times are treated in the same way. 
Then, belief state which represents the probabilities of being in 
each of the performance states is obtained as a key to policy 
hash table. For example, referring to Fig. 10 (b), suppose that 
the probabilities of being in s1, s2, and s3 are 0.3, 0.6, and 0.1 in 
terms of the power dissipation level, and 0.1, 0.5, and 0.4 in 
terms of the execution delay. Then, the belief state [b(s1) b(s2) 
b(s3)] is calculated simply as [0.2 0.55 0.25] by taking the 
average value of the two probability vectors. 

Fig. 11 summarizes the offline power management 
technique with a decision tree-based policy selection, where 
power and delay values are given as N(Psim, (ΔP)2) and N(Dsim, 
((ΔD)2). Similar to the power values, Dsim denotes the simulated 
delay number while ΔD is the standard deviation of delay 
values. When the power manager receives a performance state 
with the knowledge of previously assigned action-state pairs, 
an optimal action is selected by the PM based on the policy 
hash table, and issued to the system, which causes the system 
state to change. 

 

 

Fig. 11.  An offline power management technique. 

B. Online Dynamic Power Management  
For an online power management, belief-state transition 
probabilities are not given in advance. Note that the complexity 
of computation required by Eqn. (2) for updating the belief 
state grows rapidly with the number of state variables, making 
it infeasible for real-time applications, e.g., online DPM 
techniques. In addition, calculating exact solutions for the 
finite-horizon stochastic POSMDP problems is P-SPACE hard 
[11]. Therefore, exact solutions cannot be found for belief-state 
SMDP with more than a handful of states. Indeed, solving a 
belief-state SMDP problem is extremely expensive because of 
the complexity of calculating the exact belief state [38]. To 
overcome this difficulty, one is usually forced to estimate the 
system state by some other approaches. By doing so, the 
overwhelming complexity in deriving a power management 
policy for every possible situation is avoided. 

The basic idea of our online power management technique 
is to use the estimation of the unknown state based on a 
look-ahead search technique which also includes a step to 
predict an unknown error while estimating. Hence, we 
interleave state estimation based on “Kalman filter” technique 
[39] and policy optimization based on the value iteration 
algorithm. Details are provided below. 

We present a prediction-based online DPM technique, 
which is analytically and statistically tractable. First, assuming 
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that we know the distribution of PVT variation and observation 
noise, we can define the state and observation models simply in 
accordance with our proposed framework as follows: 

1 , ~ (0, )t t t t t tb b a u u N Q+ = + +X Y  (8) 
1 1 1 1, ~ (0, )t t t t to b v v N R+ + + += +Z  (9) 

where t denotes a time step, ut is a state noise induced by PVT 
variation which is normally distributed with zero mean and 
variance Qt, vt+1 is a temperature observation noise normally 
distributed with zero mean and variance Rt. The state transition 
matrix X includes the probabilities of transitioning from state bt 
to another state bt+1 when action at is taken, the action-input 
matrix Y relates the action input to the state, whereas the 
observation matrix Z, which maps the true state space into the 
observed space, contains the probabilities of making 
observation ot+1 when action at is taken, leading the system to 
enter state st+1. In practice, X, Y, and Z might change with each 
time step or measurement, but here we assume they are 
constant. 

 

 

Fig. 12.  The structure of online power management. 

With above-mentioned parameters, the structure of our 
proposed online DPM is provided in Fig. 123. The estimation 
algorithm performs the state estimation based on KF as follows. 
a)   Initialize: The algorithm initializes the first state bt as b0, 

and the error covariance matrix Et, which is a measure of the 
estimated accuracy of the state prediction, to a diagonal 
matrix where the diagonal elements are set to some fixed 
value, signifying that the initial system state is uncertain. 

b) Predict: The algorithm computes the predicted (a priori) 
state 1tb +

− and the predicted (a priori) error covariance 

matrix 1tE +

−
. 

c) Update: The algorithm first computes the optimal Kalman 
gain Kt+1 and uses it to produce an updated (a posteriori) 
state estimate, bt+1, as a linear combination of 1tb +

− and the 

 
3 The subscript “-“denotes that the value calculated at the prediction stage will 
be updated in the correction stage.  

Kalman gain-weighted residue between an actual 
observation ot+1 and the predicted observation 1tb +

−Z . The 
algorithm also updates the error covariance matrix.  

This iterative approach is one of the appealing features of the 
Kalman filter.  

Simply speaking, the proposed online DPM technique 
estimates the next belief state based on the KF technique, and 
computes the belief-state transition probabilities and 
observation functions by simply deriving the maximum 
likelihood estimates, while storing the occurrence frequencies. 
Fig. 13 shows the proposed online DPM technique based on the 
Kalman filter technique, where an appropriate action is given to 
the system by utilizing the value iteration algorithm (see Fig. 7) 
after estimating the belief state.  

 

Fig. 13.  An online power management technique. 
 

VII. EXPERIMENTAL RESULTS 
In the experimental setup, we implemented a 32bit RISC 
processor compatible with [40] in TSMC 65nmLP library, 
which has 3 optional operating voltages (1.08V, 1.20V, and 
1.29V) and dual threshold voltages. We developed the 
proposed framework in Matlab, which allows us to rapidly 
consider multiple scenarios with respect to the magnitude and 
distribution of PVT variations.  

To achieve accurate power values for dynamic power and 
leakage power consumption, we first generated a forward SAIF 
(Switching Activity Interchange File) after synthesizing into 
gate-level netlist. Second, we obtained a backward SAIF by 
back-annotated RTL simulation with the Specman function 
simulator [41], and then executed the Power Compiler [29], 
where the switching activities of the netlist are incorporated so 
as to calculate accurately the dynamic and static power 
consumption (cf. Fig. 14).  

 

 
Fig. 14.  Flow of power simulation. 

In the first experiment, we analyzed characteristics of the 
designed processor in terms of power dissipation by executing 
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SPECint2000 benchmark programs [42] where we include data 
for only three of the benchmark programs: gcc, gap, and gzip. 
TABLE II reports the power dissipation distribution of the 
processor, indicating that certain components of the processor 
such as the execution units and the register units have a very 
high power density. Fig. 15 shows leakage power variation on 
the processor, obtained by varying the process corner cases.  

TABLE II                                                           
THE DISTRIBUTION IN PERCENTAGE OF POWER DISSIPATION IN THE PROCESSOR 

(NO CACHE) 

 

 

 

Fig. 15.  Leakage power for different levels of variability. 

The second experiment is to demonstrate the effectiveness 
of the proposed DPM under uncertainty management 
framework. First, we set the parameter values for the evaluation 
of the proposed framework as shown in TABLE III, where we 
have sets of three actions {a1, a2, a3}, where a1 = [1.08V / 
500MHz], a2 = [1.20V / 650MHz], and a3 = [1.29V / 800MHz], 
and observations {o1, o2, o3}. The range of observations is 
defined by the temperature thresholds based on the ACPI 
(Advanced Configuration and Power Interface) specification 
[43]. The expected cost rate is defined as the power-delay 
product (PDP) of the processor for each state and action pair, 
where we set the range of performance states {s1, s2, s3} as a 
combination of power dissipation and execution delay values 
for the processor. For example, cost k(s1, a1) is the power-delay 
product of the system that stays in state s1 when action a1 is 
taken, i.e., 18mW (least power) × 12nS (highest delay) = 216pJ. 
Similarly, k(s1, a2) and k(s1, a3) are calculated as 20.75mW 
(medium power) × 10.5nS (medium delay) ≈ 218pJ, and 
23.5mW (highest power) × 9nS (least delay) = 212pJ, 
respectively. Note that we define different cost values for a 
system state (e.g., s1), since different actions (e.g., a1, a2, or a3) 
can cause the system to transition into the same system state 

(i.e., the system maintains the same range of performance 
values) with difference cost values. We achieved these values 
by running the Power Compiler while varying the levels of 
operating voltage and frequency.  

TABLE III                                                                     
PARAMETER VALUES FOR A GIVEN EXPERIMENT 

 

 

We arbitrarily chose a sequence of 50 application program 
runs, comprising of instances of gcc, gap, and gzip benchmarks, 
e.g., gap1 - gzip2 - gap3 - gcc4 -…- gap50, where programi is the 
i-th program in the sequence. The sequence of 50 application 
programs is executed on the processor to calculate the belief 
states based on the estimated temperature which serves as the 
observation. Because we do not have a packaged IC equipped 
with a thermal sensor to report the on-chip temperature, we 
estimate the on-chip temperature by utilizing  

( )chip A JA JTT T P θ ψ= + ⋅ −  (10) 

based on the parameter values extracted from the commercial 
data sheet for a PBGA package [44]. Note that TA is the ambient 
temperature, θJA is the thermal resistance for 
junction-to-ambient, ψJT denotes the junction-to-top of package 
thermal characterization parameter, and P is the power 
dissipation. Next, the belief states are evaluated based on the 
actions and observations over the state space as the processor 
executes the sequence of programs.  

Fig. 16 shows the trace of belief state for state s1, s2, and s3, 
where we use the Kalman filter estimation technique of the 
proposed online DPM framework. We set that the values of 
PVT variation variance Q and observation noise variance R 
equal to 1.1, where we achieved the probability density 
function for the power consumption of the processor such that 
the mean value is 25mW and covariance is 1.1 (i.e., N(25 1.1). 
In our experiment, the time steps are abstractly defined and the 
power manager issues a command at each time step (i.e., 
decision epochs), where observations are made when each 
program in the sequence has been completed. 
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Fig. 16.  Trace of belief state for state estimation. 

Simulations reported in Fig. 17 show the results of the 
policy generation algorithm based on the information provided 
in TABLE III and Fig. 16. We set the discount factor as 0.5 
when evaluating the value function. The optimal action is 
chosen to minimize the value function.  

 

Fig. 17.  Evaluation of policy generation algorithm. 

In the third experiment, we investigate how robustly the 
proposed approach can handle variability during the power 
management process by comparing with various operating 
conditions (i.e., worst and best corners). The optimal DPM 
policy is achieved by evaluating the value function with the 
derived state transition probabilities. In our approach, we 
performed tasks while varying the operating conditions, and 
identifies the most probable system state given noisy 
temperature observations. Table IV summarizes these 
simulation results in terms of power, energy, and normalized 
energy-delay-product (EDP) as the figure of merit. Clearly, the 
uncertainty-aware DPM approach cannot do any better than a 
conventional DPM at the best corner case. The expectation, 
however, is that it will outperform the conventional DPM at the 
worst corner case, while ensuring energy efficiency. It is also 
clearly seen that a lot of silicon performance is left untapped 
under the worst corner-case assumption.  

Table IV                                                             
COMPARING RESULTS OF OUR PROPOSED APPROACH WITH THE CORNER-BASED 

RESULTS 
 

The fourth experiment is designed to evaluate the proposed 
offline/online DPM techniques by capturing the energy-saving 
opportunities of the system. In both DPM policies, we compare 
the performance of the proposed technique with a conventional 
DPM approach, similar to that presented in [45], which can be 
defined simply as follows (denoted by Greedy), where DVFS1 
< DVFS2 < DVFS3 in terms of operating voltage and frequency 
values.  
Greedy: Apply the following DPM strategy. 
- When the workload of tasks (e.g., the arrival rate of tasks) is 

low, we use the lowest DVFS1 value. 
- When the workload of tasks is high, we use the highest 

DVFS3 value. Otherwise, we use the DVFS2 value. 
 

Fig. 18.  Power consumption of offline / online DPM policies.

Note that we consider the overhead of power-mode transitions 
during simulation as illustrated in [46]. The simulation results 
for the proposed offline and online DPM technique are shown 
in Fig. 18, where the online DPM policy tends to dynamically 
adapt to environmental changes, which can incur a mode 
transition penalty. This is because the online DPM algorithm 
performs prediction-correction procedure to react to the 
environmental changes. Table V presents the simulation results 
in terms of power savings (%). It includes the specific power 
saving result for each performance state. For example, there is 
10.5% power savings in the state s3 by the offline DPM, 
whereas there is 7.4% power penalty in the state s1. The table 
shows that the proposed DPM policies result in power savings 
when the system is in the state s2 and s3. However, there is no 
significant impact for online DPM in terms of average power 
savings.  



To appear in IEEE Trans. on VLSI Systems, 2008 13

Table V 
COMPARISON OF OUR DPM POLICIES WITH THE CONVENTIONAL APPROACH IN 

TERMS OF POWER SAVINGS 
 

 

Table VI gives the result of the energy savings by the 
proposed DPM techniques. Contrary to the little impacts on 
power savings, this result demonstrates that our approaches 
greatly reduce the total energy dissipation especially in the state 
s1 and s2. For example, there is 21.1% energy savings in state s1 
by the offline DPM policy, although we have 7.4% power 
penalty by running the same DPM policy. The conventional 
DPM approach (which is unaware of the PVT variations), 
however, can outperform slightly our DPM technique in terms 
of energy savings only for the case that the system is in state s3, 
where our online DPM technique produces an a priori estimate 
for the next time step which may result in energy waste. 

Overall, the proposed DPM techniques achieve energy 
savings in the presence of the PVT variations up to average of 
10.3% and 6.8% in the case of offline and online policies, 
respectively. Furthermore, it is clearly seen that if we focus on 
conserving energy in low performance settings, we can achieve 
energy saving up to 21.1%, and 16.8% in the case of offline and 
online policies, respectively (see energy saving in state s1). This 
scenario typically occurs in applications that require low 
voltage-frequency value for their operations.  

Table VI 
COMPARISON OF OUR DPM POLICIES WITH THE CONVENTIONAL APPROACH IN 

TERMS OF ENERGY SAVINGS 
 

 

VIII. CONCLUSION 
We addressed the problem of system-level power management 
subject to variability in system performance parameters and 
uncertainty in observations made on the system. In particular, 
we presented a system-level power management approach 
based on a stochastic decision making framework i.e., a 
partially observable Markovian decision process model, which 
is capable of coping with uncertainty in system state and 
observations. This uncertainty management framework 
guarantees to find an optimal power management policy by 
utilizing a value iteration algorithm. We implemented both 
offline and online DPM techniques and reported experimental 
results demonstrating their effectiveness in robustly reducing 
total system energy dissipation when running a variety of 
applications.  
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