
 1

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs
Chang-woo Kang and Massoud Pedram

Abstract
In this paper, we present area and performance-driven clustering
techniques for coarse-grained, antifuse-based FPGAs. A macro
logic cell in this class of FPGAs has multiple inputs and multiple
outputs. Starting with this macro cell, a library of small logic cells
can be generated and a target network was mapped with the
library. For the minimum-area clustering, our algorithm minimizes
the number of required macro logic cells to cover a network. Two
linear equations were set up and we found the optimal mapping
solution by using the equations. For the performance-driven
clustering, the number of macro logic cells on the critical path is
minimized by using the extension of Lawler’s algorithm. The
results show that the area-driven clustering algorithm reduced the
number of macro logic cells by 12.29% and the performance-
driven clustering reduced the maximum depth by 44.75%
compared to a commercial tool.

1. Introduction
Field programmable gate arrays (FPGAs) can provide many
advantages over standard cells. Fast time-to-market satisfies
industry designers to keep up with newly created standards, and
configurability provides flexible hardware on demand of both new
standards without fabricating a new chip. On the other hand, there
are some aspects, which must be significantly improved in the near
future. Area, speed, and power dissipation are still far behind
standard cells. The ratios of area, speed, and power dissipation of
SRAM-based FPGAs compared to static CMOS implementation
are 10x, 3x, and 100x, respectively, according to [7] and [8].

Coarse-grained, antifuse-based FPGAs have emerged as a
promising technology for small area, high speed, and low power.
Figure 1 shows a coarse-grained, antifuse-based pASIC3 logic cell
[9], which has 29 inputs including the clock and five outputs. The
function of the logic cell is determined by the logic levels applied
to the inputs of the AND gates and multiplexers. The high logic
capacity and fan-in of the logic cell accommodate many user
functions with a single level of logic delay. Coarse-grained,
antifuse-based FPGA architecture demands highly intelligent CAD
algorithms, because the architecture provides tremendous flexibility
with small hardware overhead. For example, the size of an antifuse,
to connect two metal wires is smaller than a via [9].

In this paper, we present both area-driven and performance-
driven clustering techniques. Even we target specific logic cell
architecture, our method can be applied to similar type of coarse-
grained, antifuse FPGAs with slight modification. We have divided
it into several base gates and then mapped a network. After
technology mapping, we found the minimum number of macro
logic cells to cover the network by setting up two linear equations.
From the equations, we found either the minimum crossing points
or the minimum value under certain ranges. For performance-driven
clustering, we minimized the number of pASIC3 logic cells on the
critical path by optimal labeling and clustering. Slack-time
relaxation was applied to minimize logic duplication without
violating the maximum required labels at primary outputs. Merging
was done by randomly selecting a cluster and greedily merging
closely located clusters.

This paper is organized as follows: In section 2, a brief
background is provided. The area-driven clustering algorithm is
presented in section 3. The performance-driven clustering
algorithm is discussed in section 4. In section 5, experimental
results are provided. Finally, we conclude in section 6.

1

1

1

1

1

1

A1

A2

A3
A4

A5

A6

OS

OP

B1

B2

C1
C2

MP

MS

D1

D2

E1

E2

NP

NS

F1

F2

F3
F4

F5

F6

AZ

NZ

FZ

mux1

mux2

mux3

mux4

OZ

QZ

Clock

QS

QR

Figure 1: pASIC3 logic cell

2. Background
Clustering techniques for two different technologies, SRAM and
antifuse, are somewhat different. A lookup table is a universal
function table, which can realize any function if and only if the
number of inputs of the function is not larger than that of the
lookup table. The number of lookup tables inside a macro
programmable block limits clustering. However, a coarse-grained,
antifuse macro logic cell consists of gates connected by
multiplexers and the logic cell is not universal, as shown in Figure
1. Since it is too difficult to map a network with multiple output
logic cells, the macro logic cell must be divided into small base
gates and library cells are generated from those base gates. After
technology mapping, the library cells must be packed to fit the
macro logic cell. The constraint for packing is more stringent.

Clustering techniques for SRAM-based FPGAs have been
evolving [0]-[13]. The algorithms relied on good seed selection and
smart gain functions to evaluate gain of absorbing a neighbor node
according to their objectives. A dynamic programming method was
presented to find the minimum number of pAISC3 logic cells to
cover a mapped network [14]. The pASIC3 logic cell was divided
into several base gates, and library cells were generated from those
base gates by bridging inputs or sticking inputs to Vdd or GND.
Each cell was generated from different base gates and depending on
which base-gates generated the cell, the cell type was determined.
Since there can be different combinations to compose a pASIC3
logic cell, all combinations could be enumerated. An extension of
coin-change problem, which is solvable by a dynamic programming,
gave the optimal solution.

For this research, we have generated the library cells as in [14].
Therefore, we adopt the terminology of that reference. There are
four different programmable gate groups inside a pASIC3 logic cell.

 2

We call each of these gate groups a base gate as shown in Figure 2.
After deriving base gates, cell generation is performed for each
base gate. Cell personalization is done either by assigning constant
1 or 0 to some of the inputs or by connecting some of the inputs
together. We call the former operation “sticking” and the latter
operation “bridging”. By applying all possible combinations of
these two operations to a base gate, many different library cells can
be generated. We call those personalized cells “primitive cells”.
However, some of the primitive cells generated from different base
gates may have the same Boolean function. In fact, we can draw a
Venn’s diagram to depict the set relationship among the primitive
cells that are generated from different base gates, as depicted in
Figure 3. Note that the total number of primitive cells of any type is
more than 5,000. Finally, we filtered out rarely-used primitive cells
based on experiments with MCNC91 benchmark circuits.
Consequently, we selected 886 primitive cells shown in Table 1.
All library generation processing has been automated with perl
scripts.

Table 1: Cell distribution for the selected primitive cells.

Type set SAD SACD SBCD SC SD SCD SABCD

Cells 3 5 20 714 110 28 6

3. Area-Driven Clustering
In this section, we provide an algorithm to find the minimum
number of pASIC3 logic cells to cover a mapped network.

3.1 Problem Statement
After a mapped netlist is generated after technology mapping, we
must solve the problem of clustering the primitive cells used in the
mapped netlist to the pASIC3 logic cells. Routing cost of the
connections in the mapped netlist tends to be large for the FPGAs.
Since the mapping is performed before placement and routing,
physical information is not available. In addition, antifuse-based
FPGAs have relatively rich routing resources since routing switches
are abundant and many layers of metal wires can cross over the
pASIC3 logic cells [9]. Thus, we opted to minimize the total area
taken by the pASIC3 logic cells during the clustering and pASIC3
assignment step.

Problem 1: Given a mapped netlist, we want to find the minimum
number of pASIC3 logic cells that can realize the network.

3.2 Set containment relations
Base gates can be put into two classes: simple and complex base
gates. The complex base gate is one that consists of multiple base
gates and internal multiplexers, while the simple base gate cannot
be composed by other base gates. Base-gates C and D are complex,
whereas base-gates A and B are simple. The inclusion relationship
between these base-gates is expressed as follows:

Notice that when both a simple base gate and a complex base gate
can implement a primitive cell, the simple base gate will be selected
for realizing the function of the primitive cell. Realizing the
function by the complex base gate not only wastes area of the
pASIC3 logic cell but also needlessly increases the circuit delay.
Therefore, we can safely state that base-gates C and D are inferior
to base-gates A and B when they implement the same logic function.

Internal multiplexers in pASIC3 logic cells were used to divide
the logic cell into four base gates. Sometimes, by utilizing these
internal multiplexers, a collection of primitive cells may be
transformed to a single primitive cell of a different type. The
transformation will reduce area, delay, and power dissipation by
utilizing internally hard-wired connections inside the pASIC3 logic
cell.

3.3 Minimum number of pASIC3 logic cells with given base
gates
Given the number of base gates for each type, the key question is
how many pASIC3 logic cells are required to contain all of the base
gates. There are three types of pASIC3: 2A + 2B, 2A+C, and
A+B+D. A type 2A+2B pASIC3 logic cell is defined as the
pASIC3 logic cell that has two base-gate A’s and two base-gate B’s
in it. Other types can be defined similarly. Note that only one base-
gate D can fit in one pASIC3 logic cell from its logic architecture in
Figure 1.
Theorem 1: Let nA denote the number of base-gates A. nB, nC, and
nD are similarly defined. The minimum number of pASIC3 logic
cells NpASIC3 needed to implement a mapped netlist containing nA, nB,
nC, and nD base-gates can analytically be calculated as follows:

()3 1 2

1

2

max ,

,
2

,

,
2

,

pASIC p p

A D
D A

p

D

B D
C D B

p

D C

N N N

n n
if n n

N
n otherwise

n n
n if n n

N
n n otherwise

=

+ <= 


+ + <= 
 +

(2)

Proof: At most two base-gate A’s can be packed inside a single
pASIC3 logic cell. Similarly at most one base-gate D can be packed
inside a single logic cell but it uses only one base-gate A. Therefore,
if one base-gate D is packed, there exists an empty space for an
base-gate A. When nA is larger than nD. The lower bound on the

number of pASIC3 logic cell is
1 2 2

A D A D
p D

n n n n
N n

− += + = .

However, when nA is equal to or less than nD, since there should be
enough spaces for base-gate A’s, which are not occupied by base-
gate D’s, the low bound becomes

1p DN n= . Similar argument yields

1

1

1

1

(a) base-gate A

(b) base-gate B (c) base-gate C

a
b
c
d
e
f

a
b
c
d
e

a

b
c
d
e

f

g
h
i
j

k

1

g

h
i
j

a
b
c
d

e
f

l
k

(d) base-gate D

Figure 2: Base gates extracted from pASIC3 logic cell

A
B

C

D

SD SAD SACD
SABCD

SBCD SCD SC

Figure 3: Venn’s diagram of for the set of cells that
can be personalized from base gates

basegate B basegate C

basegate B basegate D

basegate A basegate D

⊂
⊂
⊂

(1)

 3

another lower bound:
2 2 2

B D B D
p C D C

n n n n
N n n n

− += + + = + for nD <

nB and
2p D CN n n= + for nD ≥ nB. Clearly, the overall lower bound is

the maximum of these two bounds, which is the desired result. !

3.4 Type distribution table
Theorem 1 can be used to significantly simplify the problem. After
technology mapping, we count the number of primitive cells of
specific types. Let nsΓ denote the number of the primitive cells of
type Γ in the mapped network. For example, nsAD is the number of
type-AD primitive cells, i.e., the number of those cells that belong
to set SAD. The problem can be restated follows:
Problem 2: Given a primitive cell library generated from the
pASIC3 logic cell structure and a mapped network comprising of
the primitive cells, we want to find the best choices of base gates A,
B, C and D for realizing all of the primitive cells in the network so
as to minimize the number of required pASIC3 logic cells.
Note that after the base gate counts are known, the minimum
number of logic cells can be computed straightforwardly based on
Theorem 1.

Table 2: The type distribution table for primitive cell to base-
gate mapping.

of Base-gate types # of primitive

cell types A B C D

nsAD nsAD 0 0 0

nsACD x 0 nsACD – x 0

nsBCD 0 nsBCD 0 0

nsD 0 0 0 nsD

nsC 0 0 nsC 0

nsCD 0 0 nsCD –y y

nsABCD z nsABCD – z 0 0
Table 2 shows how a primitive cell of type Γ in the mapped
network is realized with a base gate of type A, B, C, or D. Notice
that many of the primitive cell types have a unique realization in a
single base-gate type. Examples include types BCD of primitive
cells. Note that a type BCD primitive cell should be realized only
using type B base gates because of the inclusion relationship of
equation (1) and the fact that complex base-gates are always more
costly than the corresponding simple base gates. Three of the
primitive cell types, however, can be realized by using either of two
base gates. For example type ACD primitive cell can be realized as
either type A or type C base gate. This table shows that, to solve
problem 2, all we have to do is to determine variables x, y and z
where x denotes the number of primitive cells of type ACD that are
realized as a type A primitive gate, y denotes the number of
primitive cells of type CD that are realized as a type D primitive
gate, and z denotes the number of primitive cells of type ABCD
that are realized as a type A primitive gate.
Problem 3: Given the occurrence count of different primitive cell
types in a mapped network, find the values of variables x, y and z
so as to minimize the number of pASIC3 logic cells required to
cover the network.

3.5 Problem formulation and solution
We formulate Problem 3 as a linear programming problem and then
obtain the optimal solution by finding either the minimum point of
an intersected plane of two equations [0] or the minimum point of
an equation that is always above the other within certain ranges of
variables. Equation (2) can be restated as in (3).

(){ }

()

() ()

3 1 2

1

2

min max (, ,), (, ,)

0 ;0 ;0

1
,

2
,

1
,

2

pASIC p p

ACD CD ABCD

AD D D AD
p

D

BCD ABCD D ACD C CD

p D BCD ABCD

D ACD

N N x y z N x y z

x ns y ns z ns

ns x z ns y if ns y ns x z
N

ns y otherwise

ns ns z ns y ns x ns ns

N if ns y ns ns z

ns ns x n

=

≤ ≤ ≤ ≤ ≤ ≤

 + + + + + < + +=
 +

+ − + − + − + +

= + < + −
+ − + ,C CDs ns otherwise





 +


(3)

The brute-force algorithm is to search for the optimal solution
by trying out every possible combinations of x, y, and z within their
allowed ranges (0 ≤ x ≤ nsACD, 0 ≤ y ≤ nsCD, 0 ≤ z ≤ nsABCD). The
computational complexity, however, is ()ACD CD ABCDO ns ns ns× × ,

which can be quite high. Fortunately, equation (3) has an important
property that allows us to speed up the search: As x, y, and z
increase, Np1 increases but Np2 decreases. Therefore, within allowed
ranges of x, y, and z, equations for Np1 and Np2 may intersect in a
plane or one equation is above the other all the time. We explain
the solution for the two cases as follows.
Case 1: When Np1 and Np2 intersect in a plane, at the intersected
plane, Np1 and Np2 become equal:

where a, b, c, and d are coefficients of an equation of a plane after
the subtraction. All points in this plane guarantee that logic cells are
full because Np1 and Np2 are equal but choosing one arbitrary point
on the plane may not give the optimal solution. Therefore, we need
to find the point that gives the optimal solution in this plane. Notice
that we should consider only points on the plane within the
specified ranges for x, y, and z. Further more, we need to check
only corners of the plane because of the property of Np1 and Np2
mentioned above.
Case 2: Np1 and Np2 may not intersect at all, resulting in one
equation lying above the other in the ranges of x, y, and z. In this
case, simply, two points are evaluated: (x=0, y= 0, z = 0) and (x =
nsACD, y = nsCD, z = nsABCD). If Np1 is larger than Np2 at x=0, y= 0,
and z = 0, Np1(x=0 , y= 0, z = 0) is the minimum solution.
Otherwise, Np2(x = nsACD, y = nsCD, z = nsABCD) is the minimum
solution.

The worst case of the above algorithm is when it requires
checking all of the candidate points. Those candidate points can be
enumerated by setting minimum or maximum values to variables
except one variable. Therefore, the complexity is 1(2)kO k −⋅ where

k is the number of variables. In this case, k=3. Notice that the
computational complexity of this algorithm is independent of the
network size.

In order for a clustering algorithm to cluster primitive cells with
the minimum number of pASIC3 logic cells, we need to know the
distribution of pASIC3 logic cell types as well. Let us define n2A+2B
as the number of type 2A+2B pASIC3 logic cells, and n2A+2B and
n2A+C can be defined similarly. Then the following equations
compute the number of pASIC3 logic cells for each type:

() ()
2

2

2 2

,

2

max ,
2 2

A B D D

A AD A B D B BCD ABCD A B D

A C ACD C CD

A A A C

A B
A B

n ns y

n ns x z n n ns ns z n

n ns x ns ns y

n n n

n n
n

+ +

+ + + +

+

+

+

= +
= + + − = + − −

= − + + −
= −

    =         

(5)

() () ()1 2, , , , , , 0p pF x y z N x y z N x y z ax by cz d= − = + + + = (4)

 4

3.6 Clustering
A cluster is a group of primitive cells, which can be implemented in
a pASIC3 logic cell. Our solution so far does not take into account
the placement and routing information. The interconnect cost must
be considered carefully so as not to pack nodes, which are placed
far away from each other. To address this issue, first, we perform a
global placement of the mapped network comprising of the
primitive cells by using a state-of-the-art placement package (i.e.,
DRAGON2000 [19].) The placement result is used to specify the
spatial proximity of primitive cells. Next, we decide which base
gate will realize each primitive cell in a deterministic order
according to a solution presented. Then, we randomly pick a node,
and the node becomes a seed for a cluster. Then, we try to find the
closest node to this cluster. A simple algorithm checks if the node
can be merged into the cluster according to the distribution of types
of pASIC3 logic cells. Searching for a new node repeats until the
cluster is full. This whole procedure continues until all nodes are
absorbed in clusters. We implemented this simple algorithm to
make sure the correctness for real circuits. We are under
development of algorithms to improve performance subject to the
minimum area constraint.

4. Performance-Driven Clustering
In this section, we present a labeling algorithm to minimize the
number of pASIC3 logic cells on the longest input-output path and
provide a clustering algorithm with slack-time relaxation.

4.1 Problem statement
Delay caused by inter-cluster interconnect, which connects pASIC3
logic cells through interconnect wires and antifuses, tends to be
much larger than the delay caused by intra-cluster interconnect.
Therefore, we can assume that inter-cluster delay has a unit delay
while the intra-cluster delay is negligible. This assumption is
reasonable because no placement and routing information is known
and the inter-cluster interconnect delay is much longer than the
intra-cluster interconnect delay. The performance-driven clustering
problem can be stated as follows.
Problem statement: A combinational network can be represented
as a directed acyclic graph G = (V, E), where V is the set of nodes,
and E is the set of directed edges. Each node in V represents a
primitive cell in the network and each edge (u, v) in E represents an
interconnection between primitive cells u and v in the network.
Problem 4: Given a network G mapped with the library generated.
We want to find a clustering solution so that the number of pASIC3
cells on the critical path is the minimum.
Notice that each cluster must be feasible in the sense that it must be
realizable with a single a pASIC3 logic cell. label(u) denotes the
label of node u in the network.

4.2 Multi-dimensional labeling algorithm
When each node has a fixed and known size, the clustering
constraint is monotone, and the unit delay model is used, Lawler’s
algorithm guarantees the minimum number of clusters on the
critical path for a combinational network [15] while no cluster size
exceeds the maximum size constraint. Recall that a clustering
constraint is monotone if and only if any connected subset of nodes
in a feasible cluster is also feasible.

The clustering constraint for our problem is monotone as well.
More precisely, when a collection of primitive cells in the mapped
network can be realized in a pASIC3 logic cell, a subset of these
primitive cells can also be realized in a single pASIC3 cell. We call
this constraint a resource constraint. We propose a labeling

algorithm to guarantee the optimal solution, which is subject to the
resource constraint. The pseudo-code for the algorithm is provided
in Figure 4. Notice that since multiple base gates can realize a node,
those base gates must be checked to create a cluster. In addition,
according to the topological containment described in section 3.2,
some base gates are inferior to others. Therefore, inferior base gates
can be dropped as was done for the area-driven clustering. This
significantly reduces the complexity of generating clusters during
the labeling phase.

The algorithm starts by setting all labels of primary inputs to
zero. In line 12, candidate base gates for the node are found to
create clusters for different base gates. In lines 13 to 21, we create
all feasible clusters comprising of node v and its fanin nodes with

label !. If there exists any feasible cluster, the label of node v

remains at !. If no feasible cluster exists, the label is incremented

by one. The total number of clusters for feasibility test in line 14 is
an important factor to determine for computational complexity of
the algorithm. We denote this number with k. In addition, up to four
base-gates can fit in a pASIC3 logic cell. Therefore, if the number

of fanin nodes with label ! in line 14 is larger than three fanins, then

we will not have to generate clusters for feasibility test. We denote

the number of fanin nodes with label !, which is less than four, with

f. m denotes the number of base gates for node v. Since there can be

f fanin nodes with label !, each of which can have up to k clusters,

node v can choose a base gate out of m base gates, the total clusters
for feasibility test generated in line 14 will be at most fm k× , which
is independent of network size. Therefore, the complexity of this
algorithm becomes ()fO V m k× × , where |V| is the number of

nodes.
An example is provided in Figure 5. For the sake of simplicity,

only two cluster (pASIC3 logic cell) types are considered: 2A+2B

1.1.1.1. Algorithm MultiAlgorithm MultiAlgorithm MultiAlgorithm Multi----dimensional labelingdimensional labelingdimensional labelingdimensional labeling

2.2.2.2. BeginBeginBeginBegin

3. foreach primary input v do

4. label(v) = 0;

5. end for;

6. Generate list T of non-primary inputs in

7. topological order;

8. While T is not empty, then

9. Remove node v from the head of T;

10. ! = max{label(u) | u ∈ input(v)};
11. clusterSet(v) = ∅ ;

12. Generate list M of base gates for node v;

13. foreach base gate from M,

14. R = form clusters from node v and clusters with

15. label ! in fanins of node v
16. foreach cluster from R,

17. if cluster is feasible for pASIC3 realization,

18. clusterSet(v) = clusterSet(v) ∪ cluster;
19. end if;

20. end for;

21. end for;

22. if clusterSet(v) ≠ ∅ , then

23. label(v) = !;
24. else

25. label(v) = ! + 1;
26. end if;

27. end while;

28.28.28.28. End

Figure 4: Multi-dimensional labeling algorithm

 5

and 2A+C. Each character annotation in a node represents a
candidate base gate for realization. There can be different cluster
types. Selecting the cluster type for area minimization during the
merging phase is an open question. We will describe our strategy in
section 4.4.

AC

A

B

AB

AC
BAC

B

ABAB

A

A(0)
C(0)

A(0)

A-A-B(0)
C-A-A(0)

B(0)

A(0)

B-A-A(0)
B-A-B(0)

B-A-B-A(0)

A(1)
B(1)

A-A(1)
A-C(1)
B-A(1) A-A-B(1)

B-A-B(1)

A-B(1)
B-B(1)

cluster1

cluster2

cluster3

cluster4

Figure 5: Clustering example.

4.3 Slack-time relaxation
The labeling algorithm generates a cluster solution where some
clusters can cover identical nodes. If there is no slack-time
relaxation, the nodes must be duplicated in these clusters. For
example, cluster3 and cluster4 cover the same node. If a designer
specifies a required maximum label in the primary outputs, then we
can compute the slack time for each node by subtracting the label
of the node from the required label at the node. A positive slack of
a node denotes the amount by which the node can be slowed down
without increasing the maximum label. Therefore, we can sort
nodes by their descending slack values. Next, we process each node
from the sorted order. If other clusters cover a fanin node of the
current node and the slack of the node is positive, this will tell us
that the fanin node can be removed from the cluster, which contains
the node and its fanin node. By doing this, the current node will
decrease its slack by one. If this operation changes the slack time of
the fanin node, then the slack time of transitive fanin cone of the
node is computed again. This procedure prevents unnecessary node
duplication while the required maximum label is still met.

4.4 Merging algorithm
After finding all clusters in a network, we may be able to merge
some of these clusters if the merging still results in a feasible
cluster (one that can be mapped to a single pASIC3 logic cell.) In
order to get insight about how to merge clusters, we performed a
global placement of the clustered network by using DRAGON2000
[19]. We then randomly choose a seed cluster and find the closest
cluster to it (one with the shortest Euclidean distance from the seed
cluster.) We then attempt to merge the two clusters into one. Of
course, the merged cluster must be feasible. If the merged cluster
still has room in it, then we continue to look for another nearby
cluster. This process is continued until the merged cluster is full.
Next, we do the same expansion/merging process starting with
another seed cluster. This procedure is repeated until no cluster
with low area utilization is left or until no more merging is possible.

5. Experiment Results
We have selected 18 large combinational circuits from the
MCNC91 benchmark. SIS [17] reads the circuits in blif format.

To evaluate our library generation and area-driven clustering,
we compare our results to those from a commercial tool, called
QuickWorks 4.1 from QuickLogic. For QuickWorks 4.1, the
following options were selected to minimize area:
Logic optimization: level – technology map, mode-overnight, type-
area, and no buffer insertion

Placement and Route: overnight
QuickWorks uses the term cell fragment to indicate a library

cell generated from a pASIC3 logic cell. The results were taken
after placement [16]. For our simulation set-up, the library was
read and script.rugged was used to optimize a circuit. SIS was used
for technology mapping with the library. We estimated the
minimum number of logic cells by using our algorithms, PackGen-
area. Table 3 reports the results of the area-driven clustering. In
most of the cases, PackGen-area used a fewer primitive cells than
QuickWorks. PackGen-area reduced the number of pASIC3 logic
cells by 12.29% on average compared to QuickWorks. On the other
hand, PackGen-area gives more depth of pASIC3 logic cells than
QuickWorks for many cases. For this paper, we did not apply
algorithms to minimize the depth. Various heuristic algorithms are
under development. For example, picking up a seed node with high
probability of reducing depth will reduce the depth than randomly
selecting a seed, and so forth.

Results of the performance-driven clustering algorithm, called
PackGen-delay, are provided in Table 4. QuickWorks is set to
minimize delay during logic optimization. Placement and routing is
also set to the overnight mode for the best result. The maximum
depth of a circuit in the table is the number of pASIC3 logic cells
on the longest input-output path. The comparison of the numbers of
primitive cells before and after slack-time (ST) relaxation shows
that our proposed method effectively avoids logic duplication. The
number of clusters for each circuit was reduced after the merging
phase. For this paper, we do not give the threshold of distance
between placed clusters, and some far-away clusters might have
been merged together. However, we can control the results by
changing the threshold. As a result, QuickWorks used much more
pASIC3 logic cells than the results from the area-driven clustering.
Because of the logic duplication, our algorithm on average uses
more pASIC3 logic cells after merging. Compared to QuickWorks,

Table 3: Results of area-driven clustering

QuickWorks Packer-area Improvement (%)

Circuits Cell

fragments

Max-

depth

PASIC3

logic

cells

Primitive

cells

Max-

depth

PASIC3

logic

cells

Max-

depth

Number

of

primitive

cells

Number

of

pASIC3

logic cells

i9 356 9 95 384 8 96 11.11 -7.87 -1.05

rot 398 15 104 350 18 88 -20.00 12.06 15.38

i8 706 9 184 568 12 142 -33.33 19.55 22.83

pair 925 15 243 802 22 213 -46.67 13.30 12.35

vda 514 10 131 312 13 79 -30.00 39.30 39.69

x1 176 6 45 165 7 42 -16.67 6.25 6.67

C6288 1904 91 476 1513 99 448 -8.79 20.54 5.88

C5315 996 16 264 699 18 196 -12.50 29.82 25.76

alu4 500 25 125 419 35 113 -40.00 16.20 9.60

apex6 360 9 124 329 13 84 -44.44 8.61 32.26

C880 218 20 57 177 24 54 -20.00 18.81 5.26

C3540 705 23 181 672 34 175 -47.83 4.68 3.31

alu2 262 32 66 216 24 57 25.00 17.56 13.64

C1355 224 17 57 210 15 53 11.76 6.25 7.02

C1908 221 25 56 215 23 55 8.00 2.71 1.79

C432 121 25 31 120 26 31 -4.00 0.83 0.00

C499 201 13 58 210 14 53 -7.69 -4.48 8.62

Average improvement -16.24 12.01 12.29

 6

PackGen-delay reduced the maximum depth of the circuit by
44.75% on average with a 12.05% area overhead.

6. Conclusion
In this paper, we presented area-driven and performance-driven
clustering algorithms for coarse-grained, anti-fuse based FPGAs.
For area-driven clustering, we set up a pair of linear equations and
found the optimal solution to find the minimum number of required
pASIC3 logic cells. For performance-driven clustering, we
proposed a labeling algorithm so that it can generate the minimum
number of clusters on the critical path. A slack-time relaxation was
used to avoid redundant logic duplication without violating
performance constraint. In addition, a random merging was used to
cluster closely placed partially filled clusters. Experimental results
showed that the area-driven clustering algorithm used fewer
numbers of pASIC3 logic cells by 12.29 % on average and the
performance-driven clustering algorithm reduced the maximum
depth by 44.75%, on average.

References
[7] Eric Kusse, and Ran Rabaey, “Low-energy embedded FPGA architecture,” in

Proc. International Symposium on Low Power Electronics and Designs, pp.
155-160, 1998.

[8] Alexander Marquardt, Vaughn Betz, and Jonathan Rose, “Speed and area
tradeoffs in cluster-based FPGA architecture,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 8, no. 1, February 2000, pp. 84 –
93.

[9] pASIC3 FPGA Family Datasheet, QuickLogic Corporation
(http://www.quicklogic.com).

[10] J. Cong, J. Peck, and Y. Ding, “RASP: a general logic synthesis system for
SRAM-based FPGAs,” in Proc. FPGA, pp. 137 – 143, 1996.

[11] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: area-efficiency
vs. input sharing and size,” in Proc Custom Integrated Circuits Conference,
1997, pp. 551 – 554.

[12] Alexander Marquardt, Vaughn Betz, and Jonathan Rose, “Using cluster-based
logic blocks and timing-driven packing to improve FPGA speed and density,”
in Proc. FPGA, pp. 37- 46, 1999.

[13] E.Bozogzadeh, S. Ogrenci-Memik, M. Sarrafzadeh, “Rpack: routability-
driven packing for cluster-based FPGA,” in Proc. Asia-South Pacific Design
Automation Conference, pp. 629 – 634, 2001.

[14] Chang Woo Kang, Ali Iranli, and Massoud Pedram, “Technology mapping
and packing for coarse-grained, anti-fuse based FPGAs,” in Proc. Asia and
South Pacific Design Automation Conference, January 2004.

[15] E. L. Lawler, K. N. Levitt, J. Turner, “Module clustering to minimize delay in
digital networks,” IEEE Transactions on Computers, vol. C-18, no. 1, January
1969, pp. 47 – 57.

[16] QuickLogic.com, QuickWorks User Manual

[17] Sentovich, E.M., et al., SIS: A system for sequential circuit synthesis, 1992,
Electronics Research Laboratory, College of Engineering, University of
California, Berkeley.

[18] Thomas H. Cormen, Charles E. Leiserson, and Ronald, L. Rivest, Introduction
to Algorithms, McCraw-Hill Book Company, 2000.

[19] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: standard-cell
placement tool for large industry circuits,” in Proc. International Conferecence
on Computer Aided Design, 2000, pp. 260-263.

[20] http://mathworld.wolfram.com

Table 4: Results of performance-driven clustering

 QuickWorks 4.1 PackGen-performance Improvement (%)
Number of primitive
cells after duplication

Number of clusters
(pASIC3 logic
cells)

Circuits

Number
of
fragmen
t cells

Number
of
pASIC3
logic
cells

Maximu
m depth

Number
of
primitive
cells after
technolog
y mapping

Before
ST-
relaxation

After ST-
relaxation

Before
merging

After
merging

Maximu
m depth

Number
of
pASIC
logic
cells

Maximu
m depth

i9 381 97 10 384 626 398 262 148 5 -52.58 50.00
rot 404 111 15 338 429 342 199 88 7 20.72 53.33
i8 771 201 9 607 1007 715 449 210 5 -4.48 44.44
pair 900 238 13 818 1052 822 478 231 10 2.94 23.08
vda 546 139 10 304 383 333 163 111 5 20.14 50.00
x1 193 50 6 170 193 171 88 56 3 -12.00 50.00
C6288 1872 771 82 1506 1620 1525 829 496 55 35.67 32.93
C5315 992 430 18 671 774 692 448 284 13 33.95 27.78
alu4 521 131 25 438 570 473 222 170 12 -29.77 52.00
apex6 361 112 9 330 489 334 230 91 6 18.75 33.33
C880 219 55 18 178 230 180 123 65 14 -18.18 22.22
C3540 710 179 25 654 993 693 392 198 15 -10.61 40.00
alu2 281 71 26 224 320 233 128 90 10 -26.76 61.54
C1355 223 57 14 210 312 296 138 88 7 -54.39 50.00
C1908 223 56 25 219 280 262 119 75 9 -33.93 64.00
C432 127 35 25 109 201 159 75 46 10 -31.43 60.00
C499 200 54 13 210 312 296 138 88 7 -62.96 46.15

Average Improvement
-12.05 44.75

