
1

Fanout Optimization under a Submicron
Transistor-Level Delay Model

P. Cocchiniy, M. Pedramz, G. Piccininiy and M. Zamboni
y

yDipartimento di Elettronica
Politecnico di Torino

C.so Duca degli Abruzzi 24, 10129 Torino Italy
zDepartment of EE - Systems

University of Southern California
Los Angeles, CA 90089

Abstract

In this paper we present a new fanout optimization algorithm which is particularly suitable for digital cir-
cuits designed with submicron CMOS technologies. Restricting the class of fanout trees to the so-called bipolar
LT-trees, the topology of the optimal fanout tree is found by means of a dynamic programming algorithm. The
buffer selection is in turn performed by using a continuous buffer sizing technique based on a very accurate de-
lay model especially developed for submicron CMOS processes. The fanout trees can distribute a signal with
arbitrary polarity from the root of the tree to a set of sinks with arbitrary required time, required minimum signal
slope, polarity and capacitive load. These trees can be constructed to maximize the required time at the root or
to minimize the total buffer area under a required time constraint at the root. The performance of the algorithm
shows several improvements with respect to conventional fanout optimization methods. More precisely, individ-
ual fanout trees are typically built with 60% and 10% lower area and delay, respectively, while the accuracy of
calculated arrival times and signal slopes at the sinks have a typical agreement of 5% with SPICE simulations. On
the other hand, the area and delay improvements for entire circuits are 34% and 4%, respectively. These results
are obtained for a standard library which contains tapered and non tapered buffers with different strengths.

I. INTRODUCTION

During logic synthesis, several design steps are performed to translate the initial logic description into a phys-
ical net-list suitable for the final manufacturing. One of these steps, fanout optimization, is usually required after
the technology mapping step where typically, for a large number of nodes in the circuit, the output signal must be
propagated to several destinations (or sinks). If the necessary information for the destinations, such as capacitive
load, signal polarity, and required signal propagation and transition times are specified, then it is possible to build
a minimum-cost fanout tree which meets the timing constraints.

Theoretically, a fanout algorithm should be able to take advantage of the slack available at some outputs to in-
crease the slack at the initially more critical outputs to achieve an equilibrium point where all outputs are equally
critical. Conventional techniques commonly used for CMOS standard cells do not usually achieve this goal be-
cause of the discrete nature of the delay optimization they are based on. For example, the works reported in [1],
[2], [3], [4], [5], [6] rely on a cell library with a finite number of available buffers. Furthermore they all use very
simple delay models that severely limit their applicabilityespecially when submicron processes are involved. On
the other hand, the approach we present considerably improves these two aspects. Indeed, it is based on a con-
tinuous delay optimization technique made possible by the delay model adopted from [7] whose main features
are high accuracy and independence from the technology in use.

The delay model is first applied to the creation of two numerical routines for the design of delay and area
optimized CMOS tapered buffers. Then, a buffering algorithm uses them to create a fanout tree where the avail-

This research is sponsored in part by the SRC under contract no. 98-DJ-606.



2

able slacks at the destinations are fully exploited to generate drivers whose delays are tailored to fit perfectly
between the sink required times. Although this methodology requires that each new cell is inserted in the current
library, we feel this does not constitute a limitation as all the major platforms nowadays available for the design
of integrated circuits support tools for the automatic generation of cell layout (especially buffers and inverters).
However, in case a library must contain a fixed number of cells and cannot be modified by the user, our technique
can still be used, even though with less effectiveness, if each buffer generated by the optimization algorithm is
rounded up to the closest corresponding element of that library.

In brief, the contribution of the present work can be summarized by the following points:
� An accurate technology independent submicron CMOS delay model is used for the computation of propa-

gation times and output slopes.
� A novel continuous delay optimization technique based on speed and area optimized buffers is exploited.
� A restricted class of fanout trees, namely bipolar LT-trees is introduced. This class is larger than the class of

LT-trees introduced in [5].
� A dynamic programming algorithmtree selection, for the solution of the fanout problem is presented.

Fanout trees can be found maximizing the required time of the root (while keeping the area at a minimum),
or minimizing the area given a delay constraint.

� Over the restricted class of bipolar LT-trees, using optimized tapered buffers, the solution for fanout trees
with maximum required time (keeping their area at a minimum) is found optimally in polynomial time. No-
tice that the general fanout optimization problem is NP-Complete [2].

� While treating sinks with different polarity simultaneously, on average the algorithm has lower complexity
and better performances in terms of delay and area of the trees with respect to all other fanout optimization
algorithms available in the SIS environment [8].

� We demonstrate that the use of only one algorithm for the fanout optimization of entire circuits is more ef-
fective than the approach of developing a spectrum of different algorithms.

� Constraints on the minimum signal slope required at the sinks can be given so that the gates which are con-
nected to the fanout tree can be driven correctly.

� We provide an analysis of the effect of the discretization of the buffer library used in the optimization process
on the quality of the produced fanout trees. Such an analysis identifies a discrete size library composed of
only eight tapered buffers which represents the best trade-off between size of the library and quality of the
fanout tree solutions.

� When using a fixed size library, the optimization methodology is capable of identifying possible deficiencies
of that library providing information on the number and size of the new cells that must be included in order
to reach an optimal solution. In other words, the solution can be optimized against a silicon process and not
only against a library.

In Section II we give an overview of the delay model adopted in our work and introduce the routines used for
the generation of the optimized buffers. In Section III we give some basic definitions and explain the buffering
algorithm proposed for the solution of the fanout problem. Section IV reports an experimental analysis of the dis-
cretization of the buffer library used by our optimization algorithm and the results obtained testing the algorithm
on different fanout problems extracted from common benchmark circuits. Concluding remarks are presented in
Section V.

II. DELAY OPTIMIZATION

A. Inverter Delay Model

Since the buffering process which we perform for the generation of a fanout tree only involves CMOS tapered
buffers, we are interested in modeling the behavior of their basic component, that is a static CMOS inverter whose
schematic is reported in Figure 1. The delay model that we use throughout the paper is the one presented in [7].
It is composed of a set of analytical equations which model the output response of a CMOS inverter taking into



3

FFC

CL

DDV

IV

tpf tpr

VO

rI
k kfI

kfO krO

,lmin

,lmin

T

T
w

w
2

2

1

1

Fig. 1. CMOS Inverter.

account the main second-order effects present in submicron processes. The input voltage and output voltage
are modeled as signals with trapezoidal shape as shown in Figure 1. The feed-through effect between input and
output is considered by means of a capacitance CFF . The equations depend on a small set of process parameters
that can be conveniently extracted from SPICE model cards, therefore they are not tied up to any technology and
do not require any calibration step. The main components of the delay mechanism are intrinsically included in
the model so that the accuracy is only affected by approximations inherent to the equations. We will not give
here a detailed explanation of the delay equations as this is outside the scope of the present paper. However, for
a better comprehension of the work, a brief description of the mechanism with which the delay of an inverter is
calculated is provided in Appendix A. For a more complete treatment, the reader is referred to [7].

In Figure 1 we also introduce some definitions used here and in the rest of the paper. With kr and kf we denote
the slopes in [V/ns] of the rising and falling edges of a ramp shape voltage signal, respectively. Following this
notation, krI and kfI are the slopes of the input voltage VI of the inverter, while krO and kfO are the slopes of
the output voltage VO. Moreover, tpr and tpf are the propagation times of the rising and falling edges of VO,
respectively. They are measured as the difference between the times where VO and VI are at 50% of their total
swing. An inverter I is identified by the tuple I � fm� ug, where m is the ratio between the width w� of the
pull-down transistorT� and the minimum widthwmin allowed by the user, and u is the ratio between the widths
of the pull-up and pull-down transistors of the inverter. With P we denote a set of process and layout parameters
of the technology in use on which the delay model depends. In this context, the equations for the delay model
can be represented as:

tpr � f��P� krI � kfI � CL� m� u�

tpf � f��P� krI � kfI � CL� m�

krO � f��P� krI � kfI � CL� m� u�

kfO � f��P� krI � kfI � CL� m�

where f�� f�� f�� f� are non-linear functions of their arguments (see [7] for the exact form of these functions).
To automatically perform the design of an inverter and therefore of a tapered buffer, these functions have been
arranged in the routine delay INV, written in C language, which can perform two different tasks:

Task II.1: Given P , krI , kfI , CL, m, u, calculate krO , kfO , tpr, tpf .
Task II.2: Given P , krI , kfI , CL, m, calculate u, krO , kfO , tpr, tpf such that tpr � tpf � tp.



4

IV

CL

VO

I IN

N=Mm m m

I

=M

1 2

1=1 2 N-1
2 N

u u u1

Fig. 2. CMOS Tapered Buffer.

In Task II.1, delay INV simply computes functions f�� f�� f�� f� for the given arguments. On the other
hand, in Task II.2, delay INV first solves the non linear equation

f��P� krI � kfI � CL� m� ux� � f��P� krI � kfI � CL� m� (1)

for the width ratio ux and then computes the remaining functions f� and f�. Here, it must be noted that (1) is
solved with very few iterations of functions f� and f� as the delay model has the ability of providing an initial
value for u very close to ux.

The routine delay INV has been applied to the calculation of the delays tpr and tpf for a minimum size
inverter designed with a ����m CMOS technology for a wide range of input voltage slopes and capacitive loads.
While the typical agreement with SPICE simulations was 3% in the case of task II.1 the routine was over 1000
times faster in terms of CPU time.

B. Buffer Design

A scheme of the buffers used for driving a large capacitive load is reported in Figure 2. As can be seen, the cir-
cuit is composed of a cascade ofN inverters each one scaled up by a factor ofM with respect to the previous one
(the first inverter has minimum size). A buffer B is then defined as a set of N inverters B � fI�� I�� � � � � INg.
We extend here the definition of delays and signal slopes for the voltages VI and VO given in the previous sec-
tion. A methodology for the determination of the optimal parameters N and M of a buffer with minimum and
symmetrical propagation delay �tpr � tpf � tp� is given in [7]. After an initial step that characterizes a cas-
cade of inverters with different sizes for each process in use, speed optimized tapered buffers are designed which
uniformly distribute the overall propagation delay tp along the chain for any given capacitive load CL. For the
convenience of the reader, a short description of this methodology is provided in Appendix B.

A limitation of this buffer optimization technique is that it considers only typical values for the input slopesk rI

andkfI . Thus, to overcome this problem and consider arbitrary input slope values, the design of a minimum delay
buffer is performed in this work by means of a new routine min delay BUF which improves the technique of
[7] and that is capable of performing the following task:

Task II.3: Given P , krI , kfI and CL, find a buffer B with minimum and symmetrical propagation delay tpr �
tpf � tp.

As will be explained in Section III, such a routine is usually executed when one or more sinks in a fanout tree
have to be driven introducing a delay optimized buffer. In the situation where this delay could propagate to the
root of the tree, it is important to assign a buffer with the minimum possible delay tpmin

so that the required time
at the source of the tree is decreased the least. Nevertheless, in many cases the slack between different buffered
sinks can be of an extent such that the propagation delay tp can be relaxed assuming a higher value tp � tpmin

,
so that a considerable amount of area can be saved. This situation, which recurs in most of the fanout problems
commonly encountered during the automatic synthesis of digital circuits, is the key factor of the continuous delay
optimization we propose, and can be exploited by means of routinemin area BUF that performs the following
task:



5

Task II.4: Given P , krI , kfI ,CL, tpmax , krreq , kfreq , find a buffer B with minimum area such that tpr � tpf �
tp � tpmax , krO � krreq and kfO � kfreq .

As can be seen, min area BUF is capable of designing a buffer with minimum area given a time constraint
in terms of maximum propagation delay. Additional constraints on the minimum slope of the rising and falling
edges of the output signal are also given in order not to worsen the delay of successive stages.

Both routinesmin delay BUF andmin area BUF are based on iterative calls to routinedelay INVwhich
is used to compute the exact delay of each stage. Thus, the propagation delays tpr and tpf and the slopes krO
and kfO at the output of a buffer B can be put in the form

tpr � f��P� krI � kfI � CL� N� M� uN�

tpf � f��P� krI � kfI � CL� N� M�

krO � f��P� krI � kfI � CL� N� M� uN �

kfO � f��P� krI � kfI � CL� N� M�

where f�� f�� f�� f� are non linear functions, N is the the number of stages, M is the tapering factor, and uN
is the width ratio of the last inverter of buffer B. The values for the width ratio u of all the other stages are not
specified as they remain fixed to default values.

In the case of task II.3, routine min delay BUF simply calculates the parameters N and M of the minimum
delay buffer B according to the technique given in Appendix B, and then re-shapes its last stage solving the
equation

f��P� krI � kfI � CL� N� M� uN � �

f��P� krI � kfI � CL� N� M� (2)

for the the variableuN , in order to have a symmetrical output response. On the other hand, routinemin delay BUF
determines the minimum number of stagesNmin and the corresponding parameter M of a tapered buffer whose
propagation delays tpr and tpf are less then a given maximum value tpmax . In particular, to find a buffer with
minimum area and delay tpf � tpmax , min delay BUF first solves the non linear equation

tpmax � f��P� krI � kfI � CL� Nmin� Mmin� (3)

for Mmin such that Mmin � �, and then calculates the variable uNmin
, solving

tpf � f��P� krI � kfI � CL� Nmin� Mmin� uNmin
� (4)

where tpf � f��P� krI � kfI � CL� Nmin� Mmin�, to have a symmetrical buffer output response. Finally, if the
limits krreq and kfreq on the the output slopes are specified, functions f� and f� are computed to verify that the
requirements of task II.4 are met. Therefore if krO � krreq or kfO � kfreq , the buffer with minimum area is
designed solving the equations

krreq � f��P� krI � kfI � CL� Nmin� Ma� uNmin
� (5)

kfreq � f��P� krI � kfI � CL� Nmin� Mb� (6)

and taking Mmin � max �Ma� Mb�.
Regarding the complexity of these routines, it must be pointed out that they are always capable of finding the

solution to the corresponding set of equations after a small number of iterations (because every function f i is
monotone in the variables of interest). Specifically, this efficiency is achieved because in all cases, consistent
initial values are provided by the buffer optimization technique of [7].



6

III. FANOUT OPTIMIZATION

Like other proposed fanout optimizations[2] [4] [5], our methodology relies on ordering sinks by non-decreasing
required time. While restricting the set of all the possible fanout trees, this assumption allowed us to develop an
efficient algorithm of polynomial complexity using dynamic programming. Apart from the far more accurate de-
lay model, our optimization technique has other important advantages. First of all, there is not a buffer selection
process where trees with same topology lead to different solutions because of the several combinations of distinct
buffers available in a library. As a matter of fact, given a tree topology, the extent of the slacks between distinct
leaves uniquely identifies the shape and size of the needed buffers. Secondly, the treatment of sinks with differ-
ent polarities is intrinsically implemented in the fanout algorithm and does not increase its complexity. Finally,
the adoption of a pre-processing step, which is presented in Section III-H, can significantly reduce the number
of distinct sinks to be driven so that the execution time of the algorithm is drastically shortened. In order to ease
the task of describing the proposed methodology, in the following we give some definitions and formulate the
fanout problems we consider in our work.

A. Definitions

We define S as the set of n destinations or sinks where a signal v, corresponding to the root of a tree, must
be propagated. Each sink si � S has arbitrary polarity psi � f���g, capacitive load lsi and required time
rsi . Furthermore, sinks fs�� s�� � � � � sng of S are ordered by increasing required time, that is, �i � �	� n� �
,
rsi�� � rsi � rsi�� . A group Gp

i�j � S is then defined as the set of sinks of polarity p among the adjacent
sinks fsi� � � � � sjg � S, lpi�j being the sum of the loads of its elements. Each group Gp

i�j can be driven by a
corresponding buffer Bp

i , whose input bpi has required time rbpi and load lbpi equal to the input capacitance of a

minimum inverter, that is the one of its first stage. Finally, a fanout tree is defined as the set T � �iB
p
i of buffers

Bp
i that form a tree where the leaves are groups and the union of all leaves equals S. Under these definitions, the

fanout problem can be specified in two different ways depending on the cost function to be minimized.
Problem III.1 (Max required time with Min area) Build a tree T of buffers that distributes the signal v to the

sinks S and 1) maximizes the required time rv at its root, 2) minimizes the area of its implementation.
Problem III.2 (Min area under required time constraint) Build a fanout tree T that minimizes the area of its

implementation such that the required time rv at the root is rv � rvmin
where rvmin

is a given minimum value.
Notice that in Problem III.1 we first optimize for the maximum required time, and then minimize the area at no
cost for delay. In contrast, in Problem III.2, given a minimum required time, we minimize the area subject to that
constraint.

Additional constraints to these problems are the specification of a minimum signal voltage slope at the sinks
as well as the minimum slopes krv and kfv of the signal to be propagated.

B. Tree Search Space

In order to reduce the complexity of the algorithm only a subset of all the possible trees is considered. This
subset is small enough to permit a fast generation of solutions and large enough to satisfactorily solve a large
spectrum of fanout problems. A scheme representing the topology of a fanout tree belonging to such a subset is
reported in Figure 3.

In this representation, sinks S � fs�� s�� � � � � sng are reported in order of increasing required time along
the vertical axis, with the indication of their polarity, while buffers are drawn as small circles annotated with the
number of stages they are composed of. A tree is divided into a set of z different levels identified by a (z+1)-
tuple of integers �y�� � � � � yz	�� such that: y� � � � y� � � � � � yz � yz	� � n � �, with � � z � n. Each
level i � f�� � � � � zg contains yi	� � yi sinks, from syi to syi����. Sinks with positive polarity form the group
G	
yi�yi����

and are driven by a buffer B	
yi

whereas those with negative polarity form the group G�
yi�yi����

and
are driven by a buffer B�

yi
. In the case of Figure 3, z � � with a (z+1)-tuple (1, 3, 9, 17). Each buffer can accept



7

y

y
+B

+B 3

n

-
y

2

3

B2y
-

B

4y

1y

2y

3y

y

1

+B

s

level 1

level 2

level 3

1 2

1

1 2

1s

Fig. 3. Example of tree topology with three distinct levels.

a connection from one or two buffers belonging to the upper level i� �. Depending on the polarities of its sinks
and the buffers of the upper level i��, it follows that a level i can always have exactly one or two buffers driving
its sinks.

The class of trees that we have just defined is very similar to that of LT-Trees of type 1 introduced in [5]. While
the trees belonging to such class have at most one buffer in the fanout of any buffer, in our case each buffer can
drive 1 or 2 buffers along with any number of leaves. For this reason, we call our trees bipolar LT-Trees, or
shortly Bi-LT-Trees.

Because of this property, it is apparent that each (z+1)-tuple identifies 	z possible fanout trees. The number of
possible (z+1)-tuples of integers corresponds to the number of distinct ways of choosing z � � elements among
n� �. Therefore, the total number of possible fanout trees is

n��X
z
�

�
n � �
z � �

�
	z � 	

n��X
z
�

�
n � �
z

�
	z �

	 	 �n�� � 	n (7)

Such search space is greater than both that of LT-Trees of type 1 (	n��), and LT-Trees of type 2 (	n��) [5].
In (7) we also assume that the first level can have two buffers which are driving sinks of different polarities. It is

apparent that this situation is in contrast with the requirement of a one-rooted fanout tree like the one of Figure 3.
Nevertheless, every occurrence of this kind can be uniquely resolved introducing one or two additional inverters
in case p

b
�

�

	 p
b
�

�

� � or p
b
�

�

	 p
b
�

�

� �, respectively, so that the equation still holds.

C. The Algorithm for Tree Selection

The selection of the best tree for the solution of Problems III.1 and III.2 is performed with the algorithm
tree selection, detailed in Figure 4. At the beginning, the process database P is loaded and sinks are ordered
by non-decreasing required time. Then, the load lpi�j of each possible group Gp

i�j � S is pre-computed. The
problem is now split in n sub-problems, identified by an index z, of sinks �s z � 	 	 	 � sn�. A sub-problem z, then,
is solved in n � z � � different ways, indicated by an index h, of which only the best one T z is kept in a ta-
ble, hence this is a dynamic programming approach. Each solution h corresponds to the insertion of one or two



8

buffersB	 and/orB�, which respectively drive groupsG	

z�h andG�
z�h, and the upper level sub-tree Th	�. Since

the algorithm proceeds with z from n to 1, Th	� has already been computed and is available.
For each polarity p � f���g, the load of a bufferBp is calculated as the sum of the pre-computed quantity lpz�h

and the load of same polarity lpTh��, offered by the sub-tree Th	�. If such load is null, the corresponding buffer
Bp is not inserted. Each buffer is designed calling the routine min area BUF whose arguments are ordered,
and have the same meaning, as in the definition of task II.4. Particularly, the slopes kr and kf of the input signal
are chosen as typical values for a correct execution of the algorithm.

As can be seen, the maximum allowed delay time tmax � rload�rprev is equal to the difference of two terms:
the required time rload of the load driven by the buffer, and rprev which is equal to the required time rsz�� of the
closest not yet buffered sink sz��. In this way, buffer Bp will have a required time equal or higher than rsz�� ,
thus not affecting the required time of subsequent sub-trees, and minimum area for its implementation. If tmax

is too low and no buffer with such delay is possible, thenB p is designed by means of routinemin delay BUF,
which, given its arguments defined as for task II.3, returns a minimum delay buffer. At this point, the h solution
T of sub-problem z is formed by the union of buffers B	, B� and sub-tree Th	�.

If the required time rT of T , defined as the minimum of the required times ofB	 andB� (or the required time
of one of them if the other is empty), is higher than tprev , and its area is lower than the one of the best current
solution Tz, then sub-tree T takes its place. On the other hand, if rT is lower than tprev , T is stored only if its
required time is the highest.

The same procedure applies to both Problems III.1 and III.2 until the last sub-problem z � �, which corre-
sponds to the overall fanout problem, has to be solved. As can be seen, in such a situation the required time tprev
takes different values. When Problem III.1 is being solved, then rprev � rload and buffers Bp are designed for
minimum delay. On the other hand, for Problem III.2, rprev takes the value rvmin

, the given minimum required
time of the root that can be exploited by the routine min area BUF to obtain a buffer with lower area. In this
way, at the end of the process, tree T� stores the best solution for a given fanout problem.

D. Optimality for the Minimum Delay Problem

The optimality of the algorithm for the solution of Problem III.1 is proved by the following theorem:
Theorem III.1: The tree selection algorithm produces an optimal fanout tree for Problem III.1 over the

class of all Bi-LT-Trees, assuming that routine min delay BUF produces optimal solutions to task II.3.
Proof: From the property of dynamic programming algorithms, the solution to Problem III.1 is optimal

exactly if such is true for the solution Tz of each sub-problem z. Therefore, for what pertains to the proof of the
theorem, it is sufficient to prove the optimality of a single sub-tree Tz . The rest of the proof follows by induction
on z.

The solution of a sub-problem z, takes the generation of n � z � � different sub-trees by means of rou-
tinesmin delay BUF and min area BUF. In each case, min area BUF introduces a buffer whose required
time is always greater than the required time rprev of the highest sink in the lower level. On the other hand,
min delay BUF generates a speed optimized buffer whose delay is the smallest possible. The solution Tz is
then chosen as the one with the highest required time rT if every sub-solution has required time rT � rprev; oth-
erwise the sub-tree with minimum area is taken. As a result, the solutionTz is optimal because it will offer to the
next sub-problem z� �, the smallest load to drive (the input capacitance of a buffer is always that of a minimum
size inverter), with a required time such that the required time rTz�� of the root of the subsequent sub-tree Tz��
can be the maximum possible.

E. Optimality for the Minimum Area Problem

Unlike the case of Problem III.1, the tree selection algorithm does not produce the optimal solution to
Problem III.2. Nevertheless, this shortcoming can be easily remedied by adopting a binning technique (similarly



9

algorithm tree selection
load P , S, krreq , kfreq , rvmin

;
Sort S by increasing required time resulting in S � fs�� s�� � � � � sng;
�i � ��� n�, �j � �i� n�, �p � f���g, compute lpi�j �

Pj

k�i lsk�p psk
,

where �p psk
is the Kronecker delta function;

for z � n to 1 f
for h � z to n f

foreach polarity p � f���g f
load � l

p

z�h � l
p
Th��

;
if (load � �) f
rload = load required time;
if (z � �) then rprev � rsz�� ;
else f

if (Problem = III.1) then rprev � rload;
else if (Problem = III.2) then rprev � rvmin

;
g
Bp = min area BUF (P , kr, kf , load, rload � rprev, krreq ,

kfreq);
if (Bp � �) then Bp

z = min delay BUF (P , kr, kf , load);
g else Bp � �;

g
T � Th�� �B� �B�;
rT = min(rb�� rb�);
if (rT � rprev) f

if (area(T ) � area(Tz)) then Tz � T ;
g else f

if (rT � rTz ) then Tz � T ;
g

g
g

end tree selection

Fig. 4. The algorithm for the fanout tree selection.

to the one used in [5]), modifying the algorithm at the cost of increased complexity. More precisely, for each
tuple (z, h) such that z � �, the minimum required time rprev given as argument to the routine min area BUF
has to assume a discrete set of � different possible values. Therefore, each sub-problem z results in a richer spec-
trum of ��n�z��� sub-solutionsT , each one with different area and required time, available for the generation
of the fanout tree. In this way, neglecting the error introduced by the discretization of rprev, the optimality for
the solution to Problem III.2 is achieved with complexity O�� n��. In practice, since we have found that this
technique, even though it produces the optimal solution for Problem III.2, does not provide substantial area im-
provements compared to the basic algorithm, we have chosen to exclude it from the tree selection algorithm in
order to retain a low complexity.

F. An Example of Generated Tree

An example of a bipolar LT-tree generated by the algorithm tree selection is reported in Figure 5 for a typical
problem with 18 sinks and a 0.5�m CMOS process. Here, sinks and buffers are represented using the notation
of Section III-B also adopted in Figure 3.

As can be seen, there are three levels. Level 1 is composed of sinks s�� s�� s� and the inverter B	
� , whereas

level 2 is composed of sinks s�, s� and the inverter B�
� , and level 3 is composed of sinks s� through s�� and



10

y
3

3s

18s4

1

y

2

y

y
level 1

level 3

B+ B-

B-

B+

6
6

4

1

1s s s s

s s s

s

s s

s
s

s
s s s17

1615

14

13

12

11
10

9

8
76

54
2

re
qu

ir
ed

 ti
m

e

1

1

2 2level 2

Fig. 5. Bipolar LT-tree for a typical problem: n � ��, z � �, y� � �, y� � 	, y� � 
, y� � ��.

the two-stage buffers B	
� and B�

� . It is interesting to note that the required time at both buffers B	
� and B�

� is
greater than that at any of the sinks belonging to the lower level 2 (B	

� and B�
� have both higher position than

sinks s� and s� along the vertical direction). A thorough examination of the tree generation process indicates
that both buffers have been designed to have minimum area through the routine min area BUF, and that the
minimization process stopped because of the constraints on the minimum slopes krreq , kfreq of the output signal.
This situation, which is very recurrent in almost all of the standard-cell based fanout problems, is fully exploited
by our buffering mechanism, leading to the generation of a fanout tree with the lowest area cost.

G. Complexity

The number of times we go through the most nested inner loop of thetree selection algorithm is equal to
n�n���. Therefore the complexity of the algorithm isO�n��, as we assume that both routinesmin delay BUF
and min area BUF have complexity O��� and perform their respective tasks in constant time (the typical ex-
ecution time of these routines are given at the end of Section IV-B). When treating sinks of different polarities
simultaneously, the algorithm proposed in [5] has complexityO�d� max �n� p� max (np, max �n� p������, while
the one proposed in [4] has complexityO�d� n� p��. Here, d is the number of different buffers in the cell library,
and n and p are the number of sinks of negative and positive polarity, respectively. As can be seen, our algorithm
has smaller complexity due to the direct selection of buffers in the chosen trees.



11

-
4,5

s

10

G

+

8

G12,13

16,17
+G

18

s

s

y
+B

2y

6,7
+G

1

+
1,3G

9,11

s

-B

3y
-B

G-

14,15G-

1

3y
+B

1

2

1

2

Fig. 6. Fanout tree for a typical problem with the merge sinks pre-processing step.

H. Pre-Processing

With our methodology sinks are treated independently of their load and there are no limits imposed on their
size. This property suggests that sinks with equal or very close required time can be merged together to reduce the
size of the problem with no adverse impact on the final result. An example of application of this technique to the
test case of Figure 5, by means of the routine merge sinks, is shown in Figure 6. Here, the number of distinct
sinks n is now reduced to 10, 7 of them corresponding to groups G i�j of sinks of the same polarity. As can be
seen, the result in terms of speed and area of the fanout tree is the same as Figure 5. However, in this case the user
CPU time needed by the computation is significantly lower. Since this technique makes a great improvement in
the computation time of the algorithm at no performance cost, it is always used during a pre-processing step to
reduce the number of distinct sinks of a fanout problem.

I. Post-Processing

It has already been pointed out that during the execution of the algorithm tree selection, the slopes k r

and kf of the buffer input signal are chosen as typical values. This introduces some error, although small. After
the algorithm has completed its execution and the topology of the best tree is available, the delay and slopes of
all the buffers of the tree can be recomputed, yielding exact values, traversing the tree from root up. Particularly,
the output slopes krO , kfO of the level 1 buffers are first calculated with the given input values krI and kfI of
Problems III.1 and III.2, and then reused as input values for the buffers of level 2. Iterating this process for the
rest of the levels, the timing of the signal v distributed along the tree can then be accurately recomputed for all
the intermediate nodes and destinations.



12

IV. RESULTS AND VERIFICATION

A. Discrete Size Buffer Library

We have already mentioned that our fanout optimization methodology relies on the availability of an arbitrary
number of continuously sized tapered buffers for the construction of optimal fanout trees. Nevertheless, in many
situations it is impractical to insert an unlimited number of new custom buffers into a cell library. Therefore, it is
mandatory to restrict the number of the buffers available to the optimization process only to those included in a
predefined discrete size buffer library. Every buffer generated by the optimization algorithm will be then rounded
up to the closest element in that library. It is apparent that the optimality of the solutions will be affected by the
size and granularity of such a library. Therefore it is of primary importance that the library to be chosen to work
with the optimization algorithm meets the following two requirements:

� It contains a spectrum of buffers whose size is properly distributed in the range of values from a minimum
(the size of a minimum inverter) to a maximum limit (the size of a buffer with Nmax number of stages and
Mmax stage ratio). Such a discrete range is representative of the continuous buffer design space the opti-
mization algorithm is based on.

� The quality of the solutions, when moving from the continuous search space to such a discrete library, is not
substantially affected.

In this section we focus on the determination of such a discrete library. To do so we have applied our optimization
algorithm to the solution of several fanout problems extracted from a set of six ISCAS benchmark circuits using
four different 0.5�m CMOS process buffer libraries: lib-20, lib-12, lib-8, lib-4, containing 20, 12, 8, 4 tapered
buffers respectively, and calibrated in DSMLib (Deep Sub-Micron library) format. In this format, the delay of
each pin of each cell is characterized by four subsets of 4 parameters each, modeling the propagation times tpr and
tpf , and the transition times ttr and ttf . The transition times ttr and ttf are here defined as the difference between
the times where the rising and falling edges of a signal are at 10% and 90% of their total swing, respectively. The
pin-dependent delay model is as follows:

delay � �K� �K� 	 load� 	 transition time�K� 	 load�K�

where delay represents any of the terms tpr, tpf , ttr and ttf for the output pin, load denotes the capacitive load
of the cell, and transition time refers to ttr or ttf for the input pin as appropriate. The choice of such a format
has been dictated by the need for an accurate delay model which includes the effect of the slope of the voltage
signals in the calculation of the standard cell timing. Notice that this delay model has only been used for the
computation of the propagation and transition times during the timing analysis executed in the SIS environment �,
while the actual optimization has been performed with the far more accurate delay model introduced in Section
II. The composition of these libraries is reported in Table I. Here, the first column reports buffer names while
the second column reports the area of their layout implementation in �m�. The third column reports the number
of stages N of each buffer, and the fourth column reports the stage ratio M . In the remaining columns, one for
each discrete library, a dot is present if the buffer corresponding to the same row is part of that library. The name
of each buffer is indicative of the number and size of the stages it is composed of. For instance, 1x is a minimum
inverter (N = 1, M = 1), 1x1x is a two stage buffer with both stages of minimum size, and 1x4x��x is a three
stage buffer where the first stage has minimum size, the second is four times larger and the third sixteen times
larger. In some cases (buffers 1x2x through 1x3.5x), the area of buffers with adjacent stage ratio values is the
same. This is because, since the height of the cell layout is fixed and the pull-up and pull-down transistors of
each stage of the buffers are folded, the area of the buffer cell only increases by discrete quantities when the size
of the transistors plus the needed spacing between them exceeds the height of the cell.

In the table, cell 1x, which is a minimum inverter, is not included in the buffer count even though it is part of
each library. As can be seen, lib-20 includes all of the buffers reported in the table. Here, the range of N and

�In fact, here the concept of transition time is not contemplated at all.



13

buffer area N M lib-20 lib-12 lib-8 lib-4

1x 687.5 1 1.0 
 
 
 


1x1x 852.5 2 1.0 
 
 
 


1x2x 935.0 2 2.0 
 
 


1x2.5x 935.0 2 2.5 


1x3x 935.0 2 3.0 
 


1x3.5x 935.0 2 3.5 


1x4x 1017.5 2 4.0 
 
 


1x4.5x 1017.5 2 4.5 


1x5x 1017.5 2 5.0 
 


1x5.5x 1017.5 2 5.5 


1x6x 1100.0 2 6.0 
 
 
 


1x2x	�x 1265.0 3 2.0 
 
 


1x2.5x	�
�x 1347.5 3 2.5 


1x3x��x 1430.0 3 3.0 
 


1x3.5x��
�x 1595.0 3 3.5 


1x4x��x 1842.5 3 4.0 
 
 
 


1x2x	�x	�x 1760.0 4 2.0 
 
 


1x2.5x	�
�x	�
�x 2090.0 4 2.5 


1x3x��x��x 2667.5 4 3.0 
 


1x3.5x��
�x��
�x 3492.5 4 3.5 


1x4x��x��x 4647.5 4 4.0 
 
 
 


TABLE I
COMPOSITION OF THE DISCRETE SIZE BUFFER LIBRARIES USED IN THE DISCRETIZATION ANALYSIS: AREA IS THE

CELL LAYOUT AREA IN �m�, N IS THE NUMBER OF STAGES AND M IS THE STAGE RATIO.

M has been determined by running the optimization algorithm for the benchmark circuits of Section IV-C and
collecting the necessary information after the generation of the continuously sized tapered buffers. Specifically
the maximum number of stagesN is 4, while the stage ratio M goes from 1 to 6 for two stage buffers, and from
2 to 4 for three and four stage buffers. It must be noted here, that we have chosen lib-20 as the maximum size
discrete library for our analysis because running the optimization algorithm with more available buffers than
those in lib-20 never produced better results. Thus, starting from library lib-20, libraries lib-12, lib-8, and lib-4
gradually decrease the granularity of the stage ratioM while still covering the corresponding range of variation.

For each of the six ISCAS benchmark circuits, logic synthesis and minimum delay technology mapping steps
have been performed in the SIS environment, using a standard 0.5�m CMOS technology library also calibrated
in DSMlib format for the same 0.5�m CMOS process and standard cell layout style of libraries lib-20, lib-12,
lib-8, and lib-4. From each circuit, four fanout problems of different complexity have been extracted and written
in blif format for testing the algorithm and comparing its performance when using each of the four buffer libraries
lib-20, lib-12, lib-8, and lib-4. The results for the optimized problems are reported in Table II. Here, the name of
each problem and its complexity given in terms of the number n of sinks are reported in the first and the second
column respectively. In the lib-20 field, the results of the optimization obtained rounding up the continuously
sized buffers to the elements of library lib-20 are reported. Here, area and delay are respectively the area in
�m� of the tree implementation and the difference in nanoseconds between the required time at the most critical



14

problem lib-20 lib-12 lib-8 lib-4
name n area delay area �% delay �% area �% delay �% area �% delay �%

C1355-1 8 3328 0.44 3410 2.5 0.44 0.0 3410 2.5 0.44 0.0 3492 4.9 0.44 0.0
C1355-2 9 3932 0.47 3932 0.0 0.47 0.0 3932 0.0 0.47 0.0 4015 2.1 0.51 8.5
C1355-3 9 2392 0.52 2392 0.0 0.52 0.0 3740 56.4 0.53 1.9 2475 3.5 0.54 3.8
C1355-4 13 1018 0.36 1018 0.0 0.36 0.0 1018 0.0 0.36 0.0 1100 8.1 0.50 38.9
C3540-1 12 4455 0.41 4455 0.0 0.41 0.0 4455 0.0 0.41 0.0 4455 0.0 0.41 0.0
C3540-2 35 4042 0.24 4620 14.3 0.24 0.0 6600 63.3 0.24 0.0 6600 63.3 0.24 0.0
C3540-3 21 3575 0.48 3575 0.0 0.48 0.0 3740 4.6 0.50 4.2 3740 4.6 0.50 4.2
C3540-4 72 6352 0.19 6518 2.6 0.19 0.0 7012 10.4 0.19 0.0 7095 11.7 0.19 0.0
C432-1 16 1952 0.23 1952 0.0 0.23 0.0 1952 0.0 0.23 0.0 1952 0.0 0.23 0.0
C432-2 6 852 0.21 852 0.0 0.21 0.0 852 0.0 0.21 0.0 852 0.0 0.21 0.0
C432-3 16 2805 0.30 2805 0.0 0.30 0.0 2888 3.0 0.30 0.0 2888 3.0 0.30 0.0
C432-4 10 2558 0.16 2558 0.0 0.16 0.0 2558 0.0 0.16 0.0 2640 3.2 0.16 0.0
C5315-1 49 10368 0.49 10532 1.6 0.49 0.0 10532 1.6 0.49 0.0 10945 5.6 0.52 6.1
C5315-2 12 3080 0.30 3080 0.0 0.30 0.0 3080 0.0 0.30 0.0 3080 0.0 0.30 0.0
C5315-3 21 7178 0.40 7178 0.0 0.40 0.0 7178 0.0 0.40 0.0 7342 2.3 0.44 10.0
C5315-4 50 10120 0.51 10285 1.6 0.52 2.0 10450 3.3 0.52 2.0 10615 4.9 0.52 2.0
C6288-1 16 1100 0.17 1100 0.0 0.17 0.0 1100 0.0 0.17 0.0 1100 0.0 0.17 0.0
C6288-2 21 1100 0.17 1100 0.0 0.17 0.0 1100 0.0 0.17 0.0 1100 0.0 0.17 0.0
C6288-3 60 8690 0.29 8772 0.9 0.29 0.0 8938 2.9 0.29 0.0 9955 14.6 0.44 51.7
C6288-4 50 1100 0.17 1100 0.0 0.17 0.0 1100 0.0 0.17 0.0 1100 0.0 0.17 0.0
C7552-1 283 38775 0.52 39682 2.3 0.53 1.9 38802 0.1 0.56 7.7 38802 0.1 0.56 7.7
C7552-2 12 1705 0.26 1705 0.0 0.26 0.0 1788 4.9 0.26 0.0 1788 4.9 0.26 0.0
C7552-3 16 4620 0.23 4620 0.0 0.23 0.0 4620 0.0 0.23 0.0 4620 0.0 0.23 0.0
C7552-4 23 1788 0.18 1788 0.0 0.18 0.0 1788 0.0 0.18 0.0 1788 0.0 0.18 0.0

average 1.1 0.2 6.4 0.7 5.7 5.5

TABLE II
RESULTS FOR DELAY OPTIMIZED FANOUT TREES USING FOUR DIFFERENT DISCRETE SIZE BUFFER LIBRARIES. FOR

EACH TREE, DELAY IS THE DIFFERENCE IN NANOSECONDS BETWEEN THE REQUIRED TIME AT THE MOST CRITICAL

SINK AND THE REQUIRED TIME AT THE ROOT DRIVER, AND AREA IS THE AREA IN �m� OF THE TREE

IMPLEMENTATION.

sink s� (the first one since sinks are sorted in order of non-decreasing required time) and the required time at
the driver of the root of the tree. The same results for area and delay are then reported for libraries lib-12, lib-8,
and lib-4 in the corresponding fields. Furthermore, in these last three fields, to the right of each area and delay
column, another column indicated by �� reports the percentage variation of the values to its left with respect
to the corresponding values in the lib-20 field. For example, problem C5315-4 has area equal to 10285 �m� and
delay equal to 0.52 ns when using library lib-12, these values being respectively 1.6% and 2% higher than those
corresponding to library lib-20, that is area = 10120 �m� and delay = 0.51 ns.

As can be seen, for several problems (e.g. C3540-1) there are no variations in area and delay (�� � �) when
going from the lib-20 field to the lib-12, lib-8, and lib-4 fields. As a matter of fact, in all of these cases the fanout
trees are only composed of buffers which are present in all four libraries (typically only minimum inverters 1x
and minimum size buffers 1x1x).

In other problems (e.g. C3540-2 when going from lib-20 to lib-12) when shifting to a smaller size discrete
library, only the area increases while the delay remains the same. The reason why this happens is that, with a



15

smaller size library, buffers which had been continuously sized via the routine min area BUF during the opti-
mization process, are now rounded up to a larger buffer because of the wider discretization of the library. As a
consequence the area of the tree becomes larger. Moreover, the delay does not change because the use of a larger
buffer in a buffering problem like the one posed in the case of routine min area BUF (as explained in Section
III-C) does not affect the required time at the root of the fanout tree.

Finally, in the remaining problems (e.g. C5315-4 when going from lib-20 to lib-12) when moving from a larger
to a smaller size library, both area and delay increase. It turns out that in these cases this effect is due to rounding
up a buffer that had been continuously sized during the optimization process via the routine min delay BUF
to a larger buffer present in the smaller library. As a result the area increases as does the delay because such a
buffer is not optimal for the solution of the original buffering problem and because when a buffer is designed
by means of routine min delay BUF during the optimization, its delay does propagate to the root of the tree
affecting the required time.

The last row of Table II also reports the average percentage variations of the the fanout trees’ area and delay.
As can be seen, using library lib-12 in place of lib-20 produces fanout trees with 1.1% more area and 0.2% more
delay. On the other hand if we use lib-8 instead of lib-20, the average area increases by 6.4% and the average
delay by 0.4%. Finally, if we replace lib-20 with lib-4 the increase in area is 5.7% and the increase in delay is
5.3%.

Therefore, if we accept a modest increase in area and a negligible increase in delay with respect to the optimum
case (here represented by library lib-20) we can conclude that library lib-8 satisfies the requirements we have
posed for the choice of a discrete size buffer library suitable for employment by our continuous optimization
technique. In Table III we also report the distribution of the buffer usage after the optimization of all the fanout
problems of Table II for each different discrete size buffer library. As can be seen, because of the increased
discretization of the stage ratio, when going from a larger to a smaller size library, the number of used buffers
with higher area increases.

B. Individual Fanout Problems

To provide experimental evidence of the efficiency of the proposed fanout optimization, we have compared
the solutions obtained optimizing the fanout trees of the previous section, rounding up buffers against the dis-
crete library lib-8, to those obtained optimizing the same problems with SIS [8]. SIS provides a spectrum of
different fanout optimization algorithms, each one based on a different approach: balanced trees, LT-trees, com-
binational merging, two-level trees, top-down traversal. Particularly, while our algorithm has been selected to
minimize firstly delay and secondly area (Problem III.1) of the constructed trees, all the other algorithms have
been designed to minimize the delay and are then followed by an additional step of area recovery.

Since the fanout algorithms of SIS have not been designed to work with only tapered buffers, for the sake of a
fair comparison we have used a different buffer library called lib-std+ (which is a superset of lib-8), containing
tapered and non tapered buffers and inverters, when performing the optimization with those algorithms.

The composition of library lib-std+ is reported in Table IV. Here we follow the same notation used in the case
of Table I. In this table, library lib-std is composed of all the buffers and inverters that are present in the stan-
dard 0.5�m CMOS technology library we have used for mapping the benchmark circuits. As can be seen there
are three inverters with different size (1x, 2x, 4x) along with tapered and non-tapered buffers. � The minimum
inverter 1x and the tapered buffers 1x1x, 1x2x, 1x2x4x are also present in lib-8.

The performance of the trees obtained with our continuous methodology, using library lib-8, has been then
compared in the SIS environment with the best result among those achieved by all other SIS fanout optimization
techniques using library lib-std+ (i.e. for each fanout problem, all of the SIS fanout optimization algorithms
are run and the best result obtained by any of them is reported in the Table). Here, it must be pointed out that

�We define tapered buffers as those buffers having a minimum inverter as first stage with every successive stage linearly increasing in
size with the stage ratioM . For instance, 1x, 1x1x, 1x2x, 1x2x4x are tapered buffers, while 2x4x and 1x2x8x are not.



16

buffer lib-20 lib-12 lib-8 lib-4

1x 43 43 42 42

1x1x 22 22 22 23
1x2x 0 0 0
1x2.5x 0
1x3x 0 0
1x3.5x 5
1x4x 12 17 17
1x4.5x 8
1x5x 7 15
1x5.5x 7
1x6x 15 22 36 53
1x2x	�x 0 0 1
1x2.5x	�
�x 1
1x3x��x 1 2
1x3.5x��
�x 2
1x4x��x 8 10 12 12
1x2x	�x	�x 0 0 0
1x2.5x	�
�x	�
�x 1
1x3x��x��x 0 1
1x3.5x��
�x��
�x 0
1x4x��x��x 0 0 1 1

TABLE III
BUFFER USAGE DISTRIBUTION OF THE OPTIMIZED FANOUT TREES USING FOUR DIFFERENT DISCRETE SIZE BUFFER

LIBRARIES.

all of the fanout optimization algorithms in SIS have been modified to take the DMSlib format. The results are
reported in Table V. In this table the continuous field reports the results obtained by our optimization algorithm
(the same as those of Table II in the field lib-8) while the sis field reports the best results obtained with the other
algorithms. In both fields the terms area and delay have the same meaning as in Table II. Furthermore, column g
reports the number of gates (inverters and buffers) the trees are composed of, and the cpu column reports the user
time in seconds needed for the computation. Finally, the last two columns under field �� report the percentage
variation of delay and area under the continuous field with respect to the corresponding values reported in the
sis field. As can be seen, due to the wider tree search space and the adoption of routines min delay BUF and
min area BUF in all cases the tree selection algorithm generates fanout trees with a consistently lower
area, the average reduction against the other algorithms being 60%. As for the delay, in the majority of the cases
our algorithm performs better than the others with an average reduction of 10%. Here it must be pointed out that
the use of lib-std+ for the SIS algorithms puts our algorithm at a disadvantage since it only uses lib-8 which is
only a subset of lib-std+. Regarding the execution time, because of its low complexity, in almost all cases the
computation time of our algorithm is much lower than the corresponding time needed by the other algorithms. In
this experiment, the typical execution time of routinesmin delay BUF and min area BUF, which are in the
most nested inner loop of our dynamic programming algorithm, were 0.35 ms and 3.73 ms, respectively. Finally,
in order to verify the accuracy of the adopted delay model, each fanout tree has been simulated with the SPICE



17

buffer area lib-8 lib-std lib-std+

1x 687.5 
 
 


2x 770.0 
 


4x 852.5 
 


1x1x 852.5 
 
 


1x2x 935.0 
 
 


1x4x 1017.5 
 


1x6x 1100.0 
 


2x4x 1100.0 
 


2x8x 1265.0 
 


4x16x 1677.5 
 


1x2x4x 1265.0 
 
 


1x2x8x 1430.0 
 


2x4x16x 1925.0 
 


1x4x16x 1842.5 
 


1x2x4x8x 1760.0 
 


1x4x16x64x 4647.5 
 


TABLE IV
COMPOSITION OF THE DISCRETE SIZE BUFFER LIBRARIES LIB-STD AND LIB-STD+. LIBRARY LIB-STD+ IS THE

UNION OF LIBRARIES LIB-STD AND LIB-8.

program. The average error on the calculation of signal delay and slopes at the sinks was 5%.

C. Global Fanout Optimization

After testing the algorithm for a significant number of typical fanout problems, the optimization algorithm
is now applied to entire circuits and its performance compared with those of the other techniques mentioned
in Section IV-B. To this purpose, the algorithm has been implemented in the SIS environment. Here, for each
different fanout algorithm, the procedure used for the global optimization of a circuit is that presented in [9].
With this methodology every node is visited in topological order and when a fanout problem is encountered, a
fanout tree which is in turn constructed by a selected algorithm is introduced. In [5], this procedure is shown to
be optimal with respect to delay minimization.

In Table VI, the results of the global fanout optimization performed for minimum delay on a variety of bench-
mark circuits are reported. The mapping field reports the delay and area of the circuits after the execution of the
technology mapping step for minimum delay. The second field reports the results of the best fanout optimization
obtained from the spectrum of algorithms available in SIS using the discrete buffer library lib-std+. The third
field reports the results obtained by optimizing the circuits with the proposed continuous methodology using
the discrete buffer library lib-8. Finally, the last two columns report the performance comparison between the
two approaches. Here, it must be pointed out that while the first approach selects, for each node, the best so-
lution among those produced by each of the considered algorithms present in SIS, the continuous approach, in
all cases, performs the optimization in the same way by means of the tree selection algorithm. Moreover, it is
worth noting that our algorithm is put at a disadvantage with respect to the other algorithms since the library of
buffers that it uses for its optimization process (lib-8) is only a subset of the library lib-std+ used by the other
algorithms.



18

problem sis continuous �%
circuit sinks g delay area cpu g delay area cpu delay area

C1355-1 8 7 0.44 6050 1.6 4 0.44 3410 0.1 0 -44
C1355-2 9 6 0.58 5362 1.7 5 0.47 3932 0.1 -19 -27
C1355-3 9 4 0.55 4072 1.9 4 0.53 3740 0.1 -4 -8
C1355-4 13 5 0.36 4180 4.3 1 0.36 1018 0.0 0 -76
C3540-1 12 11 0.41 9295 2.8 6 0.41 4455 0.2 0 -52
C3540-2 35 18 0.33 17078 32.7 3 0.24 6600 1.0 -27 -61
C3540-3 21 10 0.48 8442 9.5 4 0.50 3740 0.2 4 -56
C3540-4 72 25 0.57 22965 76.1 6 0.20 7012 6.1 -67 -69
C432-1 16 14 0.28 13502 6.8 2 0.23 1952 0.7 -18 -86
C432-2 6 3 0.24 3300 1.3 1 0.21 852 0.0 -12 -74
C432-3 16 13 0.27 11165 6.1 3 0.30 2888 0.3 11 -74
C432-4 10 10 0.26 9624 1.6 3 0.16 2558 0.1 -38 -73

C5315-1 49 21 0.45 19635 38.6 11 0.49 10532 1.5 9 -46
C5315-2 12 8 0.28 6737 3.5 4 0.30 3080 0.2 7 -54
C5315-3 21 12 0.38 10807 6.3 9 0.40 7178 0.3 5 -34
C5315-4 50 27 0.47 27885 49.1 11 0.52 10450 3.3 11 -63
C6288-1 16 15 0.16 15427 6.9 1 0.17 1100 1.1 6 -93
C6288-2 21 20 0.16 20845 11.7 1 0.17 1100 2.2 6 -95
C6288-3 60 17 0.74 14905 61.1 10 0.29 8938 9.0 -61 -40
C6288-4 50 30 0.16 30195 48.2 1 0.17 1100 3.2 6 -96
C7552-1 283 41 0.73 47000 1439.8 31 0.56 38802 15.1 -23 -18
C7552-2 12 7 0.26 5885 3.1 2 0.26 1788 0.4 0 -70
C7552-3 16 11 0.29 9872 4.5 6 0.23 4620 0.5 -21 -53
C7552-4 23 15 0.21 12292 10.8 2 0.18 1788 0.7 -14 -85

average -10 -60

TABLE V
RESULTS FOR DELAY OPTIMIZED FANOUT TREES. FOR EACH TREE, g REPRESENTS THE NUMBER OF GATES

(BUFFERS AND INVERTERS), DELAY IS THE DIFFERENCE IN NANOSECONDS BETWEEN THE REQUIRED TIME AT THE

MOST CRITICAL SINK AND THE REQUIRED TIME AT THE ROOT, AND CPU IS THE RUN-TIME IN SECONDS ON A

SUN-SPARC 20. THE TREE AREA IS GIVEN IN �m�.

As can be seen, with the continuous approach every circuit is optimized in shorter time and the resulting im-
plementation has on average lower delay and lower area. Particularly, the typical reduction is 4% in delay and
34% in area, while the computation time is typically one order of magnitude lower. It is worth noting that these
figures are consistent with those reported in Table V considering that on average, up to 30% of the nodes of a
circuit are typically optimized due to their large fanout count. Regarding the execution of the global fanout op-
timization performed in the SIS environment, an important consideration must be made. In particular, while all
of the SIS algorithms have been run with the -FG options, the tree selection has been executed with only the -F
option since its gate selection process is implicitly optimal. On the other hand, in both cases the area recovery
option -A has been excluded because such a step does not take into account the slope of the signals of the internal
nodes introducing an unacceptable additional delay in the optimized circuit. Particularly, it has been observed
that running the global fan-out optimization with the option -A, for all algorithms, the resulting circuits have
lower area but also delay typically 15% higher than reported in either Table VI or Table VII. In the last exper-
iment, we have performed again the fanout optimization of the benchmark circuits as in the previous case, but



19

this time making available to all algorithms only those buffers that were originally included in the standard tech-
nology library used for the mapping of the circuits (i.e. those in the discrete size library lib-std). In this case our
algorithm was only able to use the tapered buffers included in library lib-std, that is 1x, 1x1x, 1x2x and 1x2x4x.
The corresponding results are reported in Table VII. As can be seen, all algorithms have inferior performance in
terms of delay with respect to the results of Table VI. Nonetheless, the average improvements of our algorithm
versus the other algorithms remain the same.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a new methodology for the solution of the fanout problem based on a con-
tinuous delay optimization technique. An accurate transistor-level delay model is used to design delay and area
optimized buffers that perfectly fit the slacks between the leaves of the fanout tree they set up, resulting in consis-
tent area savings. Our approach is particularly effective for circuits developed with submicron CMOS processes
where special care must be taken in the evaluation of delay times and signal slope effects. A polynomial time
algorithm which uses dynamic programming for the selection of the best possible fanout tree, has also been pre-
sented. The high accuracy of its delay model, the independence from the technology in use, the wide tree search
space, and the fast run-time make the algorithm very convenient to be used in CAD tools for the automatic syn-
thesis of digital circuits.

One limitation of all the fanout algorithms that have been considered so far is that they do not consider the
effect of the delay introduced by the interconnections that propagate a signal from the source to its destinations.
If such an effect is modeled assuming that each interconnect can be substituted by a corresponding lumped ca-
pacitance, the solution to this problem is straightforward and only requires the addition of such a capacitance in
the load of the corresponding sink. On the other hand, when deep submicron technologies are used, in several
cases the resistance of the interconnections cannot be neglected any more and new optimization strategies must
be adopted to comprehend this effect. One of the most promising of such strategies is the unification-based ap-
proach for which new algorithms are developed to solve diverse optimization steps at the same time. Following
this strategy we are planning to extend our work to the simultaneous solution of routing tree construction and
fanout optimization problems, which has already been accomplished in [10] in the case of the LT-Tree for fanout
structure and the P-Tree for routing structure.

REFERENCES

[1] T. Aoki, M. Murakata, T. Mitsuhashi, and N. Goto, “Fanout-tree restructuring algorithm for post-placement timing optimization,”
in ASP-DAC, Aug. 1995, pp. 417–422.

[2] C. L. Berman, J. L. Carter, and K. F. Day, “The fanout problem: From theory to practice,” in Advanced Research on VLSI: Proc.
of the 1989 Decennial Caltech Conference, C. L. Seitz, Ed. MIT press, Mar. 1989, pp. 69–99.

[3] M. C. Golumbic, “Combinatorial merging,” IEEE Transactions on Computers, vol. 25, pp. 1164–1167, Nov. 1976.
[4] K. J. Singh and A. Sangiovanni-Vincentelli, “A heuristic algorithm for the fanout problem,” in Proceedings of the 27th Design

Automation Conference, June 1990, pp. 357–360.
[5] H. Touati, Performance-oriented technology mapping, Ph.D. thesis, University of California, Berkeley, Nov. 1990, Technical

Report UCB/ERL M90/109.
[6] H. Vaishnav and M. Pedram, “Routability-driven fanout optimization,” in Proceedingsof the 30th Design Automation Conference,

June 1993, pp. 230–235.
[7] P. Cocchini, G. Piccinini, and M. Zamboni, “A comprehensive submicrometer MOST delay model and its application to CMOS

buffers,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1254–1262, Aug. 1997.
[8] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Sequential circuit design using

synthesis and optimization,” in VLSI in Computers & Processors: Proc. of the 1992 IEEE International Conference on Computer
Design, R. Werner, Ed. IEEE Computer Society Press, Oct. 1992, pp. 328–333.

[9] H. J. Hoover, M. M. Klawe, and N. J. Pippinger, “Bouding fan-out in logical networks,” Journal of the Association for Computing
Machinery, vol. 31, no. 1, pp. 13–18, Jan. 1984.

[10] A. Salek, J. Lou, and M. Pedram, “A simultaneous routing tree construction and fanout optimization algorithm,” in IEEE/ACM
International Conference on CAD, Nov. 1998, pp. 625–630.

[11] G. Massobrio and P. Antognetti, Semiconductor Modeling with SPICE, McGrow-Hill, 1993.



20

[12] S. M. Sze, Physics of Semiconductor Devices, Wiley, 1981.
[13] Yannis P. Tsividis, Operation and Modeling of the MOS transistor, McGrow-Hill, 1987.

APPENDIX

I. DELAY MODEL

We refer here to the calculation of the propagation time tpf of the inverter depicted in Figure 1, although the
results can be applied to the evaluation of any other delay time. For a falling output transition, CFF , the feed-
forward capacitance, is equal to the overlap capacitance of the NMOS transistor T� plus the capacitance intro-
duced by the PMOS transistor T�. At t � �, CL is charged at VDD and the input voltage is zero. For t � �
the input voltage VI increases as VI � KI t until it reaches VDD and then remains constant, while VO, after an
initial increase, decreases to reach a switching voltage VS � VDD�	. During the transition of VO from VDD to
VS, depending on the slope KI of the input voltage, five different regions of operation of the NMOS transistor
can be distinguished as shown in Fig. 7.

In region �, for � � t � t�, the transistor is off and �� � t� is the time thatVI needs to switch the transistor on
whileCL is being charged by the current IFF due to the high slew rate of the input voltage, so that VO increases.

In region �, for t� � t � t�, T� is in saturation while the input voltage V I is still increasing reaching for VDD.
If at the time tDD � VDD�KI , the voltageVI reaches VDD when the transistor is still in saturation, then it enters
region 	, otherwise if the transistor goes in linearity while V I is still less than VDD, region � is entered. In both
cases �� � t� � t� is the time needed for the transition.

In region 	, for t� � t � t�, T� is in saturation and VI is constant and equal to VDD. After the time �� �
t� � t�, with the decrease of VO, the transistor leaves its own drain current saturation region to enter region �.

For t� � t � t�, T� works in region �, where the transistor is in linearity and the input voltage has not yet
reached the supply voltage. In this situation, if VO reaches VS during the time �� � t� � t�, then the overall
propagation time tpf is equal to tpf � t� � tDD�	 � �� � �� � �� � tDD�	. On the contrary, if VI reaches
VDD while the output voltage is still less than VS , then region � is entered.

In region �, T� is in linearity and VI is stuck at VDD. The time needed by VO to reach VS is either �� � t��t�
or �� � t� � t� and the overall propagation time becomes tpf � t�� tDD�	 � ������������ tDD�	
or tpf � t� � tDD�	 � �� � �� � �� � �� � tDD�	, respectively.

The output response of a minimum inverter, loaded by another minimum inverter and driven by a trapezoidal
shape input voltage, for a ����m CMOS reference technology is reported in Figure 8 along with the result of a
corresponding SPICE simulation. Here, a dashed line indicates the way the different regions of operation are
crossed during the whole output transition. For a wide range of input voltage slopes and capacitive loads, the
average error on the calculation of the propagation time is 3%.

II. BUFFER OPTIMIZATION

Like other works based on tapered buffers, the optimization methodology we use relies on the assumption
that the overall propagation delay of a speed optimized buffer is uniformly distributed along the structure. The
scheme of such buffers, that we have already introduced in Section II-B, is shown in Figure 2. We refer here to
the definitions of delays and slopes given in the previous sections. For a more detailed treatment, the reader is
referred to [7].

A thorough analysis of the circuit shows that under the above mentioned assumption, every stage i � f�� � � � � Ng

has exactly the same behavior in terms of propagation delay tpi (tpi � tpri � tpfi ) and output slopes krOi
and kfOi , provided that the buffer input signal has rising and falling slopes equal to those of the output, that is
krON � krI� and kfON � kfI� . Therefore, to predict the timing of the whole circuit, it is sufficient to model
only one stage. To this purpose, the inverter delay model introduced in Section II is implemented in a one-step
characterization algorithm, which gives all the needed relations between the tapering factor M , the width ratio
ui, and the output delays and slopes of the stage. This is done by means of four different fitted equations



21

VSAT

LIN

end end

CUT-OFF

V

4

3

1

0

2V SAT

V V

LIN

V

I DDV

I DDV =

<

DDV

= DDVI

= DDV

<

I

= VSVO< DDV

I

I

Δ

Δ

Δ Δ

Δ

Δ

0

Δ

3

11

23

4

Fig. 7. MOST regions of operation.

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800

R
eg

io
n 

of
 O

pe
ra

tio
n 

- 
O

ut
pu

t V
ol

ta
ge

 [
V

]

Time [ps]

Vo
region

Vi
SPICE

Fig. 8. Output response of a minimum inverter.

tpi � a� � a�M ui � a� � a� ln�M�

krOi � �a� � a�M��� kfOi � �a� � a�M���

where parameters a�� 	 	 	 � a� are the results of the characterization. In this way, a fast and accurate model of
the basic stage is available for the optimization of the buffer delay.

The overall propagation time tp of the buffer isN times that of a single stage tpi . Thus, for uniformity of stage
delays, we must have

tp � Ntpi �
ln�CL�C��

ln�M�
�a� � a�M�

whereCL andC� are the load capacitance and the stage input capacitance, respectively. By imposing the deriva-
tive of tp with respect to M to be equal to zero, it is possible to find an expression for the optimized value of M
which corresponds to the minimum overall propagation delay of the chain.

Mopt � exp

�
� �

a�
a�Mopt

�
(8)

Equation (8) can be easily solved by successive iterations considering that M opt must be greater than e. The
number of stages to be implemented in the buffer is then

N �

�
Kas

ln�CL�C��

ln�Mopt�
� ��


�

The coefficient Kas, which is usually taken to be close to unity, is introduced to decrease the number of stages
in order to reduce the total amount of area used. By adjustingKas, a good compromise between area and speed
can be achieved.

After the determination of N, the optimum tapering factor must be recalculated, that is

Mopt �

�
CL

C�

� �

N



22

0

200

400

600

800

1000

0.01 0.1 1 10

Pr
op

ag
at

io
n 

D
el

ay
 T

pl
h 

[p
s]

Capacitive Load [pF]

PROCESS A
SPICE

PROCESS B
SPICE

Fig. 9. Delay optimized CMOS tapered buffers designed for two different ����m technologies.

At this point, the width ratio u i of each stage which provides a symmetrical output response of the buffer, and
the overall propagation time tp can be found by substitutingMopt in the equations previously introduced, so that

ui � a� � a� ln�Mopt�

and
tp � N�a� � a�Mopt�

A design example carried out for two different 0.7�m CMOS processes, namely process A and B, is reported
in Figure 9. In the same figure, the results of several SPICE simulation are also reported to test the accuracy of
the calculated delay. As can be seen, for both processes A and B, the designed buffers show high precision for a
wide range of load capacitances. Particularly, withCL from 50fF to 10pF the agreement with SPICE simulations
is better than 3%, while with smaller values of CL the accuracy is about 6%.



23

mapping sis continuous �


circuit delay area delay �
 area �
 cpu delay �
 area �
 cpu delay area

9symml 5.73 76 4.94 -13.8 189 148.6 51 4.47 -22.0 116 51.9 3 -9.5 -38.9
C1355 6.28 258 6.12 -2.6 494 91.0 65 6.01 -4.3 344 33.3 2 -1.8 -30.2
C2670 8.38 351 6.71 -19.9 706 101.4 108 6.61 -21.1 495 41.1 4 -1.5 -30.0
C3540 16.36 524 12.47 -23.8 1140 117.6 272 12.45 -23.9 760 45.0 16 -0.2 -33.4
C5315 10.38 774 8.21 -20.9 1611 108.1 299 8.17 -21.3 1106 42.8 11 -0.5 -31.4
C6288 32.48 1514 27.46 -15.4 3325 119.7 395 27.31 -15.9 2123 40.2 30 -0.5 -36.2
C7552 23.52 1005 13.70 -41.7 2152 114.2 582 10.95 -53.4 1456 45.0 22 -20.1 -32.3
alu2 9.47 165 7.49 -20.9 382 132.0 68 7.62 -19.5 247 50.1 4 1.7 -35.3
alu4 12.24 307 10.55 -13.8 706 130.1 131 9.66 -21.1 463 50.9 8 -8.4 -34.4
apex6 7.60 323 5.18 -31.8 723 123.9 104 5.11 -32.8 460 42.5 3 -1.4 -36.3
apex7 5.43 117 3.69 -32.1 244 109.4 58 3.55 -34.6 171 46.6 1 -3.8 -30.0
comp 3.79 61 3.44 -9.3 112 83.9 8 3.51 -7.4 79 30.0 0 2.0 -29.3
dalu 19.11 544 13.43 -29.7 1228 125.9 224 13.12 -31.3 780 43.5 17 -2.3 -36.5
k2 8.93 511 7.37 -17.5 1128 120.6 156 7.18 -19.6 793 55.2 7 -2.6 -29.6
misex3 8.54 249 6.20 -27.4 612 146.4 177 5.85 -31.5 385 54.9 13 -5.6 -37.1
rot 8.17 320 6.09 -25.5 711 122.4 88 6.22 -23.9 468 46.4 4 2.1 -34.1
x2 2.51 34 2.33 -7.3 69 100.7 12 2.07 -17.6 44 28.9 0 -11.2 -35.8
x4 6.71 280 3.22 -52.0 563 100.8 267 3.17 -52.7 355 26.6 3 -1.6 -36.9

average -22.5 116.5 -25.2 43.1 -3.6 -33.8

TABLE VI
RESULTS FOR MAXIMUM SPEED FAN-OUT OPTIMIZATION APPLIED TO ENTIRE CIRCUITS USING THE DISCRETE SIZE

BUFFER LIBRARY LIB-8 FOR THE continuous APPROACH AND LIBRARY LIB-STD+ FOR THE sis ALGORITHMS:
DELAY IS GIVEN IN NANOSECONDS, AREA IS GIVEN IN ����m�, AND CPU IS THE RUN-TIME IN SECONDS ON A

SUN-ULTRA 2.



24

mapping sis continuous �


circuit delay area delay �
 area �
 cpu delay �
 area �
 cpu delay area

9symml 5.73 76 5.06 -11.7 186 145.2 30 4.48 -21.9 115 51.7 3 -11.5 -38.1
C1355 6.28 258 6.12 -2.6 494 91.0 39 6.01 -4.3 344 33.3 2 -1.8 -30.2
C2670 8.38 351 6.71 -19.9 706 101.4 67 6.64 -20.7 490 39.8 4 -1.0 -30.6
C3540 16.36 524 12.44 -23.9 1142 118.0 160 12.81 -21.7 757 44.5 17 3.0 -33.7
C5315 10.38 774 8.54 -17.7 1616 108.7 175 8.33 -19.7 1088 40.5 12 -2.5 -32.7
C6288 32.48 1514 27.46 -15.4 3325 119.7 239 27.63 -14.9 2123 40.3 30 0.6 -36.1
C7552 23.52 1005 16.00 -32.0 2162 115.2 343 11.16 -52.5 1453 44.6 22 -30.2 -32.8
alu2 9.47 165 7.49 -20.9 382 132.0 43 7.62 -19.5 247 50.0 4 1.7 -35.3
alu4 12.24 307 10.55 -13.8 706 130.1 79 9.69 -20.8 462 50.7 8 -8.2 -34.5
apex6 7.60 323 5.18 -31.8 723 123.9 70 5.11 -32.8 458 41.9 3 -1.4 -36.6
apex7 5.43 117 3.69 -32.1 245 110.3 36 3.56 -34.5 171 46.3 1 -3.5 -30.4
comp 3.79 61 3.44 -9.3 112 83.9 5 3.51 -7.4 79 30.0 0 2.0 -29.3
dalu 19.11 544 13.37 -30.0 1227 125.7 136 13.02 -31.9 776 42.8 17 -2.6 -36.7
k2 8.93 511 7.33 -17.9 1134 121.9 93 7.21 -19.3 792 55.0 7 -1.6 -30.1
misex3 8.54 249 6.20 -27.4 612 146.4 106 5.86 -31.4 388 56.1 12 -5.5 -36.7
rot 8.17 320 6.09 -25.5 711 122.4 54 6.36 -22.2 465 45.6 5 4.4 -34.5
x2 2.51 34 2.33 -7.3 69 100.7 7 2.11 -16.0 44 28.6 0 -9.4 -35.9
x4 6.71 280 3.22 -52.0 563 100.8 159 3.24 -51.7 352 25.5 3 0.6 -37.5

average -21.7 116.5 -24.6 42.6 -3.7 -34.0

TABLE VII
RESULTS FOR MAXIMUM SPEED FAN-OUT OPTIMIZATION APPLIED TO ENTIRE CIRCUITS USING THE DISCRETE SIZE

BUFFER LIBRARY LIB-STD FOR ALL ALGORITHMS: DELAY IS GIVEN IN NANOSECONDS, AREA IS GIVEN IN ����m�,
AND CPU IS THE RUN-TIME IN SECONDS ON A SUN-ULTRA 2.


