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Abstract

This paper proposes two bounded arithmetic operations, which are easily realized with
current signals. Based on these two operations, a bounded algebra system suitable for
describing current-mode digital circuits is developed and its relationship to the Boolean
Algebra, which is suitable for representing voltage-mode digital circuits, is investigated.
Design procedure for current-mode circuits using the proposed algebra system is
demonstrated on a number of common circuit elements which are used to realize arithmetic
operations, such as adders and multipliers.
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1 Explanation of traditional voltage-mode digital circuit design

The basic tasks of digital circuit design are as follows.
(1) Choose a set of basic operations, which meet two requirements: forming a complete set and

being easy to transform in order to express and optimize functions.
(2) Determine an electrical entity from voltage, current or charge to represent the logic signal so

as to simplify the realization of the basic operations.
(3) Design various electronic devices corresponding to these basic operations, then realize the

given logic function by combining these devices according to the corresponding function expression.
Up untill now we always use Boolean algebra to describe the logic function. In the algebra based

on comparison lattice, the three basic operations, AND, OR and NOT, can be re-defined as follows:[1]

AND (minimum operation) ),,min( zyxzyx =⋅⋅ (1)

OR (maximum operation) ),,max( zyxzyx =++ (2)
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In Eq.(3) the detection threshold for signal x is represented by 0.5, which is set in the middle of the
two logic levels, 1 and 0. The definition of x shows that x = 0 when x > 0.5 (i.e. x = 1), and x = 1
when x < 0.5 (i.e. x = 0). According to the above definitions all three basic operations in Boolean
algebra are related to comparison operation.

It is well known that AND, OR and NOT form a complete set to express arbitrary functions. For
example, a function with two inputs can be expressed by the general tabular form as shown in Table 1,
where ic ∈ {0,1}. By using these basic operations f(x,y) can be expressed by the following canonical

expansion form:

)()()()(),( 3210 yxcyxcyxcyxcyxf ⋅⋅+⋅⋅+⋅⋅+⋅⋅= (4)

Actually, the above equation describes the procedure to look up Table 1 by using algebraic language.
For instance, the first term )(0 yxc ⋅⋅⋅⋅⋅⋅⋅⋅ in Eq.(4) represents that when x = 0 and y = 0 the function
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value is checked out as 0c , etc.

Table 1. Tabular expression of 2-input logic function
x y f(x,y)
0 0 c0

0 1 c1

1 0 c2

1 1 c3

In the traditional design of digital circuits, voltage is used to represent the logic signal since the
voltage signals can easily realize the comparison operations. For example, in bipolar circuits[2] AND
(minimum) and OR (maximum) operations among voltage signals can be realized by pn junction’s
forward characteristics. On the other hand, in MOS circuits minimum (AND) or maximum (OR)
operations among voltage signals can be realized by connecting transistors in series or in parallel, as
shown in Fig.1. For instance, the minimum voltage among inputs in Fig.1(a) determines the
conduction condition of the series-connected nMOS structure. If min(Vx, Vy ,Vz) is high level (i.e. all
inputs are high) the structure will be conductive and the output will be low. (For simplicity, we denote

the output by ),,min( zyx VVV in Fig.1(a)). Instead, the maximum voltage among Vx, Vy and Vz

determines the conduction condition of the parallel-connected nMOS structure. Obviously,
NAND/NOR operations in nMOS circuits are realized based on the structures in Fig.1.(a) and (b), and
NOR/ NAND operations in pMOS circuits are realized based on the structures in Fig.1.(c) and (d) (if
the positive logic convention is adopted). Besides, combining Fig.1.(a) and 1.(d) will form a NAND
gate and combining Fig.1.(b) and 1.(c) will form a NOR gate in CMOS circuits. As to the NOT
(threshold comparison) operation, it is realized by comparing the input signal with the inherent
threshold voltage of MOS transistors.
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Fig. 1 Comparison of voltage signals by MOS connection

In the previous paragraph, we explained the traditional design of digital circuits by using Boolean
algebra and voltage levels. We can now understand why current are seldom used to represent logic
signal since it is difficult to compare and select the minimum or maximum among current signals. In
the following, we will introduce another kind of operations, which are easy to realize with current
signals, and introduce a corresponding algebra for developing the current-mode circuits. This is the
main contribution of the present paper.

2 Bounded algebra suitable for current-mode signals

Current is easy to add or subtract by connecting current sources to each other. This indicates to us
that if addition (&) and subtraction (�) are introduced as the basic operations their realization based on
current signal will be easy. However, the conventional arithmetic addition x & y and subtraction x � y
couldn’t be used directly due to complications that 1 & 1 = 2 and 0 � 1 = �1. Instead, we introduce the
following two bounded arithmetic operations:
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We can prove that two bounded operations may be expressed with traditional Boolean operation, AND,
OR and NOT, as follows.

yxyx ++++====++++∪ (7)

yxyx ⋅⋅⋅⋅====−−−−Ο (8)

If x = 1 in Eq.(8) we can obtain NOT operation:

yy ====−−−−Ο1 (9)

Since OR and NOT form a complete set, therefore, the two bounded operation also form a complete
set. In fact the bounded subtraction can form a complete set by itself since

yxyxyx ++++====⋅⋅⋅⋅====−−−−−−−− ΟΟ )1( and NOR forms a complete set. In the next section we will find that the
bounded subtraction plays an important role in the design of current-mode circuits.

By using two bounded operations we can express the 2-input functions in Table 1 by the
following canonical expansion:

)]([)]([)]([)]([),( 3210 yxcyxcyxcyxcyxf ++++−−−−++++++++−−−−++++++++−−−−++++++++−−−−==== ∪∪∪∪∪∪∪ ΟΟΟΟ (10)

Similarly, the above equation describes the procedure to look up Table 1 by using algebraic
expressions. For instance, the first term )(0 yxc ++++−−−− ∪Ο in Eq.(10) represents that when x = 0 and y = 0

the function value is checked out as c0, etc. In fact, from Eqs.(7) and (8) we have

yxcyxcyxc ⋅⋅⋅⋅⋅⋅⋅⋅====++++⋅⋅⋅⋅====++++−−−− 000 )( ∪Ο . Since the OR operation (+) is equivalent to the bounded

addition ( +∪ ) Eq.(10) is converted into form of Eq.(4).
Based on the above definitions and relationships with Boolean operations, we can derive the

following properties for two bounded operations:

xx =+∪0 , 11 =+x∪ , xxx =+∪ , 1=+xx∪ ;

00 ====−−−− xΟ , xx ====−−−−Ο1 , xx ====−−−− 0Ο , 01 ====−−−−Οx , 0====−−−− xxΟ , xxx ====−−−−Ο

Also it may be verified that the above bounded operations have the similar properties with
general arithmetic operations, such as:

xyyx +=+ ∪∪
zyxzyxzyx ++=++=++ ∪∪∪∪∪∪ )()(

Zyxzyx −−−−−−−−====++++−−−− ΟΟΟ )()( ∪

We should point out that the signal value obtained by the conventional arithmetic addition is
restrained by bounding operation with an upper bound 1. In fact, the upper bound may be set to a
value d larger than 1, resulting in non-binary signal values. The advantage is that the high valued
signal may lead to a simpler function expression and thus a simpler circuit structure. Therefore the
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bounded addition operation in Eq.(5) can be modified as


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 >
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where d is a positive integer. If needed the arithmetic addition & can be directly used for forming an
intermediate signal with high value in function expression. As an example, the 3-variable AND and
NOR function can be expressed by using the sum signal Σ = x & y & z, Σ ∈ {0, 1, 2, 3}, as follows:

2−−−−====⋅⋅⋅⋅⋅⋅⋅⋅ ΣΟzyx (12)

ΣΟ−−−−====++++++++ 1zyx (13)

The above two expressions can be easily verified by using the Karnaugh Map shown in Fig.2.
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Fig. 2 (a) zyx ⋅⋅ (b) zyx ++ (c) Σ = x & y & z

Since the bounded operations are derived from the general arithmetic addition and subtraction,
they have simple relationships with traditional Boolean operations. A mediate algebra between
arithmetic and Boolean algebra is thus formed.

3 Characteristic of current signals and design of current-mode circuits

CMOS or bipolar technology can be used to illustrate the design of current-mode circuits. I2L is
the current-mode circuit in bipolar technology[3-5]. In this paper only the current-mode circuit in
CMOS technology will be discussed since it is receiving increasing attention in recent years[6-10].

The circuit realizations of the two bounded operations are shown in Fig.3(a). In the left part the
current flowing through the connection node cannot be larger than 1, therefore, the bounded addition
is realized. On the other hand, in the right part the current flowing through the connection node cannot
be less than 0, then the bounded subtraction is realized. Notice that its load is an nMOS current mirror.
In the following we show examples of building current-mode digital circuits.

(1) Inverter
From Eq.(9) we can obtain a simple circuit realization shown in the left part of Fig.3(b), where

only two nMOS transistors (for the current mirror) and one pMOS transistor (for forming the current
source 1) are used. The dotted line in the circuit is used to express the control of a current mirror. The
shortcoming of this realization is lack of level-restoration. However, based on Eq.(3) we can design an
inverter with level-restoration function, as shown in the right part of Fig.3(b). Here node P assumes a
high level, nMOS transistor turns off and output current is 0 when x = 1 (i.e. x > 0.5); Similarly node P
assumes low level, pMOS transistor turns on and output current is 1 when x = 0 (i.e. x < 0.5). In
Fig.3(b) two pMOS transistors and one nMOS transistor are needed. One of pMOS transistors is used
to switch the unit current source.
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Fig. 3 (a) Circuit realization of bounded operations (b) Current-mode inverter

(2) Boolean logic gates
From Eqs.(12) and (13), the simple AND and NOR gates without level-restoration function are

shown in Fig.4(a) and (b), where the intermediate sum signal Σ = x & y & z is used. Instead, we can
derive the following switching expressions from Karnaugh Map in Fig.2:
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The corresponding current-mode Boolean gates with restoration function are shown in Fig.4(c), (d), (e)
and (f).
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Fig. 4 Current-mode Boolean gates (a) simple AND gate (b) simple NOR gate

(c) AND gate (d) NAND gate (e) OR gate (g) NOR gate
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(3) Arithmetic circuits
Since currents are easy to add or subtract, the current-mode circuit is most suitable for realizing

arithmetic circuits such as adders and multipliers. Taking the full adder with three inputs (A, B, C) and
two outputs (carry-out C+ and sum S) as the example, we can obtain Table 2 by using the intermediate
sum signal Σ = x & y & z and derive the following switching expressions for C+ and S:





>Σ
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=+ .5.1if1,

5;.1if0,
C


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+

+
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Table 2. Truthtable of a full adder

Σ 0 1 2 3
C+ 0 0 1 1
S 0 1 0 1

Notice that in the function S the switching threshold is controlled by carry-out C+. The corresponding
circuit realizations are shown in Fig.5(a), where three nMOS transistors are used for forming the
current mirror of Σ, five pMOS transistors with various widths are used for generating the five current
sources (1.5, 1, 2, 0.5, 1), and other three pMOS transistors are used as switches. Therefore, a total of
11 MOS transistors are needed for the current-mode full adder. In contrast, the voltage-mode full
adder needs 28 MOS transistors for a full complementary MOS realization[11]. If we do not use C+ to
control switch threshold in design we can derive S directly from its truthtable given in Table 2:



 ΣΣ>Σ

=
otherwise.0,

2.5;>or1.5)<and5.0(if1,
S

�

�
�

1.5

(a)

VDD

B
A

C

1 2

+C

0.5 1

S

0.5

S

2.5

1.5

(b)

1

VDD

�

�

�

(c)

Fig. 5 Current-mode full adder and its DC transfer characteristics

The design corresponding to the above switching expression is shown in Fig.5(b). PSPICE has been
used to simulate the circuit in Fig.5(a) with 1µm CMOS technology. The currents corresponding to
logic level 0, 1, 2, 3 are 0, 10µA, 20µA and 30µA, respectively. The DC transfer characteristics of the
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circuit is given in Fig.5(c). It is shown that the circuit has ideal logic function with precise detective
threshold currents corresponding to 0.5 (5µA), 1.5 (15µA) and 2.5 (25µA).

In fact the higher the number of signals which are added together, the higher the area advantage
of current-mode circuits. For example, four adders will be needed to realize addition of seven binary
signals in voltage-mode design, as shown in Fig.6(a). This realization needs 112 transistors. However,
in current-mode design, we can derive the following expressions from the truthtable shown in Table 3:
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The circuit corresponding to the above expressions is shown in Fig.6(b), where only 19 MOS
transistors are used. It is thus evident that devices and interconnections will are significantly reduced
in arithmetic circuits, such as adder and multiplier, if current-mode design are used. The most
convincing demonstration of the advantages of current-mode CMOS design is a 32×32 multiplier
presented[6]. This 32×32 multiplier chip is half the size of an equivalent voltage-mode CMOS
realization, dissipates half the power, and has a multiply time within 5% of the fastest reported
multiply time of a comparable design of that era.

Table 3. Truthtable of a seven binary signals.
S 0 1 2 3 4 5 6 7
y2 0 0 0 0 1 1 1 1
y1 0 0 1 1 0 0 1 1
y0 0 1 0 1 0 1 0 1
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Fig. 6 Adder of seven binary signals (a) voltage-mode (b) current-mode

The circuit corresponding to the above expressions is shown in Fig.6(b), where only 19 MOS
transistors are used. It is thus evident that devices and interconnections will are significantly reduced
in arithmetic circuits, such as adder and multiplier, if current-mode design are used. The most
convincing demonstration of the advantages of current-mode CMOS design is a 32×32 multiplier
presented[6]. This 32×32 multiplier chip is half the size of an equivalent voltage-mode CMOS
realization, dissipates half the power, and has a multiply time within 5% of the fastest reported
multiply time of a comparable design of that era.
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4 Conclusions

This paper showed that the choice of algebra system used for designing digital circuits is
dependent on which electrical entity is used to represent the logic signal in circuits. If the voltage
signal is used, the Boolean algebra based on comparison lattice is a better choice. However, if the
current signal is used, comparison operations in Boolean algebra are not easy to realize. Since addition
or subtraction operations can be easily realized by connecting wires together, we introduced bounded
arithmetic operations as the basic operations and formed a corresponding bounded algebra suitable for
the design of current-mode circuits. The design procedure of the current-mode circuits was
demonstrated for some typical circuits. It was shown that the proposed bounded operations and the
corresponding algebra system are very effective for designing current-mode circuits. In addition to the
design flexibility, the arithmetic circuits, such as adders and multipliers, have simple structure in
current-mode realization. In the end, as the charge signal and current signal are all easy to be added,
we should point out that the bounded algebra can be spreaded into charge circuits, such as CCD.[12]
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