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Abstract— We present a novel algorithm based on dynamic
programming with binning to find, subject to a given dead-
line, the minimum-cost coarse-grain hardware/software par-
titioning and mapping of communicating processes in a gen-
eralized task graph. The task graph includes computational
processes which communicate with each other by means of
blocking/nonblocking communication mechanisms at times
including, but also other than, the beginning or end of their
lifetime. The proposed algorithm has been implemented and
experimental results are reported.
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I. INTRODUCTION

REVIOUS work on system level synthesis has focused

mainly on fine-grain hardware/software partitioning.
Examples include VULCAN II [1] and COSYMA [2]. These
programs automatically partition the input specification
into basic blocks (or fine-grain operations) and move the
basic blocks to hardware or software components while sat-
isfying the given constraints. The resulting fine-grain parti-
tioning may, however, move logically coherent blocks across
different parts or put logically unrelated blocks in the same
part. In addition, the resulting partitioning creates an im-
plementation which is very different from the initial speci-
fication, and hence, is not convenient for human designers
to debug and/or improve upon.

In contrast, coarse-grain partitioning does not decom-
pose the initial specification into basic blocks; Neither does
it assign a process in the initial specification to several pro-
cessors. It is therefore able to preserve the granularity
and modularity of the initial specification. Furthermore,
coarse-grain partitioning can exploit the designer expertise
more easily and can achieve a partitioning that satisfies
macroscopic choices more readily [3]. Finally, the resulting
solution has more logical coherence which facilitates the
top-down design process and allows for debugging of the
hardware/software.

Coarse-grain partitioning algorithms often start from a
task graph which consists of a set of communicating pro-
cesses. In the published literature, task graphs that de-
scribe the set of communicating processes (or tasks) (such
as the ones shown in [4] [5] [6]) are directed acyclic graphs
(DAGSs) that use nodes to represent processes and arcs to
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represent precedence relation or communication among the
processes. In these task graphs, the communication is as-
sumed to take place from the end of one process (node)
to the beginning of another process. We refer to this type
of communication as end/begin communication. However,
the coarse-grain processes may generally communicate with
each other at times that are not at the end or beginning of
their lifetime. We refer to this type of communication as
mid-way communication and to the task graph with mid-
way communication as a generalized task graph. The prob-
lem we are trying to solve can then be stated as follows.

Problem I.1: Given a generalized task graph consisting
of processes which communicate with each other at arbi-
trary times by various blocking/nonblocking communica-
tion mechanisms and a library containing several possible
mappings (or implementations) for each process, simulta-
neously schedule and map the computational and commu-
nication processes to given HW /SW resources so as to min-
imize the total area cost while satisfying a given deadline.

The hardware components which are available in the li-
brary can be classified as computational units and com-
munication units. Both classes can be further divided
into programmable or non-programmable. Examples of
programmable computational units are CPUs, DSPs and
examples of non-programmable computational units are
ASICs and custom ICs. Examples of programmable com-
munication units are FIFOs with controllers, bidirectional
handshake controllers, direct memory access (DMA) con-
trollers, bus arbiters, or shared memory access and exam-
ples of non-programmable communication units are special
purpose, customized communication units. All computa-
tional and communication units in our library are assumed
to be compatible with industry interface standards such as
the evolving Virtual Socket Interface. As a result, we can
mix and match (plug and play) various intellectual prop-
erty (IP) blocks.

A task graph with mid-way communication becomes a
directed multi-graph, that is, there may exist more than
one arc from one node to another node. The task graph
may also be periodic. We can handle the case that the
period is greater than or equal to the deadline by using
the same schedule for every period. Note that, generally
speaking, the processes in the task graph are continuous
processes, operating on streams of data as opposed to pro-
cesses that fire only once. Furthermore, the communication
between these processes is non-conditional (i.e., it is data-
independent).

In this paper, we only consider a task graph which is
composed of computational and communication processes
with deterministic characteristics (i.e., no data-dependent
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loops are present in the task graph).

The task graph may be periodic (with a loop surround-
ing the whole task graph). We can handle the case that
the period is greater than or equal to the deadline by using
the same schedule for every period. Furthermore, we as-
sume that the deterministic microscopic loops in the com-
putational and communication processes are taken care of
by the estimators that characterize the performance (area,
delay, energy consumption, etc.) of these processes and
hence they are not explicitly shown in the generalized task
graph which describe the behaviors of the communicating
processes in a macroscopic way.

Notice that the cost of mapping a process to a library
unit (implementation) cannot be exactly determined be-
cause of the possibility of sharing the unit between differ-
ent processes through time-division multiplexing (TDM).
The cost function should account for this possibility and
include the area and delay overhead associated with the
context switching. We assume in this paper that TDM will
be used whenever possible, and that the overhead of the
context switching is accounted for in the area/delay cost of
processes which share the same unit.

We allow the resource sharing of programmable compo-
nents by different processes according to TDM, even if the
process lifetimes overlap. For nonprogrammable resources,
the sharing can happen only if the process lifetimes do not
overlap or the processes are mutually exclusive.

Our algorithm consists of three major phases. First,
processes are decomposed into subprocesses which perform
parts of the required computation. The correct precedence
relationships implied by the specified communication mech-
anism are then added in by a systematic transformation
process. Second, the decomposed subprocesses are sched-
uled so as to ensure that the subprocesses which belong to
the same original process are mapped to the same hardware
type (for example, the same CPU with the same utilization
factor). 1 We refer to the condition that all of the subpro-
cesses which are obtained from the same original process be
mapped to the same hardware type with the same utiliza-
tion factor as type consistency constraint. This constraint is
necessary because we assume that the original coarse-grain
process has strong internal communication (variable refer-
ence, etc.). Based on this assumption, we do not want the
subprocesses which are decomposed from the same original
coarse grain process to be mapped to different hardware
units in the final solution. The scheduling is done by us-
ing a dynamic programming based algorithm which finds
the cost-optimal process mapping while satisfying a given
task deadline. The third phase is hardware allocation and
binding (sharing) phase which ensures that the decomposed
subprocesses will be mapped not only to the same hard-
ware type, but also to the same hardware instance. This
phase will also determine the sharing of hardware among
all coarse-grain processes in the system. Notice that before
the scheduling phase is finished, the actual time span of the
processes cannot be completely determined, and the pos-

IThe processor(CPU) utilization factor is the percentage of the
CPU time allocated to a process.

sibility of sharing those processes can be determined only
partially. We therefore defer the optimization of hardware
sharing to the third phase.

We summarize the major contributions of this paper:

e Our paper is the first to solve a time-constrained

coarse-grain HW/SW partitioning/mapping problem
using dynamic programming in an OPTIMAL fash-
ion. Other existing approaches either address fine-
grain HW/SW partitioning/mapping problems, or use
ad hoc heuristic techniques for solving the coarse-grain
HW/SW partitioning/mapping problems.
Our paper is the first to handle generalized task graphs
consisting of processes which communicate with each
other through various blocking or nonblocking commu-
nication mechanisms and throughout their active life
times (not only at the beginning or the end of their
life times).

o Our paper presents a formal method for doing synthe-
sis and mapping of both computational and communi-
cation processes in a truly simultaneous and uniform
manner under a given global timing constraint.

o Our paper introduces an elaborate scheme for handling
type consistency constraints during the application of
dynamic programming for general optimization prob-
lems. Other applications of this technique can easily
be found, for example in technology mapping for dy-
namic logic circuits. So the solution technique by itself
is interesting and has a wider applicability than this
particular system-level problem.

The paper is organized as follows. In Section II, we sum-
marize related work for coarse-grain HW /SW partitioning.
Section IIT introduces our transformation rules for process
decomposition. In Section IV, we present the mixed integer
linear programming (MILP) formulation for the Problem
I.1. In Section V, we present our dynamic programming
algorithm for solving Problem I.1. In Section VI, we de-
scribe the allocation and binding algorithm to be used after
the scheduling step and provide some discussions about the
cost model used in this paper. Experimental results and
conclusion are provided in Sections VII and VIII, respec-
tively.

II. RELATED WORK

There are two published works [7] [8] on fine-grain hard-
ware/software partitioning which use dynamic program-
ming. In both of these works, the target architecture con-
tains a single microprocessor and a single hardware chip
(ASIC, FPGA, etc.). The authors then try to find the
best combination of non-overlapping sequences of fine-grain
Basic Scheduling Blocks which fit the available hardware
(ASIC or FPGA) and result in maximum speedup (by mov-
ing the scheduling blocks from software to hardware). The
problem is similar to the knapsack stuffing problem[9], and
dynamic programming is performed on organized matrixes
or tables to find the optimal solution. Although no global
graph traversal is applied in these papers, the authors did
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try to map the fine-grain task graphs onto given architec-
tures using a dynamic programming approah. Their use of
dynamic programming is therefore different from our use of
dynamic programming which explicitly traverses the gen-
eralized task graph globally.

There have been several research publications on the
coarse-grain HW/SW partitioning which handle task
graphs with only end/begin type communication [4] [10]
[5] [11]. For these task graphs, the total time used by a
process is simply the summation of the time used to do
the computation and time used to do the communication.
These works use greedy heuristic [4], branch and bound
[10], or MILP [12] [5] as their optimization techniques. In
[13] and [1], the authors allow mid-way communication in a
fine-grain HW/SW environment. The form of communica-
tion allowed is however not as general as the ones proposed
in the present paper and not at the coarse-level.

For the task graphs consisting of only end/begin type
of communication, the problem can easily be solved by a
dynamic programming algorithm similar to the one used
in [14]. For task graphs with mid-way communication, the
computation and communication are however, concurrent
and the times used in the two parts are not purely additive.
For these task graphs, a new method based on a modified
dynamic programming algorithm is needed and will be ex-
plained later in this paper.

The work reported in [15] for coarse-grain system syn-
thesis, separates the synthesis of computational and com-
munication processes into two distinct stages, one for the
computational processes, the other for the communication
processes. In this case, it is very difficult to apply a timing
constraint (deadline) on the whole system to find a globally
optimal solution in this manner because one part of the the
critical path is used to do the computation whereas another
part is used to do the communication. In [4], a gradient
search method is used. In each iteration, the authors per-
form a gemerate and test operation commonly used in Al.
That is, in each iteration, they try to relocate one process
from a CPU to another, relocate a message (communica-
tion process) from one bus to another, do the reschedul-
ing on the CPUs and buses, and calculate the change on
the cost. If the timing constraints on CPUs or buses are
violated, they add one more CPU or bus to fix the prob-
lem. The synthesis of computational and communication
processes can thus be considered to be performed simulta-
neously during each iteration of the search on the solution
space. The algorithm is, however, greedy and non-optimal.
In our work, the timing constraint is applied to all of the
computation and communication subprocesses in all criti-
cal paths and thus the synthesis of the two kinds of pro-
cesses is performed simultaneously. Since our algorithm is
based on dynamic programming it produces the optimal
solution.

The topology or architecture of the system is not deter-
mined initially; rather it is determined by the final result
of the instantiated communication units (and the network
formed by these communication units). These communica-
tion units are in turn instantiated as a direct result of the

DP approach and the sharing step that follows it. Our ap-
proach in determining the topology or architecture is simi-
lar to that of [15], where the topology or architecture of the
system is the result of their communication synthesis, not a
result of their initial assumptions. This is in sharp contrast
to most other HW/SW co-design systems where the topol-
ogy or architecture is determined initially. Our approach is
superior to that of [15] because computational and commu-
nication synthesis steps are done simultaneously with re-
spect to the same global timing constraint whereas in [15],
the two kinds of synthesis are done in separate phases.

III. PrRoCESS DECOMPOSITION IN A TASK GRAPH

This phase decomposes the communicating processes
into some smaller computational subprocesses and commu-
nication processes. The decomposition step ensures that
all of the precedence relationships imposed by the required
blocking/nonblocking communication mechanisms are ac-
counted for. Transformation of the communicating pro-
cesses into computational subprocesses and communication
processes for blocking send/blocking receive, nonblocking
send/blocking receive, blocking send/nonblocking receive
and nonblocking send/nonblocking receive are shown in
Fig. 1(a), (b), (c) and (d), respectively. In Fig. 1, S repre-
sents the subprocess which sends the data from the sending
process whereas R represents the subprocess which sends
the reply or acknowledgment from the receiving process.
The arcs with single tail denote the precedence relation-
ships between the nodes. The arcs with double tails denotes
the precedence relationship between the two subprocesses
that are decomposed from the same original coarse-grain
process. Note that there is strong internal communication
(variable accesses) and logical coherence between two such
subprocesses and hence they should be finally mapped to
the same hardware or software instance.

For a task graph with complex communications among
processes, we follow the transformation rules shown in Fig.
1 to create to the decomposed task graph.

When there are more than one mid-way communications
within a given process (cf. process A in Fig. 2(a)), the de-
composition depends on whether the given process is single
threaded or multi-threaded. For a single threaded process,
the mid-way communication is referenced to the same time
line as that of the thread. In this case, the appropriate
transformation rules are applied to all mid-way communi-
cations at different points on the time line (cf. Fig. 2(b)).
For a process with multi-threads, the mid-way communica-
tions may be referenced to different time lines for different
threads. In this case, we add two dummy nodes Y; and Y5
(with zero cost and zero delay) at the beginning and the end
of that process to synchronize the multiple threads. The
appropriate transformation rule is then applied on each
thread that serves the time line for the corresponding mid-
way communication (cf. Fig. 2(c)).

IV. MILP FORMULATION FOR THE SCHEDULING

After the decomposition of the original task graph, some
(computational) process P; are decomposed into a number
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Fig. 1. Decomposition of communicating processes with different
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of subprocesses P; j, 1 < j < U; where U; denotes the num-
ber of subprocesses decomposed from P;. The new labeling
is also applied to existing and/or newly added communica-
tion processes (communication processes however are not
decomposed and will simply be labeled as Py 1 (Uy = 1)).

For each (sub)process, there may be more than one map-
pings or implementations. We classify two mappings to the
same programmable processor type with different proces-
sor utilization factors as different implementations of that
(sub)process. P; ; denotes the k-th mapping of subpro-
cess P; j. Note that P; j, , = P, j,x for all ¢, k but P;,
and P, ;i are in general unrelated. We allow sharing of
same processor instance for subprocesses whose lifetimes
overlap only if the total processor utilization for that pro-
cessor instance does not exceed 100%.

The following variables are needed for the MILP formu-
lation:

1 if (sub)process P; ; uses the k-th
implementation
0 otherwise

Tijk =

S;; € Z* U {0} is the start time for (sub)process P; ;.
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Fig. 2.  Example to illustrate decomposition of single and multi-
threaded processes

dijr and c;jr denote the delay and the cost of
(sub)process P;; when mapped to the k-th implementa-
tion. Values of d; ;1 and c; ; are known before the start
of the MILP. Tt is the deadline for the task graph.
The MILP formulation is written as:

mmi : E E ik Cigk
i J k

subject to:
Mapping Constraint: YoeTijke =1, V(i)
Global timing constraint:
Sivi + 2k TiUik - divik < Teomp, ¥V Piui whose
successor is a primary output.
Si1 =0 V P;; whose predecessor is a primary input.
Precedence Constraint:
Si,j + Ek Tijk - dz,j,k < Sm,n de€E,
e =< Py j, Py > for a decomposed task
graph G = (V, E).
Type Consistency Constraint:
Tijk = Tilk, Vk, Vi, 1 < j <U;

The MILP formulation of the mapping/scheduling is sim-
ple to write, but contains many integer variables, equations
and inequalities. This makes the formulation impractical
for large problem sizes. Instead, in the next section, we pro-
pose a dynamic programming solution for the same prob-
lem which is in practice more useful.

V. SCHEDULING USING DYNAMIC PROGRAMMING

For simple task graphs, the scheduling algorithm is based
on dynamic programming. For more complex task graphs,
the scheduling is based on dynamic programming with bin-
ning.

A. Area vs. delay curves

Before the scheduling, all processes are assigned an area
vs. delay curve which represents the area cost and delay
for mapping the process to different types of processors.
Typical cost vs. delay curves are shown in Fig. 7. The
corner points on those curves are non-inferior points. A
point is inferior to another point if both its cost and delay
are equal or higher. The area cost of a process mapped
to a processor type X is the chip area of the hardware
realization of processor X. In case the utilization factor
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is less than 100%, then the area cost is multiplied by the
utilization factor. Similarly, the delay cost of a process
mapped to this processor is the total computation time
for the process running on that type of hardware. In case
the processor is shared among multiple processes, the delay
cost of each process accounts for the overhead of context
switching.

In this paper, we only consider a task graph which is com-
posed of computational and communication processes with
deterministic characteristics. The data size for each com-
munication process is assumed to be known as part of the
input specification (a priori), and the corresponding delay
for mapping to different communication units is estimated
by behavioral simulation and profiling. For communica-
tion processes, the area estimate includes the area used by
communication controller, buses, and local buffers for both
the sender and the receiver. The area of a communication
process that uses programmable communication controller
with some utilization factor < 100% is estimated as the
total cost described above times the utilization factor. For
communication units, which may be shared by several com-
munication processes in a TDM manner, the cost and delay
should include the overhead of context switching.

B. Simple task graphs

For a task graph without re-convergent fanout and with
only end/begin type communications, the algorithm used
in [14] can be directly used without going through the pro-
cess decomposition phase. This algorithm would then pro-
duce the optimal hardware/software mapping for a tree-
structured task graph (and a good solution for a DAG-
structured task graph) under a given timing constraint
(deadline) in pseudo-polynomial time.

The only modification is to replace the end/begin type
communication with a sending process S and add the re-
quired arcs to the task graph as shown in Fig. 1(e).

The algorithm assumes that we are given the area vs.
delay curves for different module alternatives (implemen-
tations) which match each node of the task graph. Then
the algorithm perform a post-order traversal which adds
the area vs. delay curves of the children of a node and the
module alternatives for the node to build the area vs. delay
curve of this node. This step will also use the lower bound
merge to delete all inferior points. The post-order traver-
sal will continue until the graph roots are reached. Then a
pre-order traversal will commence at the roots using user
specified arrival time constraint. The minimum area point
on the area vs. delay curve of the root which satisfies the
arrival time constraint will determine the module alterna-
tive to be used at the root. The pre-order then traverses
the children of the root with the new arrival time constraint
calculated as the arrival time at the root minus the delay
of the module used at root. The recursive procedure will
continue until all leaves have been visited.

B.1 Post-order traversal

A post-order traversal of the tree is performed, where for
each node n and for each module alternative at n, a new
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inferior point */ o~ -VL]_‘...
g
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Fig. 3. Lower bound merging of delay curves

delay function is produced by appropriately adding the de-
lay functions at the children of node n. Adding must occur
in the common region among all delay functions in order to
ensure that the resulting merged function reflects feasible
matches at the children of n (cf. Fig. 4). The delay func-
tion for successive module alternatives at the same node n
are then merged by applying a lower-bound merge opera-
tion on the corresponding delay functions. The procedure
is repeat until all combinations of points on curves A and
B are exhausted. To illustrate the lower-bound merge op-
eration, see Fig. 3.

The delay function addition and merging are performed
recursively until the root of the tree is reached. The re-
sulting function is saved in the tree at its corresponding
node. Thus each node of the tree will have an associated
delay function. The set of (¢, e) pairs corresponding to the
composite delay function at the root node defines a set of
arrival time-cost trade-offs for the user to choose from.

To illustrate the delay function addition, consider the
example in Fig. 4. It shows the addition of the children’s
curve to its parent for a module alternative m match at
node C. The children of this match are nodes A and B.
The delay functions for A and B are known at this time.
To compute a point on the delay function for node C', we
select a point from delay function of the children, i.e. point
a on delay curve of node A. The delay of point a is 3 units.
So, we look for a point on the delay function of node B
with delay less than 3 which has the minimum cost. In
this example, d is the desired point. We therefore combine
points a and d to generate point a’ on delay-curve(C'), with

arrival(a') 3, + delay(m)
s [arrival(a)/t.] - te
cost(a) + cost(d) + cost(m)

cost(a') =

where arrival(z) and t2denote the output arrival time and
the starting time for x respectively; t. denotes the basic
unit of time used in the system.
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B.2 Pre-order traversal

The user can now use the total computation time con-
straint Tcomp On the root of the tree and perform a pre-
order traversal to determine the specific point on each curve
associated with each node of the tree. The timing con-
straints of children at the root is computed as Tcomp —
tdelay, Where tgelay is the delay of the module alterna-
tive of the root that makes the root satisfy arrival time
< Tcomp and has the minimum cost (cf. Fig. 5). This
module selection and timing constraint propagation tech-
nique is applied recursively at all internal nodes during the
pre-order traversal.

C. Complex task graphs

Handling task graphs with processes that have re-
convergent fanout and use mid-way communication during
their lifetime is a much more difficult task. This is because
processes in the task graph have to be decomposed into
subprocesses, and the communication processes which re-
flect the blocking/nonblocking communication mechanism
have to be inserted. Furthermore, after the decomposition
phase, the dynamic programming paradigm must be mod-
ified to ensure that the subprocesses which belong to the
same original process are mapped to the same hardware
or software component instance in order to maintain the
logical coherence and performance. This is achieved in two
steps; during scheduling, we ensure that the decomposed
subprocesses which correspond to the same original process
are mapped to the same HW or SW type with the same
utilization factor. During the allocation and binding, we
ensure that these subprocesses are further mapped to the
same HW or SW component instance.

We first show that this problem is NP-complete.
Theorem V.1: Problem 1.1 is NP-complete.

Proof: ~ The scheduling of generalized task graph
with blocking/nonblocking communication mechanism is
defined as follows: given a generalized task graph (each
process in the task graph has several possible implemen-
tations) with blocking/nonblocking communication mech-
anism, find the optimal cost scheduling of that task graph
satisfying the given deadline (total computation time of the
task graph) and thus every subprocess decomposed from
the same original coarse grain process is mapped to the
same type of hardware with the same utilization factor.

By restricting the generalized task graph to be a chain,
restricting all of the communications to be of nonblock-
ing send/blocking receive types and allowing only two im-
plementations for each process in the chain, our problem
becomes identical to the circuit implementation problem
which is known to be N P-complete [16]. Hence, our prob-
lem is proven to be N P-complete by restriction [9]. |

The mid-way communication among coarse-grain pro-
cesses is possible and occurs frequently. Using the original
dynamic programming in [14], we may get some point on
the curve of a node with re-converging inputs. This point
may result in inconsistent type assignments for the multiple
fanout node that gave rise to the re-converging inputs of
the node in question. This is obviously wrong (cf. Fig. 10).
In addition, using the original algorithm in [14], during the
post-order graph traversal, we may drop some points that
actually lead to the optimal solution (cf. Example V.1).

We use type defined (tagged) bins on each node in the
decomposed task graph to ensure that the above mentioned
situation does not arise.

Example V.1: Here we use an example to show why bin-
ning is necessary to obtain the correct solution to our prob-
lem.

Suppose in Fig. 7(a), we want to get the minimal cost
solution on the primary output (PO). A; and A, are two
subprocesses decomposed from an original process A, and
C is another process. The area vs. delay curves asso-
ciated with different matchings on the (sub)processes are
also shown in Fig. 7(a). Each subprocess A;, A» and pro-
cess C' can be mapped to either implementation E or F.

Using dynamic programming without binning, we obtain
a final accumulated curve at the PO with each point anno-
tated with the implementation type of A; and A, as shown
in 7(b). We can see that some points (solutions) are com-
posed of different types of mappings used for both 4; and
As. Such points do not represent valid solutions to our
problem.

Using dynamic programming with binning, we obtain
two curves at the PO as shown in Fig. 7(c), each curve is
tagged with the implementation used for both A; and As,.
There is no type inconsistent solution here. Notice that
point (9,46) in the curve tagged by A = E in Fig. 7(c)
is not present in the solution curve obtained in Fig. 7(b).
The reason is that this point was inferior to point (9, 45)
and hence was dropped from Fig. 7(b).
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C.1 Creating the binning strings

We first provide the definition of re-convergent nodes
which will be needed in this paper.

Definition V.1: In a directed graph if there are two or
more vertex disjoint directed paths from node s to node ¢, s
is the re-convergent fanout stem (node), and ¢ is a primary
re-convergent node of node s.

If there are no re-convergent fanout nodes on the paths
between a re-convergent fanout node A and its primary re-
convergent nodes, then A is a simple re-convergent fanout
node. Otherwise, A is a complex re-convergent fanout
node.

Definition V.2: [17] Let A be a simple re-convergent
fanout node.

a) if A is located on a path between a re-convergent fanout
node B and a primary re-convergent node of B, then all
of the primary re-convergent nodes of A which are not pri-
mary re-convergent nodes of B are secondary re-convergent
nodes of B.

b) if node B is located on a path between a re-convergent
fanout node C' and a primary re-convergent node of C,
then all the primary and secondary re-convergent nodes
of B which are not primary re-convergent nodes of C' are
secondary re-convergent nodes for C.

For example, in Fig. 6, node B is a re-convergent fanout
node, and C is a primary re-convergent node of B. Node
C is also a secondary re-convergent node for node A. The
primary re-convergent nodes of node A is D. Node H is
not a re-convergent node of node A, because all paths from
A to H are not vertex disjoint. In the rest of this paper,
we will refer to the re-convergent nodes of certain node
as primary and/or secondary re-convergent nodes of that
node.

To satisty the type consistency constraint, we modify the
dynamic programming algorithm as follows. First, in the
solution of [14], the post-order and pre-order traversal can
be performed on the individual PO’s sequentially for the
min-cost solution under timing constraint. However, this
approach can lead to a type inconsistent solution. For this
reason, we add some dummy nodes and a root with zero
cost and zero delay to merge different PO’s into a single
root. (cf. Example V.3 for more details). Second, we add
binning strings to each node as detailed next.

The pseudo code for create_binning_strings is shown
in Fig. 8(a). Note that in the last part of the pseudo
code, the function search_reconvergent_nodes(z) will re-
turn both primary and secondary re-convergent nodes of
z. The primary and secondary re-convergent nodes of any

Fl (3 14) E\g{le) E| (2, 20) .
@ A E (5, 10) " Fee © 5) .
3 s F (4,15) / \
t t t / e /

the type annotation is in | /
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(7, 50)

Incorrect FE
(b) Solution ©.49)
gypongll?al FE (11,41)
.P. without 13, 37,
binning ee ¢ )
EF (15,33)

EF

-t

(11, 42)
Correct solution

(©) by D.P. with
binning

(9, 46)

(11, 41) (13,37)°
t t

A=E A=F

Fig. 7. Example to show why binning is required during D.P.

given multiple fanout node can be easily found by conduct-
ing a search which is a modified recursive pre-order traver-
sal on the decomposed task graph starting from the given
multiple fanout node. When we visit a node for the sec-
ond time, that node is one of the re-convergent nodes, and
we immediately return from this re-convergent node with-
out traversing its subtree further. The pre-order traversal
continues to visit other nodes until it terminates. In the
create_binning_strings, to check whether or not a node t is
in a path from node z to node s, we can first use Floyd-
Warshall algorithm [18] to find the transitive closure of the
graph and then check the reachability from z to t and from
t to s. An example of using the algorithm is shown in Fig.
8(b). The following two theorems tell us how to calculate
the binning strings in a graph.

Theorem V.1.1: Suppose a process B is decomposed into
subprocesses By, Bz, B3, ..., B,, with precedence relation-
ships By < B> < B3 < ..., < B,,. We denote the subset of
those subprocesses decomposed from process B with fanout
count greater than or equal to two as nodes Cy, Cs, Cs, .. .,
C,n, with the precedence relationships C7 < Cs < C3 < ...,
< Chny. Let Uy, Us, ..., Uy, denote the re-convergent nodes
of Cy, Cs, ..., Cpy, respectively. Note that each U; is in
general a collection of nodes. We also denote the set of all
nodes which lie on the re-convergent fanout paths from C;
to U; as T;. Then we have Ty D T D 15 D ..., D T)y.

Proof: We denote the set of re-convergent nodes for
node C; as U;. C7 < C5 and both C; and Cs are decom-
posed from the original process B, therefore Cs is reachable
from C}. Because we merge all primary outputs into a sin-
gle root, for any node z in Us, there must exist a node y in
U; such that z lies in the path from C; through Cs to z to
y. This can be easily shown as follows. In Fig 9(a), there
exists a node y in U; such that there is a path from C;
~ (9 ~ x ~ y. The desired result obviously holds here.
In Fig 9(b), suppose we have a node y in Uy, but there is
no path from z to y. Because we merge multiple primary
outputs into a single root, there must exist a node m which
is the intersection of the path from z ~» root and the path
from y ~ root (in the extreme case, m may be the same
as ). Node m will serve as the re-convergent node in U;
and this fact makes z (re-convergent node of C2) also the
re-convergent node of C;. That is, every node in Uy will be
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create_binning_strings (graph)

for (each node zin graph) zbinning_string= & ;
for (each node zin graph) zbinning_string = w.process_ID where
(zis adecomposed subprocess of w) or (zis the same asw and fanout(2) > 2);
for (each node zin graph)
{
w = z.original_process;
if (( (zisthe 1st decomposed subprocess of w) or (zisthe same asw)) and
(fanout(2) >2))
zmarked = true;

}
for (each marked node z in graph)
for (each noder in the transitive fan-in cone of 2)

r.binning_string = r.binning_string w process_|D(r.original_process);
zbinning_string = z.binning_string w process_ID(r.original_process);

(@ for (each node k in graph that liein apath fromr to z)
k.binning_string = k.binning_string U process_|D(r.original_process);
}

S(2) = search_reconvergent_nodes(2);
for (each node sin 2))

s.binning_string = s.binning_string u z.binning_string;
for (each nodet in graph that liein apath from zto s)
t.binning_string = t.binning_string U z.binning_string;

(b)

(A B,C, S) (B,C) (B)

d#%%

Fig. 8. Pseudo code for creating binning strings
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Fig. 10. Fig. to be used in Theorem V.1.2
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either a primary or a secondary re-convergent node of C.
This implies U; D Us. For any node w in T3, suppose the
corresponding re-convergent node in Us is node z. Then
w must also lie on a path from C; to C5 and ending at z,
which is also a node in U;. This implies w is in T, i.e., T}
D T5. Proof for other T;’s is the same. [ |

From the above theorem, we can save some computation
as follows. For a process decomposed into several subpro-
cesses with fanout count greater or equal than two, only
the first node (the one which precedes all other nodes) with
fanout count greater or equal than two need to be involved
in the binning string calculation.

Theorem V.1.2: Suppose a process A is decomposed into
A1, As, ..., A, with precedence constraint A; < Ay < Az
< ..., < A,. Let A; be the first decomposed subprocess
with fanout > 1. Then we must include the process ID of
A in all of the nodes that lie on any path from A; to any
re-convergent node of A;.

Proof: The situation is illustrated in Fig. 10. It is
obvious that subprocesses Ay, As, ..., A, must have the
ID of A in their binning strings. A; is the first decomposed
subprocess with fanout > 1. For a re-convergent node of A4;
(say C4), there may be some solution point z at the curve of
C4 which is composed of point x of solution curve of D5 and
point y of solution curve of some subprocess decomposed
from A (say A,). In general, the mapping types on subpro-
cesses of A used to generate points x and y may be different
(inconsistent). We however want to enforce the type con-
sistency for all subprocesses decomposed from A, therefore
we need to put the ID of A in the binning string of Cy,
the re-convergent node of A;. Furthermore, for all nodes
which lie on any path connecting A; and Cy (including the
end points A; and C4), their binning strings must also con-
tain the ID of A in order to propagate forward the type
information for the mapping of A. For the subprocesses
Ay, As, ..., A;_1, each of the nodes has a fanout count of
one and hence does not have any re-convergent nodes as-
sociated with it. Consequently, there will be no possibility
of creating type inconsistent solutions from these subpro-
cesses. For any subprocesses A; with j > 4, the set of all
nodes which lie on the paths from A; to its re-convergent
nodes is a subset of the corresponding set of A; according
to Theorem V.1.1. Therefore, for the purpose of calculat-
ing the binning strings, it is sufficient to include the process
ID of A in all of the nodes that lie on any path from A; to
any re-convergent node of A;. |

Example V.2: Suppose in Fig. 11, A; is a subprocess
decomposed from process A. In Fig. 11(a), node Y does
not lie on any of the paths from node A; to Bs, therefore, Y
does not need the ID of A in its binning string. In contrast,
in Fig. 11(b), Y lies some path from A; to C, therefore, ¥’
needs the ID of A in its binning string.

Each node (subprocess) will have several bins, and each
bin will have an associated tag which describes the imple-
mentations used for each process in the binning string of
the node. For example if the binning string of node X is
(A, B) and if there are 3 types of mapping on process A
and 4 types of mapping on process B, then there will be a
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(A)

< 9O
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@ ()

Fig. 11. Two examples to show how the binning strings (shown in
parantheses) are calculated

total 12 bins for node X. The first bin will be tagged as (A
= type 1, B = type 1), and the second bin will be tagged
as (A = type 1, B = type 2), and so on.

C.2 Post-order traversal

Suppose we are processing node X with two children Y
and Z (which have already been processed during the post-
order traversal). We check the binning strings of Y and Z
against that of X. If the binning strings of any child and
its parent are different, we have to normalize the dimension
of the bins of the child to the same dimension as that of the
parent. For a child node with binning string shorter than
that of its parent node, we expand the dimension of the
bins of that child node by duplicating the corresponding
curve to the bins which are added in order to match the
binning string of its parent. For example, if child node Y
has binning string (B) and its parent X has binning string
(A, B), and assuming that there are two types of mappings
for both A and B, say types E and F. Originally, Y has
two bins tagged with (B = E) and (B = F'), respectively.
After the expansion, Y will have 4 curves each tagged with
a different combination of types of A and B used. In other
words, we will duplicate the original curve of node Y for
(B = E) tag and create two identical curves for tags (A =
E,B = E) and (A = F,B = E). Similar duplication
step is applied to the curve of node Y for the (B = F)
tag. For a child node with longer binning string than that
of its parent node, we reduce the dimension of the bins of
that child node by merging the curves which belong to bins
that differ only in the ID missing from the binning string
of the parent. For example, if child node Z has binning
string (A4, C) and its parent X has binning string (4, B),
we need to reduce on the dimension C' and expand on the
dimension B for the bins of child node Z. To reduce on the
dimension C', we will do a superimpose followed by lower
bound operation on the curves of bins corresponding to
tags (A =FE,C = E) and (A = E,C = F) to obtain the
unified curve for the new tag (A = E). Similar operation
is needed for the curve in bin tagged (A = F) (cf. Fig. 12).

After we normalize the dimension of each child node, the
curve representing the accumulated cost vs. delay on the
parent can be constructed by adding the curves of each
child and including the contribution of the module alterna-
tive (which is consistent with the tag of the bin) matched
at that parent. This must be done for every bin, one at a
time.

Curve for Z before the reduction on dim C

o

(A, B) (4, 8) 2.8 @7 (.1 9)
.6,3) 7.1) 63 (10,2)
t ° t t hd t
A=typeE A=typeE A=typeF A=typeF
(8) (A, C) C=type G C=type H C=type G C=type H

Curve for Z after the reduction on dim C, but before the expansion on dim B

. (2,8 o9

3,7
* (5 3) o .(e). 3)
°(7,1) «(10, 2)
t t
A=typeE A=typeF

Fig. 12. Example to show the reduction of dimension of the bins

Adding must occur in the common region among all
curves to ensure that the resulting merged function reflects
feasible matches at the children of n. The curve for suc-
cessive matchings at the same node n are then merged by
applying a lower-bound merge operation on the correspond-
ing curves.

Because our decomposed task graph is a DAG instead of
a tree, we face the problem of how to pass up the cost of a
multiple fanout node to its parents during the post-order
traversal. We use the a heuristic whereby the cost value of
a multiple fanout node is divided by its fanout count when
propagated upward in the DAG. This heuristic produces
the exact total cost at the root. This is true as long as
multiple primary outputs are merged into a single root.
The proof is straight forward (similar to flow conservation
in network flow problem).

The curve addition and merging are performed recur-
sively until the root of the graph is reached. The resulting
curve is saved in the corresponding bin of the graph at its
corresponding node. The set of (t,¢) pairs corresponding
to the composite curve for the tag at the root node gives
the set of all possible arrival time-cost trade-offs for the
user to choose from.

C.3 Pre-order traversal

Pre-order traversal begins at the root of the decomposed
task graph and proceeds toward the leaves. Consider a
node X of the graph. The (output) arrival time and the
type constraint for the node are know. Our task is to de-
termine the arrival times and the type constraints for each
of its child nodes.

Consider a child Z of node X. We are assured that at
least one of the tagged curves of X is consistent with the
type constraint passed down to X. If there is exactly one
such curve stored at X, we pick the minimum-cost point
of the curve that which satisfies the arrival time constraint
of X. Otherwise, there are more than one tagged curves
that are consistent with the type constraint passed down to
node X. In this case, we find the corresponding best cost
point on each curve (which satisfies the timing constraint)
and among them pick the solution which has the overall
minimum-cost. Next, we update the type constraint for
node Z as the Union of type constraint passed down to node
X and the constraint implied by the tag of the chosen point
on the tagged curve (or bin) and set the timing constraint
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of Z as the timing constraint at X minus the delay of the
match at X.

A node with multiple fanouts will be visited multiple
times during the pre-order traversal. During each visit,
the arrival time and possibly type constraint of the node
may change in order to guarantee that arrival time and
type consistency constraints for all paths emanating from
that node toward the root of the graph are satisfied. Note
that because of our introduction of a single root for the
graph binning string assignment procedure, we are guar-
anteed not to see conflicting type consistency constraints
from different fanout branches of the multiple fanout node.
This is illustrated in the next example.

Ezample V.3: We use a simple example to show the re-
sults of traversal on an example task graph with and with-
out merging the multiple PO’s into a single root. The task
graph for the example is shown in Fig. 13(b) with un-
merged P(’s. In this graph nodes corresponding to com-
munication processes (S's and R's) are deleted (the delay
and cost for them are set to zero) for the sake of clarity.
The module curves for all node are shown in the bottom
of Fig. 13. The binning string for each node is shown in
its right hand side within parentheses and the process ID’s
are separated by a comma. If we specify timing constraint
= 18 at PO; during pre-order, we obtain a solution that
makes By, By and Bjs use type F' processor. However, the
same timing constraint imposed at PO3 results in a solu-
tion where A uses type E, B; and Bs use type E, and
C uses type F. We can convert Bs from type F' to type
E to create a type consistent solution for B’s. Unfortu-
nately, this increases the arrival time at PO; to 21, which
violates the timing constraint. In conclusion, the sequen-
tial post/pre-order traversal on multiple PO’s may either
create a type inconsistent (unacceptable) solution or a so-
lution that violates the given timing constraint.

Consider the same system but with the multiple PO’s
merged into a single root as shown in Fig. 13(a). Applying
the post-order followed by the pre-order traversal on the
root with timing constraint =18 produces a solution where
all A’s use type E, all B's use type F, and all C's use
type E processors. The solution is type consistent and
satisfies the given timing constraint. In fact, after post-
order, we can get the optimal solutions under any given
timing constraints very quickly because node Y has binning
string (A, B, C') and whenever we get to node Y during the
pre-order we already get the solution for the type of the
processors that will be used by A’s, B's and C's. The
further traversal of nodes under node Y is needed only if
there are some processes that do not have their ID’s in the
binning string of Y.

Theorem V.1.3: The dynamic programming with bin-
ning (with the proposed binning string construction algo-
rithm) solves Problem I.1 optimally and satisfies all type
consistency constraints.

Proof: The proof follows easily from the correctness
of our binning construction algorithm and the fact that the
principle of optimality for dynamic programming holds. W

Note that the above statement about the optimality
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Figure to illustrate the need to merge PO’s into a single

of our proposed solution only apply to the problem of
the scheduling under timing and type consistency con-
straints. The complete problem that include the simul-
taneous scheduling and sharing is not solved in an optimal
fashion.

D. Complezxity Analysis

For simple task graphs defined in Section V-B, the task
graphs remain the same after the initial process decom-
position step. The same algorithm used in [14] can be
used. The time complexity using dynamic programming
algorithm for solving problems involved with this class of
task graphs is pseudo-polynomial.

Let us scale delay values for all nodes (subprocesses) un-
der different process mapping to become integers. Fur-
thermore, we denote the maximum computation time for a
tree-like decomposed task graph (using the worst-case in-
teger delay values on any path) by T},q. and assume that
Tmaz is bounded from above by an integer Q. Let | Z | =n
where n is the total number of nodes (decornposed computa-
tion and communication (sub)processes) in the decomposed
task graph.

Suppose that the maximum number of possible process
mappings for each subprocess (node) is K and the maxi-
mum length among all binning strings is m. r is equal to
the total number of original coarse-grain (un-decomposed)
computational processes plus the total number of commu-
nication processes in the decomposed task graph that are
themselves multiple fanout processes or have their own de-
composed subprocesses with fanout count greater than one
or themselves or their decomposed subprocesses are in the
transitive fan-in cone of some multiple fanout nodes in
the decomposed task graph. Using our process decom-
position method, all communication (sub)processes have
fanout count < 1. In a decomposed task graph with n
nodes, 0 < m < r < n. Then there will be at most K™
bins in each node in the decomposed task graph. Then the
maximum possible number of points in each node of the
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decomposed task graph will be @ - K™.

The number of area-delay points on each node in the de-
composed task graph is bounded from above by @ - K™.
The algorithm thus has a time complexity of n - Q - K™.
Delay function merging and adding can be done in polyno-
mial time in the number of points on the curves involved
in the operations. Therefore, our algorithm for solving the
coarse-grain process mapping with complex communication
problem runs in n - Q - K™ time.

Note that, the value of m is in general dependent on
the structure of the decomposed task graph. In the worst
case, m can be as large as n. In practice, m is however,
much smaller than n. For example, for the frequently en-
countered simple task graphs defined in Section V-B, m
is zero. In this case, the algorithm has pseudo-polynomial
time complexity on the decomposed task graph.

The initial process decomposition step is necessary for
any method (including MILP or exhaustive search) which
handles a task graph with mid-way communication. Both
MILP and exhaustive search will have exponential com-
plexity on n. We have also included an example (cf. Fig.
16) from the communication field with complex commu-
nications among computational processes, the MILP solu-
tion or exhaustive search on the decomposed task graph
(with tonal n=39 nodes) runs forever due to the exponen-
tial behavior on the large number of variables in MILP (195
variables, 123 equations, 51 inequalities) or the number of
nodes for exhaustive search (with the decomposed subpro-
cess regrouped, there will be total 22 nodes; if each node
has 4 possible implementations, there will be 42 combina-
tion needed to explore using exhaustive search). However,
using our new method on this same example, m is 9 and
the time complexity is 4° if K = 4. It only takes 6.329
seconds on a Pentium PC 233 M hz to solve the scheduling
problem using our new method.

VI. ALLOCATION AND BINDING

As a result of the scheduling phase, the computational
subprocesses decomposed from the same original coarse-
grain process are mapped to the same type of processor
implementation or custom ICs. They have not however
been mapped to the same instance of the processor or cus-
tom IC.

Our first step is to regroup these subprocesses back into
their whole coarse-grain process and assign them to the
same processor instance. From this point on, the alloca-
tion and binding will treat the regrouped subprocesses as
a single process as if they have not been decomposed. The
lifetime of that process is the time span from the beginning
of the first subprocess to the end of the last subprocess.

Processes are generally separated into different classes
if they are mapped to different types of hardware units.
Within each class, the allocation and binding (sharing) is
then performed.

Processes which are mapped to programmable units such
as CPUs, DSPs, DMAs, or other controllers for communi-
cation, can share the same instance of the unit through
TDM even if their lifetimes overlap. In addition to the

programmable communication units, part of the buses or
the shared memory and/or local buffers needed for commu-
nication may be shared in a TDM fashion by the the corre-
sponding communication processes. The requirements for
sharing one programmable unit instance are that the pro-
cesses are mapped to the same type of unit, and the sum of
the utilization factors of those processes is less than 100%.
We perform the allocation and binding by using a modified
bin packing algorithm which ensures that every regrouped
coarse-grain process is bound to the same hardware in-
stance throughout its lifetime.

Processes which are mapped to the same hardware type
but do not mecessarily have the same utilization factors
(even if their lifetimes overlap), it may still share the same
unit if the sum of their utilization factors does not exceed
100%.

For non-programmable units such as custom ICs or other
communication units, sharing is possible only if either the
process lifetimes do not overlap or the processes are mutu-
ally exclusive.

A. TDM scheduling

As a result of the allocation and binding phase, we may
assign processes with overlapping lifetimes to the same in-
stance of a programmable processor. The programmable
processor is shared by these processes in a TDM manner.
The processes are granted time slices proportional to their
utilization factor by a simple operating system. This step,
called the TDM scheduling, is detailed next.

Consider some instance of a programmable processor and
the set of coarse-grain processes assigned to it. We divide
the time line for this processor into a set of intervals which
are delineated by the begin or end points of each coarse-
grain process whose life span overlaps with that interval,
is served by the processor instance. The service time for
each such process is proportional to the ratio of the uti-
lization factor of that process to the sum of the utilization
factors of all processes whose life spans overlap with the in-
terval (Note that this sum is less than or equal to 1). Note
that the processor instance may be idle for some periods
of time during each interval. This is to ensure that each
process is completed in the time decided by the dynamic
programming based scheduling of previous section and not
any shorter time (which may lead to a timing violation).
Furthermore, note that the same process may receive dif-
ferent service times (time slices) during different intervals
due to the service requirement/demands of other processes
in those intervals.

The modified bin packing algorithm ensures that the
bandwidth requirement for communication units which are
shared by several communication processes are met by us-
ing a TDM scheduler in a similar way as the TDM schedul-
ing is done for programmable processors.

Theorem VI.1: The TDM scheduling with the modified
bin packing preservs the planned global timing.

Proof: Each process which is assigned to a
programmable processor instance is granted the proper
amount of service time in each time interval so as to
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preserve the total computation time for each process as
planned by the DP-based scheduling. Thus the global tim-
ing will not be violated. |

B. Eztension to allow subprocesses with different processor
utilization

Previously, we restrict that all subprocesses decomposed
from the same original process be mapped to the same type
(and the same instance) of hardware with the same utiliza-
tion factor. We can relax this and allow the subprocesses
to mapped the same type but different utilization.

This extension will not complicate the scheduling phase,
the only thing that may be changed is that in the bins that
are tagged with some mapping type in the leave nodes that
is decomposed from certain original process will have more
more than one points to start with. For example a process
A; which is decomposed from an original process A with
binning string (A) has 3 bins that are tagged as A = Intel
Pentium, A = AMD K6 and A = TI 320C25. In each bin,
there might be multiple points corresponding to different
processor utilization factors.

The allocation and Binding method is still similar, but
the interval is now defined at the beginning or ending of the
subprocesses (now those subprocesses may have different
processor utilization) in stead of the beginning or ending of
the coarse-grain processes. Within each interval, the total
utilization factor is still a constant. But in this extension,
there will be much more intervals to process.

C. Handling other cost functions, e.g. energy

Our optimization method based on dynamic program-
ming with binning can also be used on different cost func-
tions without modification. Previously, we used the area
cost to illustrate the problem and the design space. We can
easily replace the area cost function with a composite cost
function, such as the cost function related to area and en-
ergy consumption. Although the composite cost function
may be a non-linear function, it is quite common to use a
linear combination of area and energy as the cost function.
That is,cost =a- A+ (1-a) - E,0<a <1

We assume that all of the nonprogrammable hardware
units will be turned off when they are not performing any
task and will be turned on only when they are active. For
programmable computational and communication units,
we assume they consume a very small amount of energy
when no process is running on them. Note that the to-
tal energy used for mapping a process to a programmable
processor with different processor utilization factors will re-
main the same. This is because mapping with lower CPU
utilization will reduce the power consumption and may also
reduce the area cost due to higher potential for resource
sharing; It will however increase the time to complete the
process on the mapped processor and thus its energy cost
will remain nearly the same.

For the case that the cost function is the total energy
used, then a time constrained minimal energy solution for
a given tast graph will assign a 100% processor utilization
factor for every process mapped to a programmable pro-

cessor. The resulting design will consist of a mapping that
uses a lot of chip area, because the processes mapped to
programmable processors will no longer be able to share
the processor instance. This result is due to the fact that
all other processor utilization factors (which allow for pro-
cessor sharing) will result in the same egergy, but will have
larger delay values. Hence they will be inferior to the so-
lution with 100% utilization factor and hence are dropped
during dynamic programming.

For the case that the composite cost function is a linear
combination of area and energy, some of the points in the
cost vs. delay curve for mapping a process into the same
type of processor with different utilization factors become
non-inferior points due to the area component in the cost
function and will thus be kept in the curve. This is a desir-
able cost function because we not only want to reduce the
total energy used, but also keep the chip area small.

D. Discussion

Scheduling by dynamic programming presented in Sec-
tion V estimated the area cost of a process mapped to a
programmable processor as the area cost of that processor
times the utilization factor and the area cost of a process
mapped to non-programmable hardware component, as the
area cost of the hardware component. Before the DP-based
scheduling, the actual begin and end times of the processes
cannot be completely determined. As a result, it is not
possible to accurately account for the possibility of shar-
ing during the scheduling phase. During the allocation and
binding phase, we perform the modified bin packing algo-
rithm to maximize the possibility of sharing of the hard-
ware resources. There may of course be some difference
between the estimated accumulated area cost of a node
during the scheduling and the minimum area cost after one
performs the modified bin packing algorithm on all of the
nodes in the transitive fanin cone of the node. We do not
elaborate on this point here, however it can be shown that
if sharing is accounted for during the scheduling, the prin-
ciple of the optimality of DP will be violated. Separation of
scheduling and allocation phases however makes the whole
problem more manageable; Furthermore, the difference in
cost estimates during the two phases naturally arises in
any algorithm based on multiple phase optimizations. This
is not uncommon in VLSI CAD where conventional flows
separate the whole design process into several sequential
phases which causes inconsistency between the estimated
cost of some cost function in the current phase and that in
the next phase. An example is the placement and routing
in layout synthesis. During the placement phase, one cost
function to be minimized is total wiring length. However,
before the detailed routing is completed, the estimation of
the wiring lengths is not accurate.

VII. EXPERIMENTAL RESULTS

Our dynamic programming with binning, named Codex-
dp (for Co-design of Communicating Systems Using Dy-
namic Programming), is implemented in C and tested on
a number of circuits. Table I shows the information about
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the examples used. Prakashl and Prakash2 are two ex-
amples taken from [12], Yen is taken from [4], and Bender
is an example taken from [5]. In every example, we do
the process decomposition and insert appropriate commu-
nication processes (of end/begin type) in the original task
graphs. All of the experiments are done for our module li-
brary which contains a number of programmable processors
and communication units. We allow the sharing of these
resource through time-division multiplexing. Our library
also contains some non-programmable and mixed analog
and digital circuits. More precisely, our library contains
CPUs such as the Intel Pentium and Motorola 68030 and
DSPs such as TT 302C25 and Communication units such
as Intel DMA controller with the surrounding circuitry and
10Mb/s Ethernet controller, and mixed analog and digital
units such as Modulator and Mixers used in communica-
tion. A pre-processing step determines the area/delay cost
of each process when it is mapped to various hardware units
in the library. We do this by using the chip areas of the
hardware units, as well as by running the process on the
hardware unit and measuring the total computation time.

We also report results on 5 more examples from various
sources. The task graph for example 1 is shown in Fig.
14 with deadline = 80.0(ms) taken from the CPM system
[19]. The task graph for example 2 is shown in Fig. 15 with
deadline = 100.0(ms). The decomposed task graph for ex-
ample 3 is shown in Fig. 13(a) with deadline = 18.0(ms)
using our library (Curves shown in Fig. 13 do not corre-
spond to our library modules). The task graph for example
4 is shown in Fig. 2(a), and its decomposed task graph is
shown in Fig. 2(c) with deadline = 50.0(ms). The task
graph for example 5 is shown in Fig. 16, its decomposed
task graph is too large to be included in this paper with
deadline = 200.0(ms). This task graph is the sub-block
performing the voice activity detection used in GSM
(Group Special Mobile) [19]. For this example, we used
three different deadlines and report the results in row ex5-
1, ex5-2, ex5-3. The corresponding deadlines were set to
170, 300, 510 (ms), respectively.

In Table I, column 2 shows the values of m and n seen
by Codex-dp (cf. V-D). Column 3 gives the total number
of processor and communication units needed after the al-
location and binding. Columns 4 and 5 give the CPU time
used by Codex-dp (in seconds on a 200 MHz Pentium Pro)
and the estimated area cost (in cm?) required to implement
each circuit. Column 6 gives the numbers of variables, in-
equalities and equations if the scheduling is formulated as
a mixed integer linear program, MILP (cf. Section IV)
assuming that each process has four possible implementa-
tions. In column 7, we show the complexity of using ex-
haustive search after regrouping all of the computational
subprocesses back into their original coarse-grain processes
and still assuming that each process has four possible im-
plementations. Note that we could not present comparative
results with other approaches for codesign of coarse-grain
communicating processes, because the other approaches do
not, support mid-way communication.

As can be seen from the table, Codex-dp produces op-

Ckt m,n | pu,cu Codex-dp MILP Exh.

cnt c-time [ cost form. srch
Prakl | 2,11 1,1 0.036 | 63.7 55,13,11 411
Prak2 | 6,22 2,1 0.507 | 122.5 110,26,22 422
Yen 1,12 1,1 0.043 | 63.7 60,13,12 412
Bend. | 7,13 2,2 1.143 | 137.2 60,17,12 413
ex1 0,13 1,1 0.086 79.7 65,12,13 413
ex2 1,14 2,1 0.114 | 1485 70,15,0 412
ex3 3,11 2,0 0.064 | 98.0 49,146 49
ex4 4,18 3,1 0.107 | 171.5 63,21,7 48
ex5>-1 | 9,39 3,3 6.329 | 200.9 || 195,51,123 | 422
ex5-2 | 9,39 2,3 6.412 | 151.9 || 195,51,123 | 422
ex5-3 | 9,39 2,2 6.356 | 127.4 || 195,51,123 | 4%2

TABLE I

EXPERIMENTAL RESULTS
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Fig. 14. A very simple task graph with only end/begin communica-
tion
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timal scheduling results in very short time compared to
the expected time for MILP or exhaustive search. Further-
more, the entries for ex5-1, ex5-2, ex5-3 show the trade-off
between the area cost and the total computation time for
example 5. As can be seen, decreasing the deadline con-
straint, increases the area cost of the optimal solution. A
similar trend exists for all other examples.

VIII. CONCLUSION

We presented an algorithm based on dynamic program-
ming with binning to solve a min-cost, time-constrained
simultaneous scheduling and mapping problem for a set of
computational processes which communicated by means of
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Fig. 15. Task graph with only end/begin communication but with
re-convergent fanout
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Fig. 16. Task graph of Voice Activity Detection (VAD) used in the
GSM system

blocking/nonblocking communication mechanism at times
other than the beginning or end of their lifetimes. The
proposed algorithm produces optimal results, and is much
faster to solve than the MILP formulation. A final re-
source allocation and sharing step will follow the dynamic
programming step and produce the actual instantiation of
the processor types to hardware instances. This last step
is done using a modified bin packing heuristics.
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