

Qinru Qiu and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California, Los Angeles, California, USA
{qinru, pedram}@usc.edu

AbstractThis paper introduces a continuous-time, controllable
Markov process model of a power-managed system. The system
model is composed of the corresponding stochastic models of the
service queue and the service provider. The system environment is
modeled by a stochastic service request process. The problem of
dynamic power management in such a system is formulated as a
policy optimization problem and solved using an efficient “policy
iteration” algorithm. Compared to previous work on dynamic
power management, our formulation allows better modeling of the
various system components, the power-managed system as a
whole, and its environment. In addition it captures dependencies
between the service queue and service provider status. Finally, the
resulting power management policy is asynchronous, hence it is
more power-efficient and more useful in practice. Experimental
results demonstrate the effectiveness of our policy optimization
algorithm compared to a number of heuristic (time-out and N-
policy) algorithms.

I. INTRODUCTION
With the rapid progress in the semiconductor technology, the chip
density and operation frequency have greatly increased, making
power consumption in battery-operated portable devices a major
concern. The goal of low-power design for battery-powered
devices is to extend the battery lifetime while meeting the
performance requirement. Reducing power dissipation is a design
goal even for non-portable devices since excessive power
dissipation results in increased cost of packaging and cooling as
well as potential reliability problems. Many computer aided design
methodologies and techniques for low power have been proposed
[1].
The activity of many components in a computing system is event-
driven; for example, the activity of display servers,
communication interfaces, and user interface functions is triggered
by external events and it is often interleaved with long periods of
quiescence. An intuitive way of reducing the average power
dissipated by the whole system consists of shutting down the
resources during their periods of inactivity. In other words, one
can adopt a system-level power management policy that dictates
how and when the various components should be shut down.
The problem of finding a power management scheme (or policy)
that minimizes power dissipation under performance constraints is
of great interest to system designers. Several heuristic power
management policies have been reported in the past. A simple

heuristic policy is the “time-out” policy. In this policy, a device is
put in its power-down mode after it has been idle for a certain
amount of time. Obviously, this simple policy is not efficient. To
overcome the limitations of the static shut-down policy, Srivastava
et al. [16] proposed a predictive power management strategy,
which uses a regression equation based on the component’s
previous “on” and “off” time to estimate the next “turn-on” time.
In [17], Hwang and Wu have introduced a more complex
predictive shut-down strategy that has a better performance.
However, these methods are only applicable to cases in which the
requests are highly correlated.
The choice of the policy that minimizes power under performance
constraints (or maximizes performance under power constraint) is
a new kind of constrained optimization problem which is of great
relevance for low-power electronic systems. This problem is often
referred to as the policy optimization (PO) problem. In [11],
Paleologo et al. proposed a stochastic model for a rigorous
mathematical formulation of the problem and give a procedure for
its exact solution. The solution is computed in polynomial time by
solving a linear optimization problem. Their approach is based on
a stochastic model of power-managed devices and workloads and
leverages stochastic optimization techniques based on the theory
of discrete-time Markov decision chains.
In the model of [11], time is divided into small intervals of length
L. It is assumed that the system can only change its state at the
beginning of a time interval. During interval (jL, (j+1)L), the
transition probability of the system depends only on the state of
the system at time jL (hence, the Markovian property) and the
command issued by the power manager. The system model
consists of four components: a power manager (PM), a service
provider (SP), a service requestor (SR) and a service request
queue (SQ). Once the model and its parameters have been
determined, an optimal power management policy is obtained to
achieve best power-delay trade-off. This approach offers
significant improvement over previous power management
techniques in terms of its theoretical foundation and a robust
system model. This approach however has some shortcomings.
Firstly, the power-managed system is modeled in the discrete-time
domain, which limits its in real applications. Secondly, the model
does not distinguish between the busy state and the idle state of
the SP (they are lumped into the “power-up” state), therefore the
state transition probability of the system model cannot be
calculated accurately. Thirdly, the assumption that the transitions
of the SQ and the SP are independent is inaccurate and thus affects
the overall accuracy of this model. Finally, the power management
program needs to send control signals to the components in every
time-slice, which results in heavy signal traffic and heavy load on
the system resources (therefore more power dissipation).
In this work, we overcome the shortcomings of [11] by
introducing a new system model based on continuous-time
Markov decision processes. This new model has the following
characteristics:

Dynamic Power Management Based on Continuous-Time
Markov Decision Processes*

*This work was supported in part by SRC under contract No. 98-DJ-606,
NSF under contract No. MIP-9628999, and a grant from Toshiba, Corp.

1. The new model is based on the continuous-time Markov
decision processes, which is closer to the scenarios
encountered in practice.

2. The resulting power management policy is asynchronous
which is more suitable for implementation as part of the
operating system.

3. The new model introduces a transfer state in the model of the
SQ; in this way it can distinguish between the busy and idle
states of the SP.

4. The new model considers the correlation between the state of
the SQ and the state of the SP.

5. A policy iteration algorithm is used to solve the policy
optimization problem. The new algorithm tends to be more
efficient than the linear programming method.

We also explore the class of N-policies and show that under
certain conditions, this class of algorithms, which are very easy to
implement, produces optimal solutions.
This paper is organized as follows, Section II provides the
background for continuous-time Markov processes and
continuous-time Markov decision processes. Section III describes
our system model for the dynamic power management, the
definition of cost function and the policy iteration algorithm.
Section V gives the experimental results concluding remarks.

II. BACKGROUND
Definition 2.1 A stochastic process is a family of random
variables {X(t), t≥0} where t is the time parameter. The values
assumed by the process are called the states, and the set of
possible values is called the state space.
Definition 2.2 A stochastic process X(t) is called a Markov
process if for any set of time t0<t1< …<tn<t, its conditional
distribution has the property:
])(|)([])(,,)(|)([00 nnnn xtXxtXPxtXxtXxtXP =≤===≤ K

where t0, t1,…, tn, t ∈ T and x0, x1,…, xn ∈ S. T and S are called
the parameter space and state space of the Markov process,
respectively. When T is a continuous space and S is a discrete
space, the Markov process is called the continuous-time Markov
process.
Given a continuous-time Markov process with n states, its
generator matrix G is defined as an n×n matrix as shown in Eqn.
(2.1). An entry σi,j in G is called the transition rate from state i to
state j. All entries are defined in Eqn. (2.2) and Eqn. (2.3). Eqn.
(2.4) gives the relationship between σi,i and σi,j. Matrix G (also
known as the transition rate matrix) is called a differential matrix
if its entries satisfy property (2.4).



















−
−

−

=

OM

L

MM

L

L

2,21,20,2

2,1

2,0

1,10,1

1,00,0

σσσ
σ
σ

σσ
σσ

G (2.1)

)0(
)(1

lim
0

, ii
ii

t
ii p

t

tp
⇒

⇒

→
′−=

−
=σ , i=1,2,…,n (2.2)

)0(
)(

lim
0

, ji
ji

t
ji p

t

tp
⇒

⇒

→
′==σ , i, j = 1, 2, …, n; i ≠ j (2.3)

∑
≠

=
ij

iiji ,, σσ , i, j = 1, 2, …, n; i ≠ j (2.4)

where pi⇒,j(t) is the transition probability from state i (directly or
indirectly) to state j during time 0 to t, and)(tp ji⇒′ is its

derivative.

The generator matrix in the continuous-time Markov process is the
analogue of the transition probability matrix in the discrete-time
Markov process. We can calculate the limiting distribution
(steady) state probabilities of the continuous-time Markov process
from its generator matrix. Theorem 2.1 shows the relation between
this matrix and the limiting distribution probabilities [7]. Before
stating the theorem, we give some definitions.
Definition 2.3 A state i is said to be recurrent if and only if,
starting from i, eventual return to this state is certain. A recurrent
state is said to be positive recurrent if and only if the mean time to
return to this state is finite. A state i is said to be transient if and
only if, starting from i, there is a positive probability that the
process may not eventually return to this state.
Definition 2.4 State j is said to be accessible from state i if j can
be reached from i within finite time, which is denoted as i→j. If
i→j and j→i, they are said to be communicate, which is denoted as
i↔j. The set of all states of a Markov process that communicate
with each other forms a communicating class.
Definition 2.5 If the set of all states of a stochastic process X form
a single communicating class, then X is irreducible.
Theorem 2.1
(1) If the Markov process is irreducible, then the limiting

distribution limt→∞pi(t) = pi, i∈S, exists and is independent of
the initial conditions of the process, The limits {pn| n ∈ S) are
such that they either vanish identically (i.e., pi = 0 for all i ∈
S) or are all positive and form a probability distribution (i.e.,
pi > 0 for all i ∈ S, Σi∈Spi = 1).

(2) The limiting distribution {pi, i ∈ S } of an irreducible positive
recurrent Markov process is given by the unique solution of
the equation: pG = 0 and Σj∈S pj = 1 where p = (p0, p1, …).

Definition 2.6 If we map the states of a Markov process as
vertices of a graph and the states transitions as directed edges
between the vertices. The Markov process is called a connected
Markov process if this graph is a connected graph.
For the discussions in the rest of this paper, we will omit the term
“continuous-time” for more concise description. Unless otherwise
stated, all processes are assumed continuous-time.
First, we describe a Markov process with reward. Assume the
system earns a reward at rate ri,i (per unit time) during all the time
that it occupies state i. When it makes a transition from state i to
state j (i≠j), it receives a reward of ri,j. Note that ri,i and ri,j have
different dimensions. It is not necessary that the system earns
according to both reward rates and transition rewards, but these
definitions give us generality. We define the “earning rate” of state
i as: ∑

≠
+=

ij
jijiiii rrr ,,, σ .

Let vi(t) be the expected total reward that the system will earn
during a time period of t if it starts in state i. The total expected
reward during a time period of t+dt, that is vi(t+dt), can be written
as:

∑∑
≠≠

+++−=+
ij

jjijiiii
ij

jii tvrdttvdtrdtdttv)]([)]()[1()(,,,, σσ

It can be interpreted as follows. During the time interval dt the
system may remain in state i or make a transition to some other
state j. If it remains in state i for a time dt, it will earn a rate ri,idt
plus the expected reward that it will earn in the remaining t units
of time, vi(t). The probability that it remains in state i for a time dt
is (∑

≠
−

ij
ji dt,1 σ). On the other hand, the system may make a

transition to some state j≠i during the time interval dt with
probability σi,jdt. In this case the system would receive the reward

ri,j plus the expected reward to be made if it starts in state j with
time t remaining, vj(t). The product of probability and reward must
then be summed over all states j≠i to obtain the total contribution
to the expected values.
With dt→0 and using the definition of earning rate ri, we have:

∑
=

+=
n

j
jjiii tvrtv

dt
d

1
,)()(σ i = 1, 2, …, n (2.5)

where n is the total number of states of the process. Eqn. (2.5)
gives a set of linear, constant coefficient differential equations that
relate the total reward in time t from a starting state i to the
quantities of ri and σi,j.
Secondly, a controllable Markov process is a Markov process
whose state transition rates can be controlled by controlling
commands (defined as actions). When the system is in state i, an
action ai is chosen from a finite set Ai which includes all possible
actions for state i. We denote this state action relation as <i,ai>. If
the chosen action changes as the time changes, we denote the
action as a time-dependent variable ai(t). Hence the state-action
pair is written as <i,ai(t)>. The state transition rates σi,j have

different values when different actions are taken. We use)(
,

ta
ji
iσ to

denote the transition rate from state i to state j when action ai(t) is
taken for state i at time t. As a result, the generator matrix of a
controllable Markov process can be represented by a
parameterized (action is the parameter) matrix.
Definition 2.7 A policy π is the set of state-action pairs for all the
states of a controllable Markov process, that is π={ <i,ai(t)>|
ai(t)∈Ai, 1≤i≤n}.
A Markov decision process is a controllable Markov process with

rewards. In a Markov decision process, since)(
,

ta
ji
iσ is action-

dependent, the reward rate ri becomes also action-dependent,

which is denoted as)(ta
i

ir , ai(t)∈Ai. The expected total reward

vi(t) depends on the chosen action of each state, i.e., it becomes

policy-dependent and is denoted as)(tvð
i . The generator matrix

G is then also policy-dependent and is denoted as Gπ.

Let)(tpð
ji⇒ denote the probability of being in state j at time t

when the initial state is i and the state transition rates are
determined by policy π. The total expected reward that the process
can earn for a time period of t, can be written as [9]:

∫ ∑
=

⇒= t n

j

a
j

ð
ji

ð
i drptv j

0
1

)(
)()(ττ τ

Given two policies π1 and π2, if we can find a time ξ, such that

)()(21 tvtv ð
i

ð
i ≥ , for all t>ξ, i = 1, 2, …, n, we denote as π1 ≥ π2. A

policy π is called the optimal policy, if π ≥ {any possible policy
for the Markov decision process}.

Let)(lim tvv ð
i

t

ð
i

∞→
= . The goal of a Markov decision process is to

find the optimal policy that maximizes ð
iv for all i. However, in

practice, we cannot use ð
iv directly for calculating the optimal

policy since)(tv ð
i approaches infinity when t approaches

infinity. Two alternative quantities are commonly used.
(1) limiting average reward:

 ∫ ∑
=

⇒
∞→

=
t n

j

a
j

ð
ji

t

ð
avgi drp

t
v j

0 1

)(
,)(

1
lim ττ τ

,

Obviously, maximizing limiting average reward is the same as
maximizing the total expected reward.
(2) discounted reward:

∫ ∑
=

⇒
−

∞→
=

t n

j

a
j

ð
ji

a

t

ð
disi drpev j

0 1

)(
,)(lim)(ττα ττ ,

Both reward models are meaningful for different context. The
decision based on the average limiting reward assumes that the
system will run forever, therefore, it considers return in near future
and far future to have the same significance. While the decision
based on the discounted reward considers the future as
unpredictable, i.e., the system may be terminated any time in the
future. Therefore, it emphasizes the return of the near future. The
discount factor α decides how greedy this reward model is. The
larger α is, the less it considers the future. When α approaches 0,
the discounted reward approaches the total expected reward.
Definition 2.8 A policy π is stationary if the decision-making
(action) is only a function of the state and independent of time,
that is: π={ <i,ai>| ai∈Ai, 1≤i≤n}.

Theorem 2.2 [9] For any α, there exists a stationary policy which

maximizes)(, αð
disiv for all i = 1, 2, …, n. Such a policy is called

α-optimal.
Definition 2.9 A policy π is piecewise-stationary if for any τ,
interval [0, τ) can be divided into a finite number of intervals [0,
t1), [t1, t2), …, [tm-1, τ) such that inside each interval, the policy is
stationary.
Theorem 2.3 [9] There exists a stationary policy that is α-optimal
for a set of α having 0 as a limit point. This policy maximizes

ππ
avgiv , over the class of piecewise-stationary policies.

We therefore do not lose generality if our search for the optimum
policy is restricted on the set of stationary policies. Actions and
policies that we will discuss later are thus time-independent.
The goal of a Markov decision process is to find a policy that
maximizes the expected reward. In our case, we want to find a
policy that minimizes our cost function (delay and power). These
two problems are equivalent if we use the negative of cost as the
reward. In the remainder of the paper, we will use the term cost
instead of reward and use ci,i and ci,j instead of ri,i and ri,,j. For the
rest of the discussion, our goal is to minimize the cost under either
the discounted model or limiting average model.

III. SYSTEM MODELING
We assume the system is embedded in an environment where
there is only a single source of requests, which is defined as the
service requestor (SR). Requests issued by the SR are serviced by
the system. The system itself consists of three components: a
resource that processes requests (the SP), a queue which stores the
requests that cannot be serviced immediately upon arrival (SQ),
and a power manager (PM).
Both the request arrival event and request service event are
stochastic processes. We assume that they follow the Poisson
process (i.e., during time (0, t], the number of the events has the
Poisson distribution with mean λt). Consequently, the request
inter-arrival time (from the SR) and the service time (the time
needed by the SP to service a request) follow the exponential
distribution with mean 1/λ.
In order to be more general, in our model we assume that the SP
has more than one working mode, therefore, it can service the

requests with more than one service speed. We also assume that
all requests have the same service priority. The service of the
requests are based on a FIFO order.
The SP can operate in a number of different power modes. We
assume that the time needed for the SP to switch from one state to
another follows the exponential distribution. The PM is a
controller that reads the system state (the joint states of the SP and
the SQ) and issues mode-switching commands to the SP.
In the remainder of this paper, we will use upper case bold letters
(e.g., M) to denote matrices, lowercase bold letters (e.g., v) to
denote vectors, italicized Arial letters (e.g., S) to denote sets,
uppercase italicized letters (e.g., S) to denote scalar constants, and
lower case italicized letters (e.g., x) to denote scalar variables.
The Service Requestor (SR) has only one request generating
mode. The average interval time of requests generated by SR
follows the exponential distribution with mean value 1/λ.
 An SR model with one request generating mode is a simplified
model of a real SR whose request generating speed varies from
time to time depending on the workload. From our observations,
however, we find that the average inter-arrival time of a given
Poisson process can be estimated within 5% error after observing
50 events. Therefore, if the input stays stable long enough, the
power manager can observe and estimate the input rate
dynamically, and adaptively change its policy.
The Service Provider (SP) is modeled as a stationary, continuous-
time controllable Markov process with state (operation mode) set
S={si s.t. i=1, 2, …, S}, action set A and generator matrix GSP(a),
a∈A. It can be described by a quadruple (χχ, µ(s), pow(s), ene(si,
sj)) where: (i) χχ is an S×S matrix; (ii) µ(s) is a function µ: S→�;

(iii) pow(s) is a function pow: S→�; (iv) ene(si, sj) is a function

eng: S× S→�.
We call χχ the switching speed matrix. The (i,j)th entry of χχ is
denoted as

ji ss ,χ and represents the switching speed from state si

to sj. The average switching time from state si to state sj is then
1/

ji ss ,χ . We set
ii ss ,χ to be ∞, because the switch from state si to

itself is instantaneous. The entries of the parameterized generator
matrix GSP(a) can be calculated as:

jiji ssjss asa ,,),()(χδσ ⋅= ,si≠sj; ∑
≠

−=
ij

jiii
ss

ssss a ,,)(σσ

δ(s,a) equals to 1 if s is the destination state of a, otherwise, δ(s,a)
equals to 0.
A service rate µ(s) represents the service speed of SP in state s.
Therefore, 1/µ(s) gives the average time that is needed by SP to
complete the service for one request when SP is in state s.
A power consumption rate pow(s) is associated with each state
s∈S. It represents the power consumption of SP during the time it
occupies state s. The cost rate cs,s of state s is equal to pow(s). A
switching energy ene(si, sj) is associated with each state pair (si,
sj), si,sj∈S, si≠sj. It represents the energy needed for SP to switch

from state si to state sj. The cost
ji ssc , is equal to ene(si, sj).

From Eqn. (3.5) we know that the expected power consumption of
SP when it is in state s and action as is chosen can be calculated
by: ∑

≠′
′ ′+=

ss
ssss sseneaspowc),()()(,σ .

We can divide the state set S into two groups:
(1) The set of active states, Sactive, where µ(sa) is larger than 0 for
each sa∈Sactive.

(2) The set of inactive states, Sinactive, where µ(sina) is 0 for each
sina∈Sinactive.
Furthermore, we can divide the matrix GSP(a) into two parts:












=

)()(

)()(
)(

aa

aa
a

II
SP

IA
SP

AI
SP

AA
SP

SP
GG

GG
Gð

where matrix)(aAA
SPG contains the transition rate for transitions

between inactive states. Matrix)(aAI
SPG contains the transition

rates for transitions from any inactive state to any active state.

)(aIA
SPG and)(aII

SPG are defined similarly.

Example 4.1 Consider a SP with three states, S={active, waiting,
sleeping}. Later, we will also denote active as A., waiting as W.,
sleeping as S.. Let the action set be defined as A={wakeup, wait,
sleep}. Assume that all three commands are valid in any state. The
switching speed matrix χχ is a 3×3 matrix. The power consumption
rate pow(s) can be represented by a vector. The switching energy
ene(si, sj) can be represented by a two-dimensional table. Assume
that the chosen policy is: {<A., wait>, <W., sleep>, <S.,
wakeup>}, Figure 1 gives an illustration of this Markov process.
Note that the self-loops are not shown in this figure.

Figure 1 Markov process model of the SP

The Service Queue (SQ) is modeled as a stationary, continuous-
time controllable Markov process, with state set
Q=Qstable∨Qtransfer, where Qstable={qi s.t. i=0, 1, 2, …, Q},
Qtransfer={qi→i-1 s.t. i=i, 2, …, Q}, and the generator matrix GSQ(s,
a(q,s)), where s is the SP state, a(q,s) is the action when SP is in state
s and SQ is in state q.
The model of SQ is constructed based on that of an M/M/1 queue.
The queue length is Q. We assume that the request will be lost if
the SQ is full at the time the request arrives.
The state set Qtransfer is the set of transfer states, which represent
the states of the SQ when the service of a request has been
finished and the service of the next request has not started. Note
that there is a concurrency constraint between the SQ and the SP
as follows: Whenever the SQ is in a transfer state, the SP is
transitioning from one state to next. Furthermore, the SQ leaves
the transfer state exactly when the SP transition is complete.
The state set Qstable is the set of stable states, i.e., states of the SQ
other than the transfer states. We denote a stable state as qi, which
also implies that there are i requests in the SQ.
Given the state of SP, the transition rates between the states of SQ
are fixed. There are four types of possible transitions. They are:
(1) The transition from stable state qi to stable state qi+1. The SQ
will make this transition when it is in state qi and a request is
generated by the SR. The transition rate is: λσ =

+1, ii qq , i=0, 1,

…, Q-1, where λ is the request generation rate of SR.
(2) The transition from stable state qi to transfer state qi→i-1. The
SQ will make this transition when it is in state qi and the service
for the current request is completed by the SP. The transition rate
is:)(

1, s
iii qq µσ =
−→

, i=1, 2, …, Q

10

active

sleeping

0

0

20

0.91

0
waiting

(3) The transition from transfer state qi→i-1 to stable state qi-1. The
SQ will make this transition when it is state qi→i-1 and the SP
completes switching and starts to provide service for the next
request. The transition rate is: ssqq iii ′=

−−→ ,, 11
χσ , i=0, 1, …, Q-

1, where s′ is the destination state of action a(q,s).
(4) The transition from transfer state qi→i-1 to transfer state qi+1→i.
The SQ will make this transition when it is in state qi→i-1 and a
request is generated by the SQ. The transition rate is:

λσ =
→+−→ iiii qq 11, , i=1, 2, …, Q-1.

For the sake of brevity, we do not describe the boundary case
when the SQ is in state qQ→Q-1 and a request is generated.
Transition between states other than these four classes has a rate of
0. The self-transition rate can then be calculated as:

∑
≠′

′−=
qq

qqqq ,, σσ , q, q′∈Q.

Based on the above grouping, we can divide the matrix GSQ(s,a)

into four parts:











=

),(),(

),(),(
),(

asas

asas
as TT

SQ
TS
SQ

ST
SQ

SS
SQ

SQ
GG

GG
G , where matrix

),(asSS
SQG contains the transition rate for transitions between

stable states. Matrix),(asST
SQG contains the transition rates for

transitions from any stable state to any transfer state.),(asTS
SQG

and),(asTT
SQG are defined similarly.

Example 4.3 Consider the SP model given in previous examples,
and assume a maximum queue length of 2. Assume that whenever
the SQ is in transfer state, the PM will issue the sleep command.
Figure 2 gives the illustration of the Markov process model of this
SQ. Note that the self-loops are not shown in the figure.�

Figure 2 Markov process model of the SQ

The Power-Managed System (SYS) can be modeled as a
stationary continuous-time controllable Markov process which is
the composition of the Markov processes of the SP and the SQ.
The state set is given X=S×Qstable∨Sactive×Qtransfer. The action
set is the same as that in the SP model. A parameterized generator
matrix GSYS(x, a) gives the state transition rates under action a. A
cost function Cost(x, a) gives the system cost under action a when
the SYS is in state x.
There is an action set Ax associated with each state x. When the
system is in state x the PM chooses a command from the Ax. The
action gives the mode of SP that it should switch to. Not all
actions are valid in all states. Constraints on a valid action are as
follows:
(1) When the SQ is in stable state, the SP cannot switch from
active state to inactive state.
(2) When the SQ is in stable state qQ (SQ is full), the SP cannot
switch from an inactive state to another inactive state with longer
wakeup time.

(3) When the SQ is in transfer state qQ→Q-1, the SP cannot switch
from an active state to another active state with longer service
time.
The first constraint ensures that the work of SP will not be
interrupted by the command issued by the PM and all commands
issued by the PM will be accepted by the SP with probability
1.The last two constraints ensure that the resulting SYS model is a
connected Markov process. Consequently, the limiting distribution
of the state probability exists and is independent of the initial state
[7]. These two constraints are also reasonable, because when SP
and SQ the are in these forbidden states, then the service speed
cannot follow the generation speed of the requests. Therefore, we
need to increase the service speed.
There is some dependence between the Markov process model of
SQ and the Markov process model of SP because the transfer
states of SQ are associated with the active states of SP and their
transitions are synchronized. When the SQ is in stable state,
however, the SQ is independent from the SP.
Definition 4.4 Consider two matrices A and B:









=

2221

1211

aa

aa
A and 








=

2221

1211

bb

bb
B . The tensor product

C=A�B is given by 







=

BB

BB
C

2221

1211

aa

aa
. The tensor sum

C=A⊕B is given by: BIIAC ⊗+⊗=
12 nn , where n1 is the

order of A, n2 is the order of B,
inI is the identity matrix of order

ni.
We can write the generator matrix GSYS(a) as (please refer to [18]
for proof) :













⊗⊗

⊕
=

)()(

)()()(
)(

aa

aaa
a TT

SQS
A
SP

SS
SQSP

SYS
active

GING

MGG
G ,











 ⊗
=

1

)(

O

GI
M

aST
SQSactive , []2OIQN = , []AI

SP
AA
SP

A
SP GGG = ,

O1 is a Sinactive⋅(Q+1)×(Sactive⋅Q) matrix of all zeros, O2 is a column
vector of all zeros. The diagonal entries of GSYS(a) are calculated
as: ∑

≠
−=

ij
jiii aa)()(,, σσ .

The cost of the system is related to the state x of the SYS and the
action a taken by the SYS in state x. We use the average power
consumption Cpow(x,a) and the average number of waiting requests
Csq to capture the system cost.

Let x be denoted by (s, q), where s∈S, q∈Q. The power cost can
be calculated as: ∑

≠∈
′+=

ssSs
sspow sseneaspowaxC

','
,)',()()(),(σ .

The delay cost is: Csq=i, when SQ is in stable state qi or transfer
state qi+1→i.
We define a total cost as a weighted summation of the power and
delay costs Cost(x,a)= Cpow(x,a)+w⋅Clsq(x) (3.1)

IV. POLICY OPTIMIZATION
The problem of power management is to find the optimal set of
state-action pairs for the PM such that the expected power
consumption is minimized subject to the performance constraints.
This problem can be formally written as:

∫ ∑
∈′

′⇒∞→

t

x
pow

ð
xxtð

daxCp
t 0

),()(
1

limmin
X

ττ π ,

q2

λ

q0 q1

q1→0 q2→1

λ

µ(s) µ(s) χA.,S. χA.,S.

λ

s.t. ∫ ∑
∈′

′⇒∞→
≤t

x
Msq

ð
xxt

DdxCp
t 0

)()(
1

lim
X

ττ , ∀x, x∈X,

Where)(τπ
xxp ′⇒ is the state transition (direct or indirect)

probability from state x to x′ in a time period of τ under policy π.
aπ in “Cpow(x,aπ)” denotes the action in state x.
Another problem formulation is:

∫ ∑
∈

′⇒∞→

t

x

ðð
xxtð

daxCostp
t 0

'
),()(

1
limmin

X
ττ , ∀x, x∈X

By adjusting the weights in Eqn. (3.1), we can achieve minimum
power under different delay constraints. Figure 3 gives the
workflow of our policy optimization algorithm. The policy
iteration algorithm is the same as that in [9]. Details are omitted
here to save space.

Figure 3 Policy optimization workflow

V. EXPERIMENTAL RESULTS
First we describe a class of heuristic policies that can give trade
off between power and performance. An N-policy is a policy that
activates the server when there are N customers waiting for service
and deactivates the server when there are no customer in the
system [12]. When the server has only two states: active and
sleeping, it can easily be shown that the N-policy gives the
minimum power compared to other stationary policies with the
same performance constraint. Our experiments show that,
however, for a system with more than two server states, the N-
policy does not give the optimal power-delay tradeoff.
Our experimental setup is as follows. We have written an event-
driven simulator for simulating the real-time operation of a
portable system together with the power management policy. The
simulator simulates the operations of the server, the queue and the
power manager under real-time input requests. The server has
three states: active, waiting and sleeping. We set the length of the
queue to 5. Tasks are represented by a sequence of events. The
interval time between two consecutive requests is generated
randomly to follow an exponential distribution with mean value of
6sec. Therefore λ=0.167 in the stochastic model of the system.
The total number of requests is 50,000. The service time of each
task is also generated according to an exponential distribution with
mean value 1.5sec. Therefore, µ(active)=0.67 in the stochastic
model of the system.
When the system state changes, the power manager is triggered
and a new command is issued according to the current system
state. The switching time of the server is also generated randomly.
Eqn. (4.1) (a) gives the experimental value of the average
switching time. The time is given in seconds. Note that these refer

to the values of 1/χi,j in the stochastic model. We set the server
power dissipation when the server is active, waiting and sleeping
to 40w, 15w and 0.1w, respectively. These values are assigned to
the corresponding cost rates ci,i in the stochastic model. The
energy needed for each transition (given in J) is given in Eqn.
(4.1) (b). These values are assigned to the corresponding transition
costs ci,j in the model. The performance and the cost metrics are
measured by the average number of waiting requests and the
average power dissipation of the system during the simulation.

(a)

















−
−

−

=
5.1.1

1.5.

2.1.

_ timetr ,(b)

















−
−

−

=
2511

1.1

5.2.

_ energytr (4.1)

In the first experiment, we changed the value of the performance
weight of our algorithm and obtained a set of optimum policies.
We also generated a set of N-policies using N=1, 2, …, 5. Figure 4
shows the comparison of the simulated values of perfomance and
power of the two sets. Note that the leftmost (rightmost) N-policy
solution in Figure 4 corresponds to N=1 (N=5). We find our policy
gives better power-delay tradoff than the N-policy. In the
experiments, we also calculated the functional value of the queue
length and energy cost (by using the state probability and the state
cost) and found that the functional value and the simulated value
are almost the same. This shows that our stochastic model of the
power-managed system matches the real situation very well.

Figure 4 Comparison of our policy and The N-policy

In the second experiment, we assume that the performance
constraint of the system is to keep the average output rate
(throughput) the same as the input rate. That is, the average time
that each task stays in the queue, (i.e. average waiting time),
should be equal to or less than the average inter-arrival time of
tasks. In the algorithm, the performance constraint is defined in
terms of the average number of waiting requests. Therefore, we
must convert the average waiting time to the average number of
waiting requests. We used the approximataion that the average
number of waiting requests equals the input rate times the average
waiting time of each request. Table 1 gives the simulated values of
the average waiting time and the corresponding queue length. It
shows that the approximation is within 5% error of the actual
value.
In the last experiment, we used a set of input tasks where the input
rate varied from 1/8 to 1/3. The corresponding average interval
time of the tasks varied from 8sec to 3sec. We compared the
power-delay curves for our policy with four heuristic algorithms.
Among heuristic approaches, one is a greedy algorithm which

Does the policy meet
the performance

constraint?

System Model

Output optimal
policy

Increase the weights
of delay in (3.1)

YES

NO

Policy Iteration
Algorithm

Power Performance Trade Off Pairs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5

Average Number of Waiting Requests

P
o

w
er

 (
w

)

N-policy

our policy

deactivates (activates) the server as soon as the queue is empty
(the queue is not empty). The other three are time-out policies,
which deactivate the server n seconds after it becomes idle. In
time-out policy (1), n is fixed to 1sec. In policy (2), n is equal to
the average inter-arrival time of the input tasks. In policy (3), n is
equal to half of the inter-arrival time of input tasks. Figure 5
shows the simulated value of power and the average waiting time.
We can see that our algorithm gives best power dissipation while
satisfying the performance constraint.

Table 1 Comparison of real average queue length and the
approximated average queue length

Input Rate (1/sec) 1/8 1/7 1/6 1/5 1/4 1/3

Avg. Waiting Time (sec) 6.493 6.08 5.658 5.008 3.50 3.30

Aprox. # of Waiting Requests 0.811 0.868 0.943 1.001 0.875 1.10

Actual # of Waiting Requests 0.816 0.869 0.94 1.053 0.861 1.05

Error of Apporximation(%) -0.6 -0.1 0.3 -4.9 1.6 4.7

Figure 5 Comparison of our policy and heuristic policies

VI. CONCLUSION
We have proposed a new system model and method for dynamic
power management in system-level. The problem of system-level
power management was formulated as the continuous-time
Markov decision process based on the theories of continuous-time
Markov decision process, and stochastic network. Compared to

previous work, our model can represent the system behavior more
intuitively and more accurately by considering the close
relationship between the server status and the queue status. By
modeling the system as a queue in the domain of continuous-time,
the parameters in the model become more realistic such that they
can be collected easily and precisely. Experimental results were
presented to show that our approach is more flexible and more
effective than heuristic approaches to achieve the best power-
performance tradeoff.

REFERENCES
[1] A. Chandrakasan, R. Brodersen, Low Power Digital CMOS Design,

Kluwer Academic Publishers, July 1995.
[2] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital

Design”, IEEE Symposium on Low Power Electronics, pp.8-11,
1994.

[3] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven
Signal Processing: An Approach for Energy Efficient Computing”,
1996 International Symposium on Low Power Electronics and
Design, pp. 347-352, Aug. 1996.

[4] J. Rabaey and M. Pedram, Low Power Design Methodologies,
Kluwer Academic Publishers, 1996

[5] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1997.

[6] Intel, Microsoft and Toshiba, “Advanced Configuration and Power
Interface specification”, URL:
http://www.intel.com/ial/powermgm/specs.html, 1996

[7] U. Narayan Bhat, “Elements Of Applied Stochastic Processes”, John
Wiley & Sons, Inc. 1984

[8] B. Miller, “Finite State Continuous Time Markov Decision Processes
With an Finite Planning Horizon.” SIAM J. Control, Vol. 5, No. 2,
pp. 266-281, 1968.

[9] B. Miller, “Finite State Continuous Time Markov Decision Processes
With an Infinite Planning Horizon”. J. Of Mathematical Analysis
and Applications, No. 22, pp. 552-569, 1968.

[10] R.A.Howard, Dynamic Programming and Markov Processes, Wiley,
New York, 1960

[11] G. A. Paleologo, L. Benini, et.al, “Policy Optimization for Dynamic
Power Management”, Proceedings of Design Automation
Conference, pp.182-187, Jun. 1998.

[12] D. P. Heyman, M. J. Sobel, Stochastic Models in Operations
Research, McGraw-Hill Book Company, 1982

[13] L. Benini, A. Bogliolo, S. Cavallucci, B. Ricco, “Monitoring System
Activity For OS-Directed Dynamic Power Management”,
Proceedings of International Symposium of Low Power Electronics
and Design Conference, pp. 185-190, Aug. 1998.

[14] L. Benini, R. Hodgson, P. Siegel, “System-level Estimation And
Optimization”, Proceedings of International Symposium of Low
Power Electronics and Design Conference, pp. 173-178, Aug.
1998.

[15] G. Bolch, S. Greiner, H. D. Meer and K. S. Trivedi, Queueing
Networks and Markov Chains, John Wiley & Sons, Inc., 1998

[16] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation," IEEE Transactions on VLSI Systems,
Vol. 4, No. 1 (1996), pages 42-55.

[17] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method
for Energy Saving of Event-Driven Computation,” Proc. of the Intl.
Conference on Computer Aided Design, pages 28-32, November
1997.

[18] Q. Qiu, Q. Wu and M. Pedram, “Dynamic Power management: A
Continuous-Time Stochastic Approach”, USC EE-Systems Dept.,
CENG 99-02.

Performance of Policy at Different Input Rate

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9
Inter-arrival Time for Task (sec)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
(s

ec
) our policy

greedy policy
time-out policy (1)
time-out policy (2)
time-out policy (3)

(b)

Power Dissipation at Different Input Rates

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9
Inter-arrival Time for Task (sec)

P
o

w
er

 (
w

)

our policy
greedy policy
time-out policy (1)
time-out policy (2)
time-out policy (3)

(a)

