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AbstractThis paper introduces a continuous-time, controllable 
Markov process model of a power-managed system. The system 
model is composed of the corresponding stochastic models of the 
service queue and the service provider. The system environment is 
modeled by a stochastic service request process. The problem of 
dynamic power management in such a system is formulated as a 
policy optimization problem and solved using an efficient “policy 
iteration” algorithm. Compared to previous work on dynamic 
power management, our formulation allows better modeling of the 
various system components, the power-managed system as a 
whole, and its environment. In addition it captures dependencies 
between the service queue and service provider status. Finally, the 
resulting power management policy is asynchronous, hence it is 
more power-efficient and more useful in practice. Experimental 
results demonstrate the effectiveness of our policy optimization 
algorithm compared to a number of heuristic (time-out and N-
policy) algorithms. 

I. INTRODUCTION 
With the rapid progress in the semiconductor technology, the chip 
density and operation frequency have greatly increased, making 
power consumption in battery-operated portable devices a major 
concern. The goal of low-power design for battery-powered 
devices is to extend the battery lifetime while meeting the 
performance requirement. Reducing power dissipation is a design 
goal even for non-portable devices since excessive power 
dissipation results in increased cost of packaging and cooling as 
well as potential reliability problems. Many computer aided design 
methodologies and techniques for low power have been proposed 
[1]. 
The activity of many components in a computing system is event-
driven; for example, the activity of display servers, 
communication interfaces, and user interface functions is triggered 
by external events and it is often interleaved with long periods of 
quiescence. An intuitive way of reducing the average power 
dissipated by the whole system consists of shutting down the 
resources during their periods of inactivity. In other words, one 
can adopt a system-level power management policy that dictates 
how and when the various components should be shut down. 
The problem of finding a power management scheme (or policy) 
that minimizes power dissipation under performance constraints is 
of great interest to system designers. Several heuristic power 
management policies have been reported in the past. A simple  
 
 
 
 
 
 
 

heuristic policy is the “time-out” policy. In this policy, a device is 
put in its power-down mode after it has been idle for a certain 
amount of time. Obviously, this simple policy is not efficient. To 
overcome the limitations of the static shut-down policy, Srivastava  
et al. [16] proposed a predictive power management strategy, 
which uses a regression equation based on the component’s 
previous “on” and “off” time to estimate the next “turn-on” time. 
In [17], Hwang and Wu have introduced a more complex 
predictive shut-down strategy that has a better performance. 
However, these methods are only applicable to cases in which the 
requests are highly correlated.  
The choice of the policy that minimizes power under performance 
constraints (or maximizes performance under power constraint) is 
a new kind of constrained optimization problem which is of great 
relevance for low-power electronic systems. This problem is often 
referred to as the policy optimization (PO) problem. In [11], 
Paleologo et al. proposed a stochastic model for a rigorous 
mathematical formulation of the problem and give a procedure for 
its exact solution. The solution is computed in polynomial time by 
solving a linear optimization problem. Their approach is based on 
a stochastic model of power-managed devices and workloads and 
leverages stochastic optimization techniques based on the theory 
of discrete-time Markov decision chains.  
In the model of [11], time is divided into small intervals of length 
L. It is assumed that the system can only change its state at the 
beginning of a time interval. During interval (jL, (j+1)L), the 
transition probability of the system depends only on the state of 
the system at time jL (hence, the Markovian property) and the 
command issued by the power manager. The system model 
consists of four components: a power manager (PM), a service 
provider (SP), a service requestor (SR) and a service request 
queue (SQ). Once the model and its parameters have been 
determined, an optimal power management policy is obtained to 
achieve best power-delay trade-off. This approach offers 
significant improvement over previous power management 
techniques in terms of its theoretical foundation and a robust 
system model. This approach however has some shortcomings. 
Firstly, the power-managed system is modeled in the discrete-time 
domain, which limits its in real applications. Secondly, the model 
does not distinguish between the busy state and the idle state of 
the SP (they are lumped into the “power-up” state), therefore the 
state transition probability of the system model cannot be 
calculated accurately. Thirdly, the assumption that the transitions 
of the SQ and the SP are independent is inaccurate and thus affects 
the overall accuracy of this model. Finally, the power management 
program needs to send control signals to the components in every 
time-slice, which results in heavy signal traffic and heavy load on 
the system resources (therefore more power dissipation). 
In this work, we overcome the shortcomings of [11] by 
introducing a new system model based on continuous-time 
Markov decision processes. This new model has the following 
characteristics: 
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1. The new model is based on the continuous-time Markov 
decision processes, which is closer to the scenarios 
encountered in practice.  

2. The resulting power management policy is asynchronous 
which is more suitable for implementation as part of the 
operating system.  

3. The new model introduces a transfer state in the model of the 
SQ; in this way it can distinguish between the busy and idle 
states of the SP.  

4. The new model considers the correlation between the state of 
the SQ and the state of the SP. 

5. A policy iteration algorithm is used to solve the policy 
optimization problem. The new algorithm tends to be more 
efficient than the linear programming method.  

We also explore the class of N-policies and show that under 
certain conditions, this class of algorithms, which are very easy to 
implement, produces optimal solutions. 
This paper is organized as follows, Section II provides the 
background for continuous-time Markov processes and 
continuous-time Markov decision processes. Section III describes 
our system model for the dynamic power management, the 
definition of cost function and the policy iteration algorithm. 
Section V gives the experimental results concluding remarks. 

II. BACKGROUND 
Definition 2.1 A stochastic process is a family of random 
variables {X(t), t≥0} where t is the time parameter. The values 
assumed by the process are called the states, and the set of 
possible values is called the state space. 
Definition 2.2 A stochastic process X(t) is called a Markov 
process if for any set of time t0<t1< …<tn<t, its conditional 
distribution has the property:  
  ])(|)([])(,,)(|)([ 00 nnnn xtXxtXPxtXxtXxtXP =≤===≤ K  

where t0, t1,…, tn, t ∈ T and x0, x1,…, xn ∈ S. T and S are called 
the parameter space and state space of the Markov process, 
respectively. When T is a continuous space and S is a discrete 
space, the Markov process is called the continuous-time Markov 
process. 
Given a continuous-time Markov process with n states, its 
generator matrix G is defined as an n×n matrix as shown in Eqn. 
(2.1). An entry σi,j in G is called the transition rate from state i to 
state j. All entries are defined in Eqn. (2.2) and Eqn. (2.3). Eqn. 
(2.4) gives the relationship between σi,i and σi,j. Matrix G (also 
known as the transition rate matrix) is called a differential matrix 
if its entries satisfy property (2.4). 
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where pi⇒,j(t) is the transition probability from state i (directly or 
indirectly) to state j during time 0 to t, and )(tp ji⇒′  is its 

derivative. 

The generator matrix in the continuous-time Markov process is the 
analogue of the transition probability matrix in the discrete-time 
Markov process. We can calculate the limiting distribution 
(steady) state probabilities of the continuous-time Markov process 
from its generator matrix. Theorem 2.1 shows the relation between 
this matrix and the limiting distribution probabilities [7]. Before 
stating the theorem, we give some definitions. 
Definition 2.3 A state i is said to be recurrent if and only if, 
starting from i, eventual return to this state is certain. A recurrent 
state is said to be positive recurrent if and only if the mean time to 
return to this state is finite. A state i is said to be transient if and 
only if, starting from i, there is a positive probability that the 
process may not eventually return to this state.   
Definition 2.4 State j is said to be accessible from state i if j can 
be reached from i within finite time, which is denoted as i→j. If 
i→j and j→i, they are said to be communicate, which is denoted as 
i↔j. The set of all states of a Markov process that communicate 
with each other forms a communicating class. 
Definition 2.5 If the set of all states of a stochastic process X form 
a single communicating class, then X is irreducible. 
Theorem 2.1  
(1) If the Markov process is irreducible, then the limiting 

distribution limt→∞pi(t) = pi, i∈S, exists and is independent of 
the initial conditions of the process, The limits {pn| n ∈ S) are 
such that they either vanish identically (i.e., pi = 0 for all i ∈ 
S) or are all positive and form a probability distribution (i.e., 
pi > 0 for all i ∈ S, Σi∈Spi = 1).  

(2) The limiting distribution {pi, i ∈ S } of an irreducible positive 
recurrent Markov process is given by the unique solution of 
the equation: pG = 0 and Σj∈S pj = 1 where p = (p0, p1, …).  

Definition 2.6 If we map the states of a Markov process as 
vertices of a graph and the states transitions as directed edges 
between the vertices. The Markov process is called a connected 
Markov process if this graph is a connected graph. 
For the discussions in the rest of this paper, we will omit the term 
“continuous-time” for more concise description. Unless otherwise 
stated, all processes are assumed continuous-time. 
First, we describe a Markov process with reward. Assume the 
system earns a reward at rate ri,i (per unit time) during all the time 
that it occupies state i. When it makes a transition from state i to 
state j (i≠j), it receives a reward of ri,j. Note that ri,i and ri,j have 
different dimensions. It is not necessary that the system earns 
according to both reward rates and transition rewards, but these 
definitions give us generality. We define the “earning rate” of state 
i as: ∑

≠
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Let vi(t) be the expected total reward that the system will earn 
during a time period of t if it starts in state i. The total expected 
reward during a time period of t+dt, that is vi(t+dt), can be written 
as: 
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It can be interpreted as follows. During the time interval dt the 
system may remain in state i or make a transition to some other 
state j. If it remains in state i for a time dt, it will earn a rate ri,idt 
plus the expected reward that it will earn in the remaining t units 
of time, vi(t). The probability that it remains in state i for a time dt 
is ( ∑

≠
−

ij
ji dt,1 σ ). On the other hand, the system may make a 

transition to some state j≠i during the time interval dt with 
probability σi,jdt. In this case the system would receive the reward 



 

ri,j plus the expected reward to be made if it starts in state j with 
time t remaining, vj(t). The product of probability and reward must 
then be summed over all states j≠i to obtain the total contribution 
to the expected values. 
With dt→0 and using the definition of earning rate ri, we have: 
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where n is the total number of states of the process. Eqn. (2.5) 
gives a set of linear, constant coefficient differential equations that 
relate the total reward in time t from a starting state i to the 
quantities of ri and σi,j. 
Secondly, a controllable Markov process is a Markov process 
whose state transition rates can be controlled by controlling 
commands (defined as actions). When the system is in state i, an 
action ai is chosen from a finite set Ai which includes all possible 
actions for state i. We denote this state action relation as <i,ai>. If 
the chosen action changes as the time changes, we denote the 
action as a time-dependent variable ai(t). Hence the state-action 
pair is written as <i,ai(t)>. The state transition rates σi,j have 

different values when different actions are taken. We use )(
,

ta
ji
iσ  to 

denote the transition rate from state i to state j when action ai(t) is 
taken for state i at time t. As a result, the generator matrix of a 
controllable Markov process can be represented by a 
parameterized (action is the parameter) matrix. 
Definition 2.7 A policy π is the set of state-action pairs for all the 
states of a controllable Markov process, that is π={ <i,ai(t)>| 
ai(t)∈Ai, 1≤i≤n}.  
A Markov decision process is a controllable Markov process with 

rewards. In a Markov decision process, since )(
,

ta
ji
iσ  is action-

dependent, the reward rate ri becomes also action-dependent, 

which is denoted as )(ta
i

ir , ai(t)∈Ai. The expected total reward 

vi(t) depends on the chosen action of each state, i.e., it becomes 

policy-dependent and is denoted as )(tvð
i  . The generator matrix 

G is then also policy-dependent and is denoted as Gπ. 

Let )(tpð
ji⇒  denote the probability of being in state j at time t 

when the initial state is i and the state transition rates are 
determined by policy π. The total expected reward that the process 
can earn for a time period of t, can be written as [9]: 
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Given two policies π1 and  π2, if we can find a time ξ, such that 
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i ≥ , for all t>ξ, i = 1, 2, …, n, we denote as π1 ≥ π2. A 

policy π is called the optimal policy, if π ≥ {any possible policy 
for the Markov decision process}.  

Let )(lim tvv ð
i

t

ð
i

∞→
= . The goal of a Markov decision process is to 

find the optimal policy that maximizes ð
iv  for all i. However, in 

practice, we cannot use ð
iv  directly for calculating the optimal 

policy since )(tv ð
i  approaches infinity when t approaches 

infinity. Two alternative quantities are commonly used.  
(1) limiting average reward:  
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Obviously, maximizing limiting average reward is the same as 
maximizing the total expected reward.  
(2) discounted reward:  
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Both reward models are meaningful for different context. The 
decision based on the average limiting reward assumes that the 
system will run forever, therefore, it considers return in near future 
and far future to have the same significance. While the decision 
based on the discounted reward considers the future as 
unpredictable, i.e., the system may be terminated any time in the 
future. Therefore, it emphasizes the return of the near future. The 
discount factor α decides how greedy this reward model is. The 
larger α is, the less it considers the future. When α approaches 0, 
the discounted reward approaches the total expected reward. 
Definition 2.8 A policy π is stationary if the decision-making 
(action) is only a function of the state and independent of time, 
that is: π={ <i,ai>| ai∈Ai, 1≤i≤n}.  

Theorem 2.2 [9] For any α, there exists a stationary policy which 

maximizes )(, αð
disiv  for all i = 1, 2, …, n. Such a policy is called 

α-optimal. 
Definition 2.9 A policy π is piecewise-stationary if for any τ, 
interval [0, τ) can be divided into a finite number of intervals [0, 
t1), [t1, t2), …, [tm-1, τ) such that inside each interval, the policy is 
stationary.  
Theorem 2.3 [9] There exists a stationary policy that is α-optimal 
for a set of α having 0 as a limit point. This policy maximizes 

ππ
avgiv ,  over the class of piecewise-stationary policies. 

We therefore do not lose generality if our search for the optimum 
policy is restricted on the set of stationary policies. Actions and 
policies that we will discuss later are thus time-independent. 
The goal of a Markov decision process is to find a policy that 
maximizes the expected reward. In our case, we want to find a 
policy that minimizes our cost function (delay and power). These 
two problems are equivalent if we use the negative of cost as the 
reward. In the remainder of the paper, we will use the term cost 
instead of reward and use ci,i and ci,j instead of ri,i and ri,,j. For the 
rest of the discussion, our goal is to minimize the cost under either 
the discounted model or limiting average model. 

III. SYSTEM MODELING 
We assume the system is embedded in an environment where 
there is only a single source of requests, which is defined as the 
service requestor (SR). Requests issued by the SR are serviced by 
the system. The system itself consists of three components: a 
resource that processes requests (the SP), a queue which stores the 
requests that cannot be serviced immediately upon arrival (SQ), 
and a power manager (PM).  
Both the request arrival event and request service event are 
stochastic processes. We assume that they follow the Poisson 
process (i.e., during time (0, t], the number of the events has the 
Poisson distribution with mean λt). Consequently, the request 
inter-arrival time (from the SR) and the service time (the time 
needed by the SP to service a request) follow the exponential 
distribution with mean 1/λ.  
In order to be more general, in our model we assume that the SP 
has more than one working mode, therefore, it can service the 



 

requests with more than one service speed. We also assume that 
all requests have the same service priority. The service of the 
requests are based on a FIFO order. 
The SP can operate in a number of different power modes. We 
assume that the time needed for the SP to switch from one state to 
another follows the exponential distribution. The PM is a 
controller that reads the system state (the joint states of the SP and 
the SQ) and issues mode-switching commands to the SP.  
In the remainder of this paper, we will use upper case bold letters 
(e.g., M) to denote matrices, lowercase bold letters (e.g., v) to 
denote vectors, italicized Arial letters (e.g., S) to denote sets, 
uppercase italicized letters (e.g., S) to denote scalar constants, and 
lower case italicized letters (e.g., x) to denote scalar variables. 
The Service Requestor (SR) has only one request generating 
mode. The average interval time of requests generated by SR 
follows the exponential distribution with mean value 1/λ. 
 An SR model with one request generating mode is a simplified 
model of a real SR whose request generating speed varies from 
time to time depending on the workload. From our observations, 
however, we find that the average inter-arrival time of a given 
Poisson process can be estimated within 5% error after observing 
50 events. Therefore, if the input stays stable long enough, the 
power manager can observe and estimate the input rate 
dynamically, and adaptively change its policy. 
The Service Provider (SP) is modeled as a stationary, continuous-
time controllable Markov process with state (operation mode) set 
S={si s.t. i=1, 2, …, S}, action set A and generator matrix GSP(a), 
a∈A. It can be described by a quadruple (χχ, µ(s), pow(s), ene(si, 
sj)) where: (i) χχ is an S×S matrix; (ii) µ(s) is a function µ: S→�; 

(iii) pow(s) is a function pow: S→�; (iv) ene(si, sj ) is a function 

eng: S× S→�. 
We call χχ the switching speed matrix. The (i,j)th entry of χχ is 
denoted as 

ji ss ,χ  and represents the switching speed from state si 

to sj. The average switching time from state si to state sj is then 
1/

ji ss ,χ . We set 
ii ss ,χ  to be ∞, because the switch from state si to 

itself is instantaneous. The entries of the parameterized generator 
matrix GSP(a) can be calculated as: 
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δ(s,a) equals to 1 if s is the destination state of a, otherwise, δ(s,a) 
equals to 0.  
A service rate µ(s) represents the service speed of SP in state s. 
Therefore, 1/µ(s) gives the average time that is needed by SP to 
complete the service for one request when SP is in state s.  
A power consumption rate pow(s) is associated with each state 
s∈S. It represents the power consumption of SP during the time it 
occupies state s. The cost rate cs,s of state s is equal to pow(s). A 
switching energy ene(si, sj) is associated with each state pair (si, 
sj), si,sj∈S, si≠sj. It represents the energy needed for SP to switch 

from state si  to state sj. The cost 
ji ssc ,  is equal to ene(si, sj).  

From Eqn. (3.5) we know that the expected power consumption of 
SP when it is in state s and action as is chosen can be calculated 
by: ∑

≠′
′ ′+=

ss
ssss sseneaspowc ),()()( ,σ . 

We can divide the state set S into two groups:  
(1) The set of active states, Sactive, where µ(sa) is larger than 0 for 
each sa∈Sactive.  

(2) The set of inactive states, Sinactive, where µ(sina) is 0 for each 
sina∈Sinactive.  
Furthermore, we can divide the matrix GSP(a) into two parts: 
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where matrix )(aAA
SPG  contains the transition rate for transitions 

between inactive states. Matrix )(aAI
SPG  contains the transition 

rates for transitions from any inactive state to any active state. 
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SPG  are defined similarly. 

Example 4.1 Consider a SP with three states, S={active, waiting, 
sleeping}. Later, we will also denote active as A., waiting as W., 
sleeping as S.. Let the action set be defined as A={wakeup, wait, 
sleep}. Assume that all three commands are valid in any state. The 
switching speed matrix χχ is a 3×3 matrix. The power consumption 
rate pow(s) can be represented by a vector. The switching energy 
ene(si, sj) can be represented by a two-dimensional table. Assume 
that the chosen policy is: {<A., wait>, <W., sleep>, <S., 
wakeup>}, Figure 1 gives an illustration of this Markov process. 
Note that the self-loops are not shown in this figure.  
 
 
 
 
 
 

Figure 1 Markov process model of the SP 

The Service Queue (SQ) is modeled as a stationary, continuous-
time controllable Markov process, with state set 
Q=Qstable∨Qtransfer, where Qstable={qi s.t. i=0, 1, 2, …, Q}, 
Qtransfer={qi→i-1 s.t. i=i, 2, …, Q}, and the generator matrix GSQ(s, 
a(q,s)), where s is the SP state, a(q,s) is the action when SP is in state 
s and SQ is in state q.  
The model of SQ is constructed based on that of an M/M/1 queue. 
The queue length is Q. We assume that the request will be lost if 
the SQ is full at the time the request arrives. 
The state set Qtransfer is the set of transfer states, which represent 
the states of the SQ when the service of a request has been 
finished and the service of the next request has not started. Note 
that there is a concurrency constraint between the SQ and the SP 
as follows: Whenever the SQ is in a transfer state, the SP is 
transitioning from one state to next. Furthermore, the SQ leaves 
the transfer state exactly when the SP transition is complete. 
The state set Qstable is the set of stable states, i.e., states of the SQ 
other than the transfer states. We denote a stable state as qi, which 
also implies that there are i requests in the SQ. 
Given the state of SP, the transition rates between the states of SQ 
are fixed. There are four types of possible transitions. They are: 
(1) The transition from stable state qi to stable state qi+1. The SQ 
will make this transition when it is in state qi and a request is 
generated by the SR. The transition rate is: λσ =

+1, ii qq , i=0, 1, 

…, Q-1, where λ is the request generation rate of SR. 
(2) The transition from stable state qi to transfer state qi→i-1. The 
SQ will make this transition when it is in state qi and the service 
for the current request is completed by the SP. The transition rate 
is: )(

1, s
iii qq µσ =
−→

, i=1, 2, …, Q  
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(3) The transition from transfer state qi→i-1 to stable state qi-1. The 
SQ will make this transition when it is state qi→i-1 and the SP 
completes switching and starts to provide service for the next 
request. The transition rate is: ssqq iii ′=

−−→ ,, 11
χσ ,  i=0, 1, …, Q-

1, where s′ is the destination state of action a(q,s).  
(4) The transition from transfer state qi→i-1 to transfer state qi+1→i. 
The SQ will make this transition when it is in state qi→i-1 and a 
request is generated by the SQ. The transition rate is:   

λσ =
→+−→ iiii qq 11, , i=1, 2, …, Q-1. 

For the sake of brevity, we do not describe the boundary case 
when the SQ is in state qQ→Q-1 and a request is generated. 
Transition between states other than these four classes has a rate of 
0. The self-transition rate can then be calculated as: 

∑
≠′

′−=
qq

qqqq ,, σσ , q, q′∈Q. 

Based on the above grouping, we can divide the matrix GSQ(s,a) 
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stable states. Matrix ),( asST
SQG  contains the transition rates for 

transitions from any stable state to any transfer state. ),( asTS
SQG  

and ),( asTT
SQG  are defined similarly. 

Example 4.3 Consider the SP model given in previous examples, 
and assume a maximum queue length of 2. Assume that whenever 
the SQ is in transfer state, the PM will issue the sleep command. 
Figure 2 gives the illustration of the Markov process model of this 
SQ. Note that the self-loops are not shown in the figure.�                                                                                         
 
 
 
 
 
 

Figure 2 Markov process model of the SQ 

The Power-Managed System (SYS) can be modeled as a 
stationary continuous-time controllable Markov process which is 
the composition of the Markov processes of the SP and the SQ. 
The state set is given X=S×Qstable∨Sactive×Qtransfer. The action 
set is the same as that in the SP model. A parameterized generator 
matrix GSYS(x, a) gives the state transition rates under action a. A 
cost function Cost(x, a) gives the system cost under action a when 
the SYS is in state x. 
There is an action set Ax associated with each state x. When the 
system is in state x the PM chooses a command from the Ax. The 
action gives the mode of SP that it should switch to. Not all 
actions are valid in all states. Constraints on a valid action are as 
follows: 
(1) When the SQ is in stable state, the SP cannot switch from 
active state to inactive state.  
(2) When the SQ is in stable state qQ (SQ is full), the SP cannot 
switch from an inactive state to another inactive state with longer 
wakeup time.  

(3) When the SQ is in transfer state qQ→Q-1, the SP cannot switch 
from an active state to another active state with longer service 
time. 
The first constraint ensures that the work of SP will not be 
interrupted by the command issued by the PM and all commands 
issued by the PM will be accepted by the SP with probability 
1.The last two constraints ensure that the resulting SYS model is a 
connected Markov process. Consequently, the limiting distribution 
of the state probability exists and is independent of the initial state 
[7]. These two constraints are also reasonable, because when SP 
and SQ the are in these forbidden states, then the service speed 
cannot follow the generation speed of the requests. Therefore, we 
need to increase the service speed.  
There is some dependence between the Markov process model of 
SQ and the Markov process model of SP because the transfer 
states of SQ are associated with the active states of SP and their 
transitions are synchronized. When the SQ is in stable state, 
however, the SQ is independent from the SP.  
Definition 4.4 Consider two matrices A and B: 
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. The tensor sum 

C=A⊕B is given by: BIIAC ⊗+⊗=
12 nn , where n1 is the 

order of A, n2 is the order of B, 
inI  is the identity matrix of order 

ni. 
We can write the generator matrix GSYS(a) as (please refer to [18] 
for proof) : 
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O1 is a Sinactive⋅(Q+1)×(Sactive⋅Q) matrix of all zeros, O2 is a column 
vector of all zeros. The diagonal entries of GSYS(a) are calculated 
as: ∑

≠
−=

ij
jiii aa )()( ,, σσ . 

The cost of the system is related to the state x of the SYS and the 
action a taken by the SYS in state x. We use the average power 
consumption Cpow(x,a) and the average number of waiting requests 
Csq to capture the system cost. 

Let x be denoted by (s, q), where s∈S, q∈Q. The power cost can 
be calculated as: ∑

≠∈
′+=

ssSs
sspow sseneaspowaxC

','
, )',()()(),( σ . 

The delay cost is: Csq=i, when SQ is in stable state qi or transfer 
state qi+1→i. 
We define a total cost as a weighted summation of the power and 
delay costs Cost(x,a)= Cpow(x,a)+w⋅Clsq(x)                                (3.1) 

IV. POLICY OPTIMIZATION 
The problem of power management is to find the optimal set of 
state-action pairs for the PM such that the expected power 
consumption is minimized subject to the performance constraints. 
This problem can be formally written as: 
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Where )(τπ
xxp ′⇒  is the state transition (direct or indirect) 

probability from state x to x′ in a time period of τ under policy π. 
aπ in “Cpow(x,aπ)” denotes the action in state x.  
Another problem formulation is: 
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By adjusting the weights in Eqn. (3.1), we can achieve minimum 
power under different delay constraints. Figure 3 gives the 
workflow of our policy optimization algorithm. The policy 
iteration algorithm is the same as that in [9]. Details are omitted 
here to save space. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Policy optimization workflow 

V. EXPERIMENTAL RESULTS 
First we describe a class of heuristic policies that can give trade 
off between power and performance. An N-policy is a policy that 
activates the server when there are N customers waiting for service 
and deactivates the server when there are no customer in the 
system [12]. When the server has only two states: active and 
sleeping, it can easily be shown that the N-policy gives the 
minimum power compared to other stationary policies with the 
same performance constraint. Our experiments show that, 
however, for a system with more than two server states, the N-
policy does not give the optimal power-delay tradeoff. 
Our experimental setup is as follows. We have written an event-
driven simulator for simulating the real-time operation of a 
portable system together with the power management policy. The 
simulator simulates the operations of the server, the queue and the 
power manager under real-time input requests. The server has 
three states: active, waiting and sleeping. We set the length of the 
queue to 5. Tasks are represented by a sequence of events. The 
interval time between two consecutive requests is generated 
randomly to follow an exponential distribution with mean value of 
6sec. Therefore λ=0.167 in the stochastic model of the system.  
The total number of requests is 50,000. The service time of each 
task is also generated according to an exponential distribution with 
mean value 1.5sec. Therefore, µ(active)=0.67 in the stochastic 
model of the system.  
When the system state changes, the power manager is triggered 
and a new command is issued according to the current system 
state. The switching time of the server is also generated randomly. 
Eqn. (4.1) (a) gives the experimental value of the average 
switching time. The time is given in seconds. Note that these refer 

to the values of 1/χi,j in the stochastic model. We set the server 
power dissipation when the server is active, waiting and sleeping 
to 40w, 15w and 0.1w, respectively. These values are assigned to 
the corresponding cost rates ci,i in the stochastic model. The 
energy needed for each transition (given in J) is given in Eqn. 
(4.1) (b). These values are assigned to the corresponding transition 
costs ci,j in the model. The performance and the cost metrics are 
measured by the average number of waiting requests and the 
average power dissipation of the system during the simulation. 
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In the first experiment, we changed the value of the performance 
weight of our algorithm and obtained a set of optimum policies. 
We also generated a set of N-policies using N=1, 2, …, 5. Figure 4 
shows the comparison of the simulated values of perfomance and 
power of the two sets. Note that the leftmost (rightmost) N-policy 
solution in Figure 4 corresponds to N=1 (N=5). We find our policy 
gives better power-delay tradoff than the N-policy. In the 
experiments, we also calculated the functional value of the queue 
length and energy cost (by using the state probability and the state 
cost) and found that the functional value and the simulated value 
are almost the same. This shows that our stochastic model of the 
power-managed system matches the real situation very well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Comparison of our policy and The N-policy 

In the second experiment, we assume that the performance 
constraint of the system is to keep the average output rate 
(throughput) the same as the input rate. That is, the average time 
that each task stays in the queue, (i.e. average waiting time), 
should be equal to or less than the average inter-arrival time of 
tasks. In the algorithm, the performance constraint is defined in 
terms of the average number of waiting requests. Therefore, we 
must convert the average waiting time to the average number of 
waiting requests. We used the approximataion that the average 
number of waiting requests equals the input rate times the average 
waiting time of each request. Table 1 gives the simulated values of 
the average waiting time and the corresponding queue length. It 
shows that the approximation is within 5% error of the actual 
value.  
In the last experiment, we used a set of input tasks where the input 
rate varied from 1/8 to 1/3. The corresponding average interval 
time of the tasks varied from 8sec to 3sec. We compared the 
power-delay curves for our policy with four heuristic algorithms. 
Among heuristic approaches, one is a greedy algorithm which 
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deactivates (activates) the server as soon as the queue is empty 
(the queue is not empty). The other three are time-out policies, 
which deactivate the server n seconds after it becomes idle. In 
time-out policy (1), n is fixed to 1sec. In policy (2), n is equal to 
the average inter-arrival time of the input tasks. In policy (3), n is 
equal to half of the inter-arrival time of input tasks. Figure 5 
shows the simulated value of power and the average waiting time. 
We can see that our algorithm gives best power dissipation while 
satisfying the performance constraint. 

Table 1 Comparison of real average queue length and the 
approximated average queue length 

Input Rate (1/sec) 1/8 1/7 1/6 1/5 1/4 1/3 

Avg. Waiting Time (sec) 6.493 6.08 5.658 5.008 3.50 3.30 

Aprox. # of Waiting Requests 0.811 0.868 0.943 1.001 0.875 1.10 

Actual # of Waiting Requests 0.816 0.869 0.94 1.053 0.861 1.05 

Error of Apporximation(%) -0.6 -0.1 0.3 -4.9 1.6 4.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Comparison of our policy and heuristic policies 
 

VI. CONCLUSION 
We have proposed a new system model and method for dynamic 
power management in system-level. The problem of system-level 
power management was formulated as the continuous-time 
Markov decision process based on the theories of continuous-time 
Markov decision process, and stochastic network. Compared to 

previous work, our model can represent the system behavior more 
intuitively and more accurately by considering the close 
relationship between the server status and the queue status. By 
modeling the system as a queue in the domain of continuous-time, 
the parameters in the model become more realistic such that they 
can be collected easily and precisely. Experimental results were 
presented to show that our approach is more flexible and more 
effective than heuristic approaches to  achieve  the   best     power- 
performance tradeoff. 
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