
Edge�Valued Binary�Decision Diagrams

Yung�Te Lai� Massoud Pedram Sarma B�K� Vrudhula

Dept� of EE�Systems Dept� of ECE

University of Southern California University of Arizona

Los Angeles� CA ����� Tuscon� AZ ��	
�

Abstract

In this paper we present a new data structure called Edge�Valued Binary�Decision Di�

agrams �evbdd�� An evbdd is a directed acyclic graph� that provides a canonical and

compact representation of functions that involve both Boolean and integer quantities� In

general� evbdds provide a more versatile and powerful representation that Ordinary Binary

Decision Diagrams� We �rst describe the structure and properties of evbdds� and present

a general algorithm for performing a variety of binary operations� Next� we describe an

important extension of evbdds� called Structural evbdds� and show how they can be used

for hierarchical veri�cation�

� Introduction

Ordered Binary�Decision Diagrams �obdds�� proposed by Bryant �	
� provide a canonical

and compact representation of Boolean functions� The canonical property makes it possible

to easily detect many useful properties of Boolean functions� e�g�� size of the support set�

unateness of variables� symmetry between variables� etc� Furthermore� obbd�s compact rep�

resentation coupled with the use of data structures for caching intermediate computations�

allows for the e�cient implementation of many Boolean operations� For example� tautology

checking and complementation take constant time while conjunction and disjunction take

polynomial time in the size of obdds� Although the number of nodes in obdd representa�

tions may be exponential in the input size� obdds have a reasonable size in many practical

applications ��

�

In addition to Boolean functions� obbds can also be used for problems that are de�ned

in small� �nite domains� For example� after encoding each element in a set of size N by a

vector of n � dlog�Ne binary variables� a set can be represented by a Boolean function with

n variables such that an element is in the set if and only if its corresponding function value is

true� Set operations such as union and intersection then correspond to Boolean disjunction

and conjunction� testing if a set is empty is equivalent to checking if its corresponding Boolean

function is the constant function �� Similar to the above �symbolic analysis�� many tasks

encountered in computer aided design� combinatorial optimization� mathematical logic� and

arti�cial intelligence can be formulated and solved by using obdds ��
�

While obdds are useful for problems that require symbolic manipulation of Boolean

functions� they are not very e�ective for problems that require arithmetic operations in the

integer domain� For example� integer functions can be represented by vectors of Boolean

functions� However� to perform arithmetic operations requires performing Boolean opera�

tions on each bit� a task that may be very time consuming�

In this paper� we present a new data structure called Edge�Valued Binary�Decision Dia�

grams �evbdds� ���
� An evbdd provides a canonical and compact representation of func�

tions that involve both Boolean and integer quantities� This makes them suitable for a

variety of important applications� In ���
 three such applications of evbdds are presented�

Integer Linear Programming� Spectral Transformations of Boolean functions� and Multiple�

Output Decomposition of Boolean functions� The focus of this paper is on demonstrating the

basic properties of evbdds and their use in formal hierarchical veri�cation�

evbdds are directed acyclic graphs that are constructed in a manner similar to obdds�

�

As in obdds� each node in a evbdd either represents a constant function with no children or

it is associated with a binary variable having two children� Furthermore� an ordering of the

input variables is imposed on every path from the root node to the terminal node� However�

in evbdds there is an integer value associated with each edge� Furthermore� the semantics of

these two graphs are quite di�erent� In obdds� a node v associated with variable x denotes

the Boolean function �x � fl� � �x � fr�� where fl and fr are functions represented by

the two children of v� On the other hand� a node v in an evbdd denotes the arithmetic

function x�vl�fl�����x��vr�fr�� where vl and vr are values associated with edges going

from v to its children� and fl and fr are functions represented by the two children of v� To

achieve canonical property� we enforce vr to be ��

evbdds constructed in the above manner are more related to pseudo Boolean func�

tions ���
 which have the function type f�� �gn � integer� For example� f�x� y� z� �

�x � 	y � �xz with x� y� z � f�� �g is a pseudo Boolean function� and f��� �� �� � � and

f��� �� �� � �� However� for functions with integer variables� we must convert the inte�

ger variables to vectors of Boolean variables before using evbdds� In the above example� if

x � f�� � � � � �g� then f�x� y� z� � ��	x���x��x���	y���	x���x��x��z and f�	� �� �� � �	�

By treating Boolean values as integers � and �� evbdds can also be used to represent

Boolean functions and perform Boolean operations� Furthermore� when Boolean functions

are represented by obdds and evbdds� they have the same size and require the same time

complexity for performing operations� Thus� evbdds are particularly useful in applications

which require both Boolean and integer operations�

We present an application of evbdds to logic veri�cation� where the objective is to show

the equivalence between an abstract functional speci�cation and its logic implementation�

evbdds are particularly useful when the speci�cation is expressed over the domain of inte�

gers� In contrast� the use of obdds requires the speci�cation to be expressed at the logic

level� For example� if the behavior of a �	�bit adder is speci�ed through �� Boolean functions

��	 bits plus carry�� then the behavior of arithmetic addition can never be proved� On the

other hand� if the speci�cation language allows the operator ��� directly �e�g�� �x� y��� then

the correctness is demonstrated up to the arithmetic level� One cannot directly verify the

correctness of arithmetic functions using obdds� Since evbdds can represent both Boolean

and arithmetic functions� the equivalence between these two functions can be proved directly

up to the arithmetic level�

This paper is organized as follows� In Section �� we de�ne the syntax and semantics of

�

evbdds� and present a general algorithm for applying any binary operator �closed over inte�

gers� on evbdds� Next� we present an analysis of its complexity� and show the relationship

between evbdds and Boolean functions� In Section � we describe an important extension of

an evbdd� called Structural evbdd �sevbdd� for use in hierarchical veri�cation� Conclu�

sions are given in Section 	� Note� Due to limitations on space� proofs of the theorems are

not included� Detailed proofs are available in ���
�

� Edge�Valued Binary�Decision Diagrams

In this section� we �rst de�ne the evbdd data structure and prove its canonical property�

We then present a general paradigm for operating on evbdds and elaborate on some of

their important properties that permit speeding up of the operations� Finally� we show that

representing Boolean functions by obdds and evbdds have the same space �in terms of the

number of nodes in the data structure� and time �in terms of the number of operations�

complexities�

��� De�nitions

The following de�nitions describe the syntax and semantics of evbdds�

De�nition ��� An evbdd is a tuple hc� fi where c is a constant value and f is a directed

acyclic graph consisting of two types of nodes�

�� There is a single terminal node with value � �denoted by ���

�� A nonterminal node v is a 	�tuple hvariable�v�� childl�v�� childr�v�� valuei�

where variable�v� is a binary variable x � fx�� � � � � xn��g�

An evbdd is ordered if there exists an index function index�x� � f�� � � � � n � �g such that

for every nonterminal node v� either childl�v� is a terminal node or index�variable�v�� �

index�variable�childl�v���� and either childr�v� is a terminal node or index�variable�v���

index�variable�childr�v���� If v is the terminal node �� then index�v� � n� An evbdd is

reduced if there is no nonterminal node v with childl�v� � childr�v� and value � �� and

there are no two nonterminal nodes u and v such that u � v�

�

De�nition ��� An evbdd hc� fi denotes the arithmetic function c�f where f is the function

denoted by f� � denotes the constant function �� and hx� l� r� vi denotes the arithmetic

function x�v � l� � ��� x�r�

In this paper� we consider only reduced� ordered evbdd� In the graphical representation

of an evbdd hc� fi� f is represented by a rooted� directed� acyclic graph and c by a dangling

incoming edge to the root node of f� The terminal node is depicted by a rectangular node

labeled �� A nonterminal node is a quadruple hx� l� r� vi� where x is the node label� l and r

are the two subgraphs rooted at x� and v is the label assigned to the left edge of x�

Example ��� Fig� � shows an evbdd representation of an arithmetic function f � ����y�

yz��xy�	xyz��xz�z� The ordering of the variables used to represent f is hy� x� zi� Thus�

choosing y as the �rst variable� f is represented as ���y����x��xz��z�����y��z��xz��

This has the form c � y�v � l� � �� � y�r� where l � �x � �xz � �z and r � z � �xz� This

process is now repeated on the functions denoted by l and r� using x� followed by z� as the

decoding variables�

Each path in a evbdd corresponds to an assignment of values to the variables in the

path� Evaluation of a function represented by a evbdd for a given assignment of values

to its arguments� is carried out by simply summing the values along the edges �right edge

values are always set to �� in the path� For example� in Fig� �� the value of the function with

x � �� y � � and z � � is �� � � � � ��� � ��� The de�nition of the function eval� which

evaluates an evbdd� given the values of the variables� is presented below�

De�nition ��� Given an evbdd hc� fi with variable ordering x� � � � � � xn��� the evalua�

tion of hc� fi with respect to an input pattern hb�� � � � � bi��i� � � i � n is de�ned as follows�

eval�hc��i� hb�� � � � � bi��i� � c�

eval�hc� hxj� l� r� vii� hb�� � � � � bi��i� �

���
��

eval�hc� v� li� hb�� � � � � bi��i� if j � i and bj � ��

eval�hc� ri� hb�� � � � � bi��i� if j � i and bj � ��

hc� hxj� l� r� vii if j � i�

Lemma ��� �evbdds are canonical� Two evbdds hcf � fi and hcg�gi denote the same func�

tion �i�e�� 	b � Bn�

eval�hcf� fi� b� � eval�hcg�gi� b��� if and only if cf � cg and f and g are isomorphic�

	

−2

5

3

4

2 −1
1

0

x x

z z z z

y

0

Figure �� evbdd representation of f � �� � �y � yz � �xy � 	xyz � �xz � z�

��� Operations

In this section we describe a general algorithm� called apply� which applies any binary op�

erator op that is closed over the integers to two evbdds� That is� apply takes hcf � fi� hcg�gi

and op as arguments and returns hch�hi such that ch � h
 �cf � f� op �cg � g��

In algorithm apply� a terminal case �line �� occurs when the result can be computed

directly� For example� if op � � then hcf � fi � h���i is a terminal case since h���i � ��� � ��

hcg�gi � cg � g� and � � �cg � g� � �cg � g� � hcg�gi� Thus the result can be returned

immediately without traversing the graph�

To speed up the computation� previously computed results are stored in a table called

comp table� An entry in comp table has the form hf� g� op� hi which stands for f op g � h�

To compute f op g� comp table is �rst searched with the key hf� g� opi� If an entry is found

then the last element of the entry h is retrieved as the result� otherwise� we perform the

operation op on the subgraphs of f and g and store the result in comp table� The entries of

comp table are used in line � and stored in line ���

After the left and right children have been computed� the result will be two evbdds�

hchl
�hli and hchr

�hri �lines �� and ���� representing the functions chl
� hl� and chr

� hr� If

hchl
�hli � hchr

�hri� then the algorithm returns hchl
�hli� This is to ensure that the structure

of the form hx�k�k� �i will not occur�

If hchl
�hli �� hchr

�hri� and the current variable is x� then the resulting structure represents

the function x�chl
� hl� � ���x��chr

� hr�� This is expressed as chr
� x�chl

�chr
� hl� � ���

�

x�hr� ensuring that the right edge value is �� Therefore� the procedure returns hchr
� hvar� hl�

hr� chl
� chr

ii� Another table� called �uniq table�� is used to ensure the uniqueness property

of evbdd nodes� Before apply returns its result� it checks this table through the operation

find or add� which either adds a new node to the table or returns the node found in the

table�

apply�hcf� fi� hcg� gi� op�

f

� if �terminal case�hcf � fi� hcg� gi� op�

return�hcf � fi op hcg� gi���

� if �comp table lookup�hcf � fi� hcg� gi� op� ans��

return�ans��

� if �index�f� � index�g�� f

� hcgl� gli � hcg 	 value�g�� childl�g�i�

 hcgr � gri � hcg� childr�g�i�

� var � variable�g��

� g

 else f

� hcgl� gli � hcgr � gri � hcg� gi�

�� var � variable�f��

�� g

�� if �index�f� � index�g�� f

�� hcfl� fli � hcf 	 value�f�� childl�f�i�

�� hcfr � fri � hcf � childr�f�i�

�
 g

�� else f hcfl� fli � hcfr � fri � hcf � fi�g

�� hchl
�hli � apply�hcfl� fli� hcgl� gli� op��

�
 hchr
�hri � apply�hcfr� fri� hcgr� gri� op��

�� if �hchl
�hli �� hchr

�hri� return �hchl
�hli��

�� h � find or add�var�hl�hr� chl
� chr

��

�� comp table insert�hcf � fi� hcg� gi� op� hchr
�hi��

�� return �hchr
�hi��

g

Example ��� An example of apply�h�� fi� h��gi��� is shown in Fig� �� The variable ordering

x� � x�� Fig� � �a� shows the initial arguments of apply� Since index�f� � index�g�� lines

and �� are executed resulting in hcgl�gli � hcgr �gri � hcg�gi � h��gi and var � x�� Next�

lines �� and �	 are executed� resulting in hcfl � fli � h���i� and hcfr � fri � h���i� Figure ��b�

shows the recursive call of apply on line ��� and the result of this call is shown in Figure ��c��

Similarly� another call to apply on line �� and its results are shown in �d� and �e�� The �nal

result is shown in �f��

�

0

x
0

0

x
0

1

+

(a)

1

0

x
0

1

2 1

0

x
0

1

0
+

(b)

1

0
+

(d)

1

0

x1

(c)

(f)

1

0

x1

(e)

1

0

x1

x
0

3

>< cgl l
g >< c

lf lf >< lhc lh

rgc >< rg >< rhc hr

< g >< f >3

= 0 rg< >

c
rf rf >< =

5

5

0

3

3 0< >
3

5−3=2

3hr3< >= >< rhc hr = h3< >

Figure �� Example of the apply�h�� fi� h��gi��� operation�

����� Complexity Analysis

The time complexity of operations on obdds is O�j f j
 jg j�� where j f j and jg j denote the

number of nodes of obdds f and g� respectively� However� the time complexity of operations

on evbdds is not O�j hcf � fi j
 j hcg�gi j�� where j hcf � fi j and j hcg�gi j denote the number

of nodes in evbdds hcf � fi and hcg�gi� This is because for an internal node v of hcf � fi or

hcg�gi� apply may generate more than one hcv�vi �lines 	� �� ��� and �	��

De�nition ��	 Given an evbdd hcf � fi with variable ordering x� � � � � � xn�� and a node

v of f with variable xi� the domain of v with respect to eval �Deval
v �� and the cardinality of v

�jj v jj� are de�ned as follows�

Deval
v � fcu j hcu�ui � eval�hcf � fi� hb�� � � � � bi��i�

where u � v� �hb�� � � � � bi��i � Bi
�
�

jjv jj � j Deval
v j�

The cardinality of hcf � fi� denoted by jj hcf � fi jj� is given by jj hcf � fi jj�
P

v�f jjv jj�

Note that jj hcf � fi jj is the number of possible hc�vi�s which may be generated from hcf � fi

by apply�

�

0

0

1

0

1

0

1

0

1

2 4 6

0

0

4

2

1

(a) (b)

X0

X1

X2

X2 2X 2X 2X

Figure �� The hcv�vi�s of node v��

Example ��� Let h��x�i be the evbdd in Fig� ��a� and vi be the node associated with

variable xi� Then� jjv� jj� �� jjv� jj� �� jjv� jj� 	� jj� jj� �� and jj h��x�i jj� ��� The hcv�vi�s of

node v� are shown in Fig� ��b��

Since evbdds are acyclic directed graphs and there is no backtracking in apply� the time

complexity of apply is O�jj hcf � fi jj
 jj hcg�gi jj� ���
� In many practical applications� the

number of nodes in an evbdd may be small� but its cardinality can be very large� However�

there are some important properties of certain operators that can be exploited in the evbdd

representation that result in signi�cant reduction in the computation complexity� These are

described below�

����� The Additive Property

The evbdd representation enjoys a distinct feature� called additive property� which is not

seen in the obdd representation�

De�nition ��
 An operator op applied to hcf � fi and hcg�gi is said to satisfy the additive

property if �cf � f� op �cg � g� � �cf op cg� � �f op g��

Examples of operations that satisfy the additive property are �cf � f� � �cg � g�� �cf �

f�� �cg � g�� �cf � f� � �c� ��� and �cf � f� �� �c� ��� where �� is a left shift operator

as in C programming language �i�e�� �cf � f�� �c��

To see how the additive property results in reduction in computation� consider the oper�

ation �cf � f�� �cg� g� � �cf � cg�� �f � g�� Because the values cf and cg can be separated

�

from the functions f and g� the key for this entry in comp table is hh�� fi� h��gi��i� After the

computation of hh�� fi� h��gi��i� which results in hch�hi� we add cf � cg to ch to obtain the

complete result of hhcf � fi� hcg�gi��i� Hence� every operation hhc�f � fi� hc
�
g�gi��i can utilize

the result of computing hh�� fi� h��gi��i� For operators satisfying the additive property� the

time complexity of apply is O�j hcf � fi j
 j hcg�gi j� �as opposed to O�jj hcf � fi jj
 jj hcg�gi jj���

To take advantage of the additive property� the following lines are inserted between lines

� and � of apply

��� cfg � cf op cg�

��� cf � cg � ��

and lines �� �
� and �� of apply are replaced by

� if �comp table lookup�hcf � fi� hcg� gi� op� hch�hi��

return �hch 	 cfg�hi��

�� if �hchl
�hli �� hchr

�hri� return �hchl
	 cfg�hli��

�� return �hchr
	 cfg�hi��

For multiplication by a constant� e�g�� �cf � f� � c� and left�shift by a constant� e�g��

�cf�f� �� c� further simpli�cation is possible� The following pseudo code times c�hcf � fi� c�

performs operation �cf � f�� c with time complexity O�j f j�� Note that the new edge value

value�f�� c is computed in line � instead of propagating it downward to the next level in

line � �cf� line 	 or �� of apply��

times c�hcf � fi� c�

f

� if �f �� �� return hcf � c� �i�

� if �comp table lookup�h�� fi� c� times c� h��hi��

return hcf � c�hi�

� hchl
�hli � times c�h�� childl�f�i� c�� �� chl

� � ��

� hchr
�hri � times c�h�� childr�f�i� c�� �� chr

� � ��

 h � find or add�variable�f��hl�hr� value�f�� c��

� comp table insert�h�� fi� c� times c� h��hi��

� return hcf � c�hi�

g

An important application of this class of operators is to interpret a vector of Boolean

functions as an integer function� �m��f� � � � � � ��fm���

����� The Bounding Property

Before de�ning this property� we present a type of computation sharing that can be exploited

in the case of relational operations� Consider � as an example� Let hcf � fi �� hcg�gi indicate

that hcf � fi � hcg�gi holds for all input patterns� It can be easily shown that�

h�� fi �� h��gi and �cf � cg� � � � hcf � fi �� hcg�gi�

Let m � �max�h�� fi � h��gi�� Then�

h�� fi �� h��gi and �cf � cg� � m � hcf � fi �� hcg�gi�

Based on the above implication� hcf � fi � hcg�gi can be replaced by two operations�

hcf � fi�hcg�gi � hch�hi and hch�hi � h���i� We store the maximum and minimum function

values with each evbdd node and include the following terminal cases�

if �ch 	max�h�� � � return h�� �i� and

if �ch 	min�h�� � � return h�� �i�

Storing the maximum and minimum values in each node is particularly useful when

evbdds are used for solving combinatorial optimization problems using branch and bound

techniques ���
�

De�nition ��� An operator op applied to hcf � fi and hcg�gi is said to satisfy the bounding

property if ��cf �m�f�� op �cg �m�g�� � �� �� �cf � f�� or �cg � g�� where m�f� and m�g�

denote the maximum or the minimum of f and g�

De�nition ��� implies that the result of an operation that satis�es the bounding property

can be immediately determined from m�f� and m�g�� As an example� the following pseudo

code leq��hcf � fi�� performs operation �cf � f� � ��

leq��hcf � fi�

f

� if ��cf 	max�f�� � �� return�h�� �i��

� if ��cf 	min�f�� � �� return�h�� �i��

� if �comp table lookup�hcf � fi� leq�� ans��

return�ans��

� hchl
�hli � leq��hcf 	 value�f�� childl�f�i��

 hchr
�hri � leq��hcf � childr�f�i��

� if �hchl
�hli �� hchr

�hri� return �hchl
�hli��

� h � find or add�variable�f��hl�hr� chl
� chr

��

 comp table insert�hcf � fi� leq�� hchr
�hi��

� return �hchr
�hi��

g

��

����	 The Domain�Reducing Property

In hcf � fi op hcg�gi� where op satis�es the additive property� exactly one h��vi pair is gen�

erated for each node v of f and g� Thus� the �e�ective� domain of each node becomes f�g�

There are other operators which have similar e�ect on reducing the domain of evbdd nodes�

De�nition ��
 Given an evbdd hcf � fi� the domain of a node v of f with respect to an

operator op is de�ned as�

Dop
v � fcv j hcv�vi�s are the pairs that need to be generated with respect to opg�

De�nition ��� An operator op applied to hcf � fi and hcg�gi is said to satisfy the domain�

reducing property if there exist some node v of f or g such that Dop
v � Deval

v �

An example of this is the following�

�cf � f� mod c � ��cf mod c� � f� mod c�

The domain of a node v of f is Dmod
v � Deval

v � f�� � � � � c� �g� In this case� hcf � kc� fi can

share the computation result of hcf � fi for any integer k� When c is small� the savings in

computation is large� when c is large� then the following check �using the boundary property�

can be used to increase the sharing of computations�

if ��cf �max�f�� � c �� �cf �min�f�� � �� then hcf � fi�

Another example is integer division by a constant� If cf and c are positive integers� then

�cf � f��c � �cf�c� � ��cf mod c� � f��c� In fact� integer division operator by a constant

satis�es the three properties� �cf�c� satis�es the additive property� �cf mod c� satis�es the

domain�reducing property� and

if ��cf �max�f�� � c �� cf �min�f� � �� then ��

satis�es the bounding property�

����
 Integer Multiplication

Unfortunately� the evbdd representation of the multiplication function still requires expo�

nential number of nodes� One way to alleviate this problem is to perform an input variable

transformation as illustrated below�

��

Example ��	 To represent xy where x is a ��bit and y is a ��bit unsigned integers� we

transform xy as follows�

xy � �
x� 	 �x� 	 �x� 	 x����y� 	 y��

� ��x�y� 	
x�y� 	
x�y� 	 �x�y�
	�x�y� 	 �x�y� 	 �x�y� 	 x�y�

� ��w� 	
w� 	
w� 	 �w� 	 �w�

	�w� 	 �w� 	 w�

where x�y�� � � � � x�y� are replaced by new variables w�� � � � � w�	

By using the above method� an m�bit � n�bit integer multiplication can be represented

in evbdd form using m� n nodes�

����� Some Remarks

Srinivasan et al� ���
 proposed an extension of obdds to Multi�valued Decision Diagrams

�mdds�� In mdds� a nonterminal node can have more than two children and a terminal

node assumes integer values� All operations are carried out through the case operator�

which although works for arbitrary discrete functions� cannot directly perform arithmetic

operations�

Clarke et al� ���

 recently proposed another extension of obdds� called Multi�Terminal

Binary Decision Diagram �mtbdd�� This extension is the same as �attened evbdds ���
�

In general� for functions where the number of distinct terminal values is large� an mtbdd

�or �attened evbdd� will require larger number of nodes than an evbdd� However� for

functions where the number of distinct terminal values is small� an mtbdd may require less

storage space depending on the number of nodes in the corresponding graphs�

An evbdd requires n � � nodes to represent �n��x� � � � � � ��xn��� while an mtbdd

requires �n	� � � nodes to represent the same function� When there are only two di�erent

terminal nodes �e�g�� � and ��� evbdds� mtbdds� and obdds are equivalent in terms of the

number of nodes and the topology of the graph ���
� In this case� an evbdd will require

more space to represent the the edge�values�

The worst case time complexity for performing operations on evbdds is the same as that

for mtbdds� However� due to the properties stated above� many operations on evbdds are

much more e�cient then corresponding operations on mtbdds�

��

��� Representing Boolean Functions

By using integers � and � to represent Boolean values false and true� Boolean operations can

be implemented through arithmetic operations as shown below�

x 	 y � xy�

x
 y � x	 y � xy�

x� y � x	 y � �xy�

x � �� x�

Thus� Boolean functions are a special case of integer functions� and obdds are a special case

of evbdds�

Example ��
 The evbdds for the sum and carry functions of a full adder are shown in

Fig� 	� By using the above equations� sum and carry can be expressed as follows�

sum � x	 y 	 z � �xy � �yz � �zx	 �xyz�

carry � xy 	 yz 	 zx� �xyz�

A full adder represented by arithmetic functions may seem more complicated than when

it is represented by Boolean functions� However� the above equations are only for convert�

ing from Boolean functions to arithmetic functions� Procedure apply is capable of directly

performing Boolean operations� For example� Boolean disjunction is carried out through

apply�hcf � fi� hcg�gi��� with the following terminal cases�

��� if �hcf � fi �� h�� �i jj hcg� gi �� h�� �i�

return�h�� �i��

��� if �hcf � fi �� h�� �i jj hcf � fi �� hcg� gi�

return�hcg� gi��

��� if �hcg� gi �� h�� �i� return�hcf � fi��

Furthermore� when a Boolean function is represented by an evbdd� it requires the same

number of nonterminal nodes and nearly the same topology as when it is represented by an

obdd� These properties are summarized in the following algorithm and lemmas�

Algorithm A� To convert a Boolean function from on obdd to an evbdd representation�

�� Convert terminal node � to h���i and � to h���i�

�� For each nonterminal node hxi� l� ri in obdd such that l and r have been converted to

evbdds as hcl� l�i and hcr� r�i� apply the following conversion rules�

�a� hxi� h�� l�i� h�� r�ii � h�� hxi� l�� r�� �ii�

�b� hxi� h�� l�i� h�� r�ii � h�� hxi� l�� r����ii�

��

0 0

0

0

0

1
1

0

1

-1
1

1

-1

x

y y

z

x

y y

z z

(a) (b)

Figure 	� A full�adder represented in evbdds� �a� carry �b� sum�

0 0

x

y y

z

x

y y

z z

(a) (b)

1 1

Figure �� A full�adder represented in obdds� �a� carry �b� sum�

�c� hxi� h�� l�i� h�� r�ii � h�� hxi� l�� r�� �ii�

�d� hxi� h�� l�i� h�� r�ii � h�� hxi� l�� r�� �ii�

Example ��� Fig� � shows the obdd representation of carry and sum� After Algorithm

A� they will be converted to the evbdds in Fig� 	

Lemma ��� Algorithm A has the following properties�

Algorithm A converts an obdd v to either h��v�i evbdd or h��v�i evbdd�

�� Algorithm A will neither add nor delete any nonterminal node or edge�

�� Algorithm A preserves functionality� That is� given an obdd v� if the application

of Algorithm A on v results in an evbdd hc�v�i� then v and hc�v�i denote the same

function�

�	

Theorem ��� Given a Boolean function represented by an obdd v and an evbdd hc�v�i�

then v and v� have the same topology except that the terminal node � is absent from the

evbdd v� and the edges connected to it are redirected to the terminal node ��

Lemma ��� When evbdds are used to represent Boolean functions� exactly one of h��vi

or h��vi can be generated during the process of apply �lines 	� ��
� ��� �	� and ���� where

v is a nonterminal node�

Theorem ��� Given two obdds f and g and the corresponding evbdds hcf � f �i and hcg�g�i�

the time complexity of Boolean operations on evbdds �using apply� is O�j f j
 jg j��

Based on the above theorem� we can use evbdds to replace obdds for representing

Boolean functions with the following overhead�

�� An integer representing the dangling edge for each function �graph��

�� An integer representing the left edge value for each nonterminal node� and

�� One addition and one subtraction for each call of apply operation �lines 	 and ����

� Formal Veri�cation

Formal veri�cation requires showing the equivalence between a speci�cation of the intended

behavior and a description of the implemented design� Based on how circuit behavior is

modeled� many approaches have been proposed� symbolic�simulation based such as ��
� state�

machine based such as ��
� function based such as ��
� calculus based such as ���
� and logic

based such as ��� ��
�

When using obdds or evbdds for logic veri�cation� if both speci�cation and implemen�

tation are Boolean expressions� then the correctness can only be proved up to the logic level�

On the other hand� if the speci�cation is an arithmetic function while the implementation is

a set of Boolean expressions� then the equivalence can be demonstrated up to the arithmetic

level� Thus� evbdds provide two advantages over obdds� First� they allow equivalence

checking between Boolean functions and arithmetic functions� Second� they handle hierar�

chical designs� that is� the implementation of a design can be described using previously

veri�ed components rather than having to �atten the design down to the gate level�

In this section� we �rst present a simple example of how to use evbdds to verify the func�

tional behavior of circuit designs and then describe our veri�cation paradigm for proving data

��

0

0

0

0

1
1

x

y y

z

0

0

1

-1
1

1

-1

x

y y

z z

0 0
2 1

+ =x x

x

y

z

0

0

1

1

1

Figure �� evbdd expression� �� carry � sum�

x

y

z

0

0

1

1

1

x y z

+ + =

0 0 0

0 0 0

1 1 1

Figure �� evbdd expression� x� y � z�

paths� In order to verify control paths and do hierarchical veri�cation� we extend evbdds

to structured evbdds� Finally� the input variable ordering strategy for logic veri�cation will

be discussed� �

Example ��� We prove that carry�x� y� z� and sum�x� y� z� implement the full adder x �

y � z� That is� with the interpretation of hcarry� sumi as a ��bit integer� we show � �

carry � sum � x� y� z� Given a gate�level �Boolean� description of a full adder� it is easy

to construct the evbdd representation of the carry and sum functions as shown in Fig� 	�

Carrying out the expression ��carry�sum results in the rightmost evbdd shown in Fig� ��

On the other hand� the speci�cation of the arithmetic behavior of the full adder� x� y � z�

represented in evbdds is shown in Fig� �� The equivalence between � � carry � sum and

x� y� z can then be checked by comparing the two rightmost evbdds in Figures � and ��

As shown in the above example� the implementation of a design is described by Boolean

functions while its behavioral speci�cation is described as an arithmetic function� The equiv�

�The experimental results in this section were generated on a Sun ����� with � MB of memory�

��

alence checking between two di�erent levels of abstraction is carried out by using one repre�

sentation � evbdd�

��� The Veri�cation Paradigm

In this section� we show how evbdds can be used to perform functional veri�cation�

We are given the following�

�� The description of an implementation�

imp�x��� � � � � xnk� � hg��x��� � � � � xnk�� � � � � gm�x��� � � � � xnk�i�

where xij�s are Boolean variables and gi�s are Boolean functions�

�� The interpretation of the input variables xij�s�

X� � f��x��� � � � � x�j� �for a j�bit integer��
���

Xn � fn�xn�� � � � � xnk� �for a k�bit integer��

where Xi � fi�xi�� � � � � xip� describes how variables hxi�� � � � � xipi should be interpreted

as a p�bit integer through function fi� Thus� Xi is an integer variable and fi speci�es

the number system used� A number system may be unsigned� two�s complement� one�s

complement� sign�magnitude� or residue� For example� if Xi is an unsigned integer�

then fi�xi�� � � � � xip� � �p��xi� � � � � � ��xip�

�� The interpretation of the output variables gi�s� G � g�g�� � � � � gm�� Again� g is a

function representing a number system�

	� The description of a speci�cation�

spec�X�� � � � �Xn� � f�X�� � � � �Xn��

where function f speci�es the intended behavior of the implementation�

To show imp realizes spec� we show the following equivalence relation�

f�X�� � � � � Xn� � g�g�� � � � � gm� or

f�f��x��� � � � � x�j�� � � � � fn�xn�� � � � � xnk�� � g�g��x��� � � � � xnk�� � � � � gm�x��� � � � � xnk���

Using the example in the previous section� we have�

��

imp�x� y� z� � hcarry�x� y� z�� sum�x� y� z�i�

X � x�

Y � y�

Z � z�

G � �carry 	 sum�

spec�X� Y� Z� � X 	 Y 	 Z�

The correctness of the full adder is veri�ed by showing x � y � z � �carry�x� y� z� �

sum�x� y� z��

The above paradigm can be reversed to result in a procedure for functional synthesis�

Again� we use the full adder as an example except now the goal imp�x� y� z� is not given�

From the description of spec� we have

sum�x� y� z� � spec mod ��

carry�x� y� z� � �spec� �spec mod ������

where spec � x�y�z� The following sequence of apply operations on evbdds then produces

the sum and carry automatically�

h��xyi � apply�h��xi� h��yi�	��

h�� fai � apply�h�� zi� h��xyi�	��

h�� sumi � apply�h�� fai� h�� �i� mod��

h�� tempi � apply�h�� fai� h�� sumi����

h�� carryi � apply�h�� tempi� h�� �i� ���

As presented in Sec� ����	� operations modulo and integer division can be e�ectively

carried out in evbdds� An application of the above synthesis procedure is in logic veri�cation

where the mapping between the variables is not given� For example� we can specify a �	�bit

adder as �x� y� while the variable sets in the implementation are a�s and b�s� In this case�

we �rst convert the arithmetic expression into a vector of Boolean functions and then use

Boolean matching ��	
 to perform the equivalence checking�

Example ��� The design �imp� is a �	�bit ��level carry lookahead adder which has ��

inputs� �� outputs� and 	�� logic gates� The intended behavior �spec� is speci�ed as�

unsigned��
� add���x� y� c�

unsigned���� x� y�

unsigned c�

f

return�x 	 y 	 c��

g

��

where ��	� and ���� declare the number of bits� In our experimental implementation� the

generation of �� evbdds of imp ���� nodes in total� takes ��	� seconds and the generation of

one evbdd of spec ���
 nodes� takes ���� seconds� The veri�cation process which converts

�� evbdds into one� performing ����b��� � �����b��� and then compares the result with the

spec takes 	�	� seconds� That is� it takes less than � seconds to show �� Boolean expressions

are really carrying out an addition�

��� Structured Edge�Valued Binary Decision Diagrams

As shown in the previous section� we can use evbdds to show the equivalence between

Boolean expressions and arithmetic expressions� In this section� we introduce Structured

evbdds� or sevbdds for short� which can be used to show the equivalence between Boolean

expressions and conditional expressions� For example� the implementation of a multiplexer

can be described as ��x � y� � ��x � z�� while the speci�cation can be described as �if x then

y else z�� In addition to the speci�cation of conditional statements� sevbdds also allow the

declaration of vectors�

De�nition ��� sevbdds are recursively de�ned as follows�

�� An evbdd is an sevbdd� �This is the atomic type of sevbdds��

�� �p � t� e� is an sevbdd if p is an sevbdd with the f�� �g range� and t and e are

sevbdds� For every input assignment b� the function denoted by �p � t� e� returns

the value t�b�� if p�b� � �� otherwise it returns e�b�� �This is the conditional type of

sevbdds��

�� �f�� � � � � fm
 is an sevbdd if f�� � � � � fm are sevbdds� For some input assignment b�

�f�� � � � � fm
 returns the vector hf��b�� � � � � fm�b�i� �This is the vector type of sevbdds��

In the graphical representation of sevbdds� terminal nodes are atomic type sevbdds

�Fig� � �a��� There are two types of nonterminal nodes� a conditional node which has three

children �Fig� � �b�� and a vector node which has an inde�nite number of nodes �Fig� � �c���

Example ��� Let x� y� z� y�� y�� z�� and z� be evbdds� Consider the following expressions�

�� x� x � y� �x � z� and

�

A

(a) (b) (c)

[]

p t e f f
1 m

Figure �� Graphical representation of sevbdds�

(a) (b)

[]

[][]x

xy
0

y
1

z
0

z
1

z
1

z
0

y
0

y
1

Figure
� Examples of sevbdds�

�� �x � y� � ��x � z��

�� �x� y� z�� �x� x � y� z�� �x� y� �x � z�� �x� x � y� �x � z�� and

	� �x� �y�� y�
� �z�� z�
��

�� ��x� y�� z��� �x� y�� z��
 and

�� ��x � y�� � ��x � z��� �x� x � y�� �x � z��
�

sevbdds in groups � and � are of a atomic type� Those in groups � and 	 are of a conditional

type and those in groups � and � are of a vector type� Note that the sevbdds in groups �

and � represent a ��bit multiplexer while the sevbdds in groups 	� �� and � represent two

��bit multiplexers which have the same control signal x� The graphical representation of

those in groups 	 and � are shown in Fig�
 �a� and �b�� respectively�

De�nition ��� The type graph of an sevbdd f is obtained by replacing all terminal nodes

of f by a unique terminal node A�

��

(a) (b)

[]

[][]

A A

Figure ��� Examples of type graph of sevbdds�

Example ��	 The type graphs of the sevbdds in Fig�
 are shown in Fig� ���

An sevbdd would be a canonical representation if two sevbdds denote the same function

if and only if they are isomorphic� This is however not true because we can have two sevbdds

denoting the same function which have di�erent types �e�g�� Ex� ����� However� with proper

restrictions� sevbdds can still have the canonical property� That is� if two sevbdds satisfy

those conditions then they denote the same function if and only if they are isomorphic� In

the following� we de�ne two conditions such that the subset of sevbdds which satisfy these

conditions have the canonical property�

The �rst condition is to be isotypic which is de�ned as follows�

De�nition ��� Two sevbdds are isotypic if their type graphs are isomorphic� Equivalently�

two sevbdds f and g are isotypic if

�� Both f and g are evbdds� or

�� f � �p� tf � ef�� g � �p� tg� eg�� tf and tg are isotypic� and ef and eg are isotypic� or

�� f � �f�� � � � � fm
� g � �g�� � � � � gm
 and every pair of fi and gi are isotypic�

Example ��
 In Ex� ���� the sevbdds in groups � and � are isotypic� the sevbdds in group

� are isotypic but none of them is isotypic to that of 	� sevbdds in groups � and � are not

isotypic�

Note that two sevbdds which are isotypic but are not isomorphic� may still denote the

same function� In Ex� ���� the sevbdds in group � are isotypic but are not isomorphic� yet

they all denote the same function� Given an sevbdd �p � t� e�� for any input assignment

��

b such that p�b� � �� the function value of e�b� will not in�uence the result� similarly�

if p�b� � �� then t�b� is irrelevant� Therefore� we can use operators cofactor��p� t� and

cofactor��p� e� to transform t and e to t� and e� such that if p�b� � �� then t��b� � t�b� and

e��b� � �� if p�b� � �� then t��b� � � and e��b� � e�b�� Consequently� we obtain a reduced

form �p� t�� e�� for �p � t� e�� The cofactor��p� t� operator is carried out in a similar way to

the restrict operator in ���
 except for the following di�erences� When p � �� restrict returns

error while cofactor� returns �� Restrict applies to Boolean functions while cofactor� applies

to arithmetic and Boolean functions�

The second condition for sevbdds to be canonical is for them to be reduced�

De�nition ��	 An sevbdd is reduced if

�� It is an evbdd� or

�� It is a conditional sevbdd of the form �p � t� e� with cofactor��p� t� � t� cofactor��p� e� �

e� and t and e are reduced� or

�� It is �f�� � � � � fm
 and every fi is reduced�

In Ex� ���� the sevbdds in groups � and � are reduced� the last sevbdd in group � and

the one in group � are also reduced�

Lemma ��� If two sevbdds f and g are isotypic and reduced� then f and g denote the

same function if and only if they are isomorphic�

Since isotypic and reduced sevbdds are canonical� we need procedures for converting an

sevbdd from one form to another and or reducing an sevbdd� Operators cofactor� and

cofactor� are used for converting from atomic �evbdds� to conditional form� To convert from

conditional to atomic form� we use operator ite� which is nearly the same as the one described

in ��
 except that our ite operator is also applicable to arithmetic functions� Operator ite

takes a conditional sevbdd such as �p� t� e� �t and e are evbdds� as arguments and returns

an evbdd f such that �p� t� e� and f denote the same function� The following procedures

conver the forms of sevbdds and reduce sevbdds� Note� cofactor s�� cofactor s�� and

ite s are sevbdd versions of cofactor�� cofactor�� and ite� respectively�

��

convert�f� g� �� converting g to same form of f ��

�� assumes f and g have same number of outputs �

� if �f is an evbdd�

� if �g is an evbdd� return�g��

� if �g �� �p� t� e��

return�ite�p� convert�f� t�� convert�f� e����

� else if �f �� �p� t� e��

 return��p� convert�t� cofactor s��p� g���

convert�e� cofactor s��p� g�����

� else �� f � �f�� � � � � fm� ��

� if �g �� �p� t� e��

 return�ite s�p� convert�f� t�� convert�f� e����

� else return��convert�f�� g��� ���� convert�fm� gm����

g

reduce�f�

f

� if �f is an evbdd� return�f��

� else if �f �� �p� t� e��

� return�reduce�p�� reduce�cofactor s��p� t���

reduce�cofactor s��p� e����

� else return��reduce�f��� � � � � reduce�fm����

g

cofactor s��p� t� �� cofactor s��p� t� is similarly de�ned ��

f

� if �t is an evbdd� return�cofactor��p� t���

� else if �t �� �p� � t�� e���

� return��cofactor s��p� p��� cofactor s��p� t���

cofactor s��p� e
�����

� else �� t � �t�� � � � � tm� ��

 return��cofactor s��p� t��� � � � � cofactor s��p� tm����

g

ite s�p� t� e� �� assuming t and e are isotypic ��

f

� if �p �� �pp � tp� ep��

return�ite s�ite s�pp� tp� ep�� t� e���

� if �t and e are evbdds� return�ite�p� t� e���

� if �t �� �pt � tt� et� �� e �� �pe � te� ee��

� return��ite s�p� pt� pe�� ite s�p� tt� te��

ite s�p� et� ee����

 if �t �� �t�� � � � � tm� �� e �� �e�� � � � � em��

� return��ite s�p� t�� e��� � � � � ite s�p� tm� em����

g

��

To show the equivalence between a speci�cation and an implementation described in

two di�erent forms� we need to convert from one form to another� In our implementation�

we use the speci�cation as the target form and convert the implementation to the target

form� This is because a speci�cation usually has a more compact representation than an

implementation� For example� a speci�cation of ��x � y � x� y�x� y�� where x and y are

n�bit integers� requires �n� �n� and �n nonterminal nodes for representing x � y� x� y� and

x � y� respectively� On the other hand� a gate implementation of the above speci�cation

requires n � � Boolean functions in which the ith function �for generating ith bit� requires

at least �i nonterminal nodes� and the carry function �bit� requires at least �n nonterminal

nodes� Thus� it requires at least n�n � �� nonterminal nodes� The following two examples

verify SN�	L�� and SN�	��� chips ���
� where the �rst one is a 	�bit comparator and the

second one is a 	�bit ALU�

Example ��� The implemented design �imp� is the SN�	L�� chip ���
 which is a 	�bit

comparator� This chip has �� inputs� � outputs and �� gates� The speci�cation �spec� of the

design may be described as�

unsigned��� comp��x� y� gt� lt� eq�

unsigned��� x� y�

unsigned gt� lt� eq�

f

if �x � y� return�h�� �� �i��

else if �x � y� return�h�� �� �i��

else return�hgt� lt� eqi�

g

It takes ���� seconds to generate the sevbdd of imp which has �
 nodes and it takes ����

seconds to construct the conditional sevbdd of spec which has �� nodes� The conversion

from the sevbdd of imp to that of spec� followed by the comparison� takes ���� seconds�

Example ��
 The implementation is the SN�	��� chip which is a 	�bit ALU ���
� A par�

tial speci�cation is given below� Note� un comp� two and unsigned perform type coercion�

un comp results in an unsigned integer� with the most signi�cant bit being complemented�

two means that the result is to be a two�s complement integer�

�	

SN���
��M� S� A� B� Cin�

unsigned M� Cin�

unsigned��� S� A� B�

f

if �M � ��

if �S � �� return��un comp �
�� A 	 �� Cin���
���

else if �S � �� return��two�
�� � Cin��
���

else

if �S � �� return��unsigned ���� not�A���

else if �S��� return��unsigned���� not�A or B���
���

g

Note that we allow the interpretation of the same outputs in di�erent number systems

as well as allow di�erent sizes in di�erent branches of conditional statements�

The implementation sevbdd has ��� nodes and can be generated in ���� seconds� The

speci�cation sevbdd has ��� nodes and can be constructed in ���� seconds� And the veri��

cation process takes ���� seconds�

In addition to providing the ability to check equivalence between Boolean and arithmetic

expressions and between conditional and nonconditional expressions� sevbdds are suitable

for hierarchical veri�cation� i�e�� veri�cation without having to �atten a component which

has already been veri�ed� In the following two examples� a �	�bit comparator and a �	�bit

adder� the implementations are constructed from 	�bit comparators and 	�bit ALU�s� The

construction of implementation sevbdds are however based on the speci�cation sevbdds of

the 	�bit comparator and 	�bit ALU�s�

Example ��� The design is a �	�bit comparator implemented through serial connection

of �� SN�	L��s� The speci�cation of this design is the same as the one in Example ���

except that the size declaration is changed from 	 to �	� Generation of implementation

and speci�cation sevbdds take ���� and ���
 seconds respectively� and the proof takes ����

seconds�

Example ��� The design is a �	�bit ripple�carry adder implemented through serial connec�

tion of �� SN�	���s� The speci�cation of this design is exactly the same as the one used

in Example ���� Time to generate the sevbdds for the implementation and speci�cation

��

are ���
 and ���� seconds� respectively and time to verify their equivalence is ��
� seconds�

Note that generation of implementation sevbdd takes longer time while veri�cation takes

less time than the case in Example ���� This is because� here� we generate �� sevbdds each

with the sum of 	 bits instead of �	 sevbdds each with the sum of � bit�

��� Ordering Strategy

The conditional type of sevbdds provides information for determining the ordering of input

variables� For example� for sevbdd �p � t� e�� we assign variables occurring in p lower

indices compared to those in t and e� This ordering strategy matches the suggestion �con�

trolling variables should be put on top of obdds� in �	
� It is more di�cult to identify

controlling variables in a Boolean expression� In addition� we assign variables with larger

integer coe�cients lower indices compared to those with smaller integer coe�cients� This

ordering strategy also matches the observation in �	
� and is easier to identify from arithmetic

expressions than from Boolean expressions�

� Conclusions

It was demonstrated that by associating an integer with each edge of an obdd and giving

a new meaning to each node of the obdd� a new graphical data structure is created whose

domain is that of the integer functions� The new data structure� called evbdd� admits

arithmetic operations� evbdds preserve the canonical property as well as the capability

to cache computational results� With these two properties� we have found evbdds to be

valuable in many applications�

Because of the compactness and canonical properties� evbdds have been shown to be

e�ective for handling veri�cation problems� Because of the additive property� evbdds are

also useful for solving integer linear programming problems ���
� Other applications of

evbdds include performing spectral transformation and matrix representation�

References

��� G� V� Bochmann� �Hardware speci�cation with temporal logic� An example�� IEEE Trans�

on Computers� �������������� March ��
��

��� R� T� Boute� �Representational and denotational semantics of digital systems�� IEEE Trans�

on Computers� �
�����
������ July ��
��

��

��� K� S� Brace� R� L� Rudell� and R� E� Bryant� �E�cient implementation of a BDD package��

Proc� of the ��th Design Automation Conference� pp� ����
� �����

��� R� E� Bryant� �Graph�based algorithms for Boolean function manipulation�� IEEE Transac�

tions on Computers� C��
�
�� �������� August ��
��

�
� R� E� Bryant� D� Beatty� K� Brace� K� Cho� and T� She�er� �COSMOS� a compiled simulator

for MOS circuits�� Proc� of the ��th Design Automation Conference� pp� ����� ��
��

��� R� E� Bryant� �Symbolic Boolean manipulation with ordered binary�decision diagrams�� Com�

puting Surveys� Vol� ��� No� �� pp� ������
� Sept� �����

��� E� M� Clarke� E� A� Emerson� and A� P� Sistla� �Automatic veri�cation of �nite�state concurrent

systems using temporal logic speci�cations�� ACM Trans� Prog� Lang� Syst��
���� ��
��

�
� E� M� Clarke� M� Fujita� P� C� McGeer� K� L� McMillan� and J� C��Y� Yang� �Multi�terminal

binary decision diagrams� An e�cient data structure for matrix representation�� International

Workshop on Logic Synthesis� pp� �a����
� May �����

��� E� M� Clarke� K� L� McMillan� X� Zhao� M� Fujita� and J� C��Y� Yang� �Spectral transforms for

large Boolean functions with applications to technology mapping�� Proc� of the ��th Design

Automation Conference� pp�
����� �����

���� O� Coudert� C� Berthet� J� C� Madre� �Veri�cation of synchronous sequential machines based

on symbolic execution�� Proc� of the Workshop on Automatic Veri	cation Methods for Finite

State Systems� Grenoble� France� June ��
��

���� M� J� C� Gordon� �Why higher�order logic is a good formalism for specifying and verifying

hardware�� in G� J� Milne and P� A� Subrahmanyam� eds� Formal Aspects of VLSI Designs�

pp� �
������ ��
��

���� P� L� Hammer and S� Rudeanu� Boolean Methods in Operations Research and Related Areas�

Heidelberg� Springer Verlag� ���
�

���� Y�T� Lai and S� Sastry �S� B� K� Vrudhula�� �Edge�Valued binary decision diagrams for multi�

level hierarchical veri�cation�� Proc� of �
th Design Automation Conf�� pp� ��
����� �����

���� Y�T� Lai� S� Sastry �S� B� K� Vrudhula� and M� Pedram� �Boolean matching using binary

decision diagrams with applications to logic synthesis and veri�cation�� Proc� International

Conf� on Computer Design� pp� �
���

� �����

��
� Y�T� Lai� M� Pedram and S� Sastry �S� B� K� Vrudhula�� �BDD based decomposition of logic

functions with application to FPGA synthesis�� Proc� of ��th Design Automation Conf� pp�

�������� �����

���� Y�T� Lai� M� Pedram and S� Sastry �S� B� K� Vrudhula�� �FGILP� An Integer Linear Program

Solver Based on Function Graphs�� Proc� Int� Conf� CAD� �����

���� Y�T� Lai� �Logic veri�cation and synthesis using function graphs�� Ph�D� Dissertation� Com�

puter Engineering� Univ� of Southern Calif�� December �����

��

��
� Y�T� Lai� M� Pedram and S�B�K� Vrudhula� �EVBDD�based Algorithms for Integer Linear

Programming� Spectral Transformation� and Function Decomposition�� IEEE Trans� on CAD�

CAD����
�� �
����
� August �����

���� H�T� Liaw and C�S Lin� �On the OBDD�representation of general Boolean functions�� IEEE

Trans� on Computers� C������� �������� June �����

���� G� J� Milne� �CIRCAL and the representation of communication� concurrency� and time��

ACM Trans� of Programming Languages and Systems� �����������
� April ��

�

���� A� Srinivasan� T� Kam� S� Malik and R� Brayton� �Algorithms for Discrete Function Manipu�

lation�� Proc� Int� Conf� CAD� pp� ����
� �����

���� Texas Instruments� �The TTL Data Book for Design Engineers�� Texas Instruments� ��
��

��

Contents

� Introduction �

� Edge�Valued Binary�Decision Diagrams �

�� De�nitions �

�
 Operations �

�
�� Complexity Analysis � � � � � � � � � � � � � � � � � � 	

�
�
 The Additive Property � � � � � � � � � � � � � � � � � �

�
�
 The Bounding Property � � � � � � � � � � � � � � � � �

�
�� The Domain�Reducing Property � � � � � � � � � � � ��

�
�� Integer Multiplication � � � � � � � � � � � � � � � � � ��

�
�� Some Remarks �

�
 Representing Boolean Functions � � � � � � � � � � � � � � � � �

� Formal Veri�cation ��

�� The Veri�cation Paradigm �	

�
 Structured Edge�Valued Binary Decision Diagrams � � � � � ��

�
 Ordering Strategy �
�

� Conclusions �	

�

Captions of Figures

� evbdd representation of f � �
��y�yz�
xy��xyz�
xz�z� �

 Example of the apply�h�� f i� h��gi��� operation� � � � � � � � 	

 The hcv�vi�s of node v�� �

� A full�adder represented in evbdds� �a� carry �b� sum� � � ��

� A full�adder represented in obdds� �a� carry �b� sum� � � � ��

� evbdd expression�
� carry � sum� � � � � � � � � � � � � � ��

	 evbdd expression� x� y � z� � � � � � � � � � � � � � � � � � ��

� Graphical representation of sevbdds� � � � � � � � � � � � �
�

� Examples of sevbdds�
�

�� Examples of type graph of sevbdds� � � � � � � � � � � � � �
�

��

List of Tables

��

