Edge-Valued Binary-Decision Diagrams

Yung-Te Lai, Massoud Pedram
Dept. of EE-Systems
University of Southern California

Los Angeles, CA 90089

Sarma B.K. Vrudhula
Dept. of ECE

University of Arizona

Tuscon, AZ 85721

Abstract

In this paper we present a new data structure called Edge-Valued Binary-Decision Di-
agrams (EVBDD). An EVBDD is a directed acyclic graph, that provides a canonical and
compact representation of functions that involve both Boolean and integer quantities. In
general, EVBDDs provide a more versatile and powerful representation that Ordinary Binary
Decision Diagrams. We first describe the structure and properties of EVBDDs, and present
a general algorithm for performing a variety of binary operations. Next, we describe an
important extension of EVBDDs, called Structural EVBDDs, and show how they can be used

for hierarchical verification.

1 Introduction

Ordered Binary-Decision Diagrams (OBDDs), proposed by Bryant [4], provide a canonical
and compact representation of Boolean functions. The canonical property makes it possible
to easily detect many useful properties of Boolean functions, e.g., size of the support set,
unateness of variables, symmetry between variables, etc. Furthermore, OBBD’s compact rep-
resentation coupled with the use of data structures for caching intermediate computations,
allows for the efficient implementation of many Boolean operations. For example, tautology
checking and complementation take constant time while conjunction and disjunction take
polynomial time in the size of OBDDs. Although the number of nodes in OBDD representa-
tions may be exponential in the input size, OBDDs have a reasonable size in many practical
applications [19].

In addition to Boolean functions, OBBDS can also be used for problems that are defined
in small, finite domains. For example, after encoding each element in a set of size N by a
vector of n = [log, N'| binary variables, a set can be represented by a Boolean function with
n variables such that an element is in the set if and only if its corresponding function value is
true. Set operations such as union and intersection then correspond to Boolean disjunction
and conjunction; testing if a set is empty is equivalent to checking if its corresponding Boolean
function is the constant function 0. Similar to the above ‘symbolic analysis’, many tasks
encountered in computer aided design, combinatorial optimization, mathematical logic, and
artificial intelligence can be formulated and solved by using OBDDs [6].

While 0BDDS are useful for problems that require symbolic manipulation of Boolean
functions, they are not very effective for problems that require arithmetic operations in the
integer domain. For example, integer functions can be represented by vectors of Boolean
functions. However, to perform arithmetic operations requires performing Boolean opera-
tions on each bit; a task that may be very time consuming.

In this paper, we present a new data structure called Edge-Valued Binary-Decision Dia-
grams (EVBDDs) [13]. An EVBDD provides a canonical and compact representation of func-
tions that involve both Boolean and integer quantities. This makes them suitable for a
variety of important applications. In [18] three such applications of EVBDDs are presented;
Integer Linear Programming, Spectral Transformations of Boolean functions, and Multiple-
Qutput Decomposition of Boolean functions. The focus of this paper is on demonstrating the
basic properties of EVBDDs and their use in formal hierarchical verification.

EVBDDs are directed acyclic graphs that are constructed in a manner similar to OBDDs.

As in OBDDs, each node in a EVBDD either represents a constant function with no children or
it 1s associated with a binary variable having two children. Furthermore, an ordering of the
input variables is imposed on every path from the root node to the terminal node. However,
in EVBDDs there is an integer value associated with each edge. Furthermore, the semantics of
these two graphs are quite different. In OBDDs, a node v associated with variable = denotes
the Boolean function (x A f;) V (T A f,), where f; and f, are functions represented by
the two children of v. On the other hand, a node v in an EVBDD denotes the arithmetic
function x(v;+ fi) + (1 — z)(v, + f,), where v; and v, are values associated with edges going
from v to its children, and f; and f, are functions represented by the two children of v. To
achieve canonical property, we enforce v, to be 0.

EVBDDs constructed in the above manner are more related to pseudo Boolean func-
tions [12] which have the function type {0,1}" — integer. For example, f(x,y,z) =
3¢ + 4y — bxz with x,y,z € {0,1} is a pseudo Boolean function, and f(1,1,0) = 7 and
f(1,1,1) = 2. However, for functions with integer variables, we must convert the inte-
ger variables to vectors of Boolean variables before using EVBDDs. In the above example, if
x € {0,...,5}, then f(x,y,2) = 3(4as+2x1+20)+4y —5(4a2+2x1+20)z and f(4,1,1) = —4.

By treating Boolean values as integers 0 and 1, EVBDDs can also be used to represent
Boolean functions and perform Boolean operations. Furthermore, when Boolean functions
are represented by OBDDs and EVBDDs, they have the same size and require the same time
complexity for performing operations. Thus, EVBDDs are particularly useful in applications
which require both Boolean and integer operations.

We present an application of EVBDDs to logic verification, where the objective is to show
the equivalence between an abstract functional specification and its logic implementation.
EVBDDs are particularly useful when the specification is expressed over the domain of inte-
gers. In contrast, the use of OBDDs requires the specification to be expressed at the logic
level. For example, if the behavior of a 64-bit adder is specified through 65 Boolean functions
(64 bits plus carry), then the behavior of arithmetic addition can never be proved. On the
other hand, if the specification language allows the operator ‘+’ directly (e.g., ‘@ +¥’), then
the correctness is demonstrated up to the arithmetic level. One cannot directly verify the
correctness of arithmetic functions using OBDDs. Since EVBDDs can represent both Boolean
and arithmetic functions, the equivalence between these two functions can be proved directly
up to the arithmetic level.

This paper is organized as follows. In Section 2, we define the syntax and semantics of

EVBDDs, and present a general algorithm for applying any binary operator (closed over inte-
gers) on EVBDDs. Next, we present an analysis of its complexity, and show the relationship
between EVBDDs and Boolean functions. In Section 3 we describe an important extension of
an EVBDD, called Structural EVBDD (SEVBDD) for use in hierarchical verification. Conclu-
sions are given in Section 4. Note: Due to limitations on space, proofs of the theorems are

not included. Detailed proofs are available in [17].

2 Edge-Valued Binary-Decision Diagrams

In this section, we first define the EVBDD data structure and prove its canonical property.
We then present a general paradigm for operating on EVBDDs and elaborate on some of
their important properties that permit speeding up of the operations. Finally, we show that
representing Boolean functions by OBDDs and EVBDDs have the same space (in terms of the
number of nodes in the data structure) and time (in terms of the number of operations)

complexities.

2.1 Definitions

The following definitions describe the syntax and semantics of EVBDDs.

Definition 2.1 An EVBDD is a tuple (¢,f) where ¢ is a constant value and f is a directed

acyclic graph consisting of two types of nodes:
1. There is a single terminal node with value 0 (denoted by 0).

2. A nonterminal node v is a 4-tuple (variable(v), child)(v), child,(v),value),

where variable(v) is a binary variable @ € {xg,...,2,-1}.

An EVBDD is ordered if there exists an index function index(x) € {0,...,n — 1} such that
for every nonterminal node v, either child;(v) is a terminal node or index(variable(v)) <
index(variable(child)(v))), and either child,(v) is a terminal node or index(variable(v)) <
index(variable(child,(v))). If v is the terminal node 0, then index(v) = n. An EVBDD is
reduced if there is no nonterminal node v with child)(v) = child.(v) and value = 0, and

there are no two nonterminal nodes u and v such that u = v. [|

Definition 2.2 An EVBDD (¢, f) denotes the arithmetic function ¢+ f where f is the function
denoted by f. 0 denotes the constant function 0, and (x,l,r,v) denotes the arithmetic

function x(v + 1) + (1 — a)r. [|

In this paper, we consider only reduced, ordered EVBDD. In the graphical representation
of an EVBDD (¢, f), fis represented by a rooted, directed, acyclic graph and ¢ by a dangling
incoming edge to the root node of f. The terminal node is depicted by a rectangular node
labeled 0. A nonterminal node is a quadruple (x,1,r,v), where = is the node label, 1 and r

are the two subgraphs rooted at z, and v is the label assigned to the left edge of .

Example 2.1 Fig. 1 shows an EVBDD representation of an arithmetic function f = —2+5y+
yz+3xy+4ayz —2xz+ z. The ordering of the variables used to represent f is (y, x, z). Thus,
choosing y as the first variable, f is represented as —2+y(5h+3x+2x24+22)+ (1 —y)(z—2x2).
This has the form ¢ + y(v +1) + (1 — y)r, where | = 3z + 22z + 2z and r = z — 22z, This
process is now repeated on the functions denoted by 1 and r, using z, followed by z, as the

decoding variables. |

Each path in a EVBDD corresponds to an assignment of values to the variables in the
path. Evaluation of a function represented by a EVBDD for a given assignment of values
to its arguments, is carried out by simply summing the values along the edges (right edge
values are always set to 0) in the path. For example, in Fig. 1, the value of the function with
r=1,y=0and z=11is =2+ 04 04+ —1 = —3. The definition of the function eval, which

evaluates an EVBDD, given the values of the variables, is presented below.

Definition 2.3 Given an EVBDD (¢, f) with variable ordering 2o < ... < x,_1, the evalua-

tion of (¢, f) with respect to an input pattern (bg,...,b;_1),0 < i < n is defined as follows:

eval({c,0),(bo,...,bi—1)) = ¢,

eval({c+v,1), (bo,...,bi—1)) if j <iand b; =
eval({c, {(x;, Lr,0)), (bo,... . bi—1)) = eval({c,r), (bo, ..., bi—1)) if j <vand b; =

<C, <:1:j,l,r,v>> lfj Zl

Lemma 2.1 (EVBDDs are canonical) Two EVBDDs {(cs,f) and (¢,, g) denote the same func-
tion (i.e., Vb € B,
eval({cs,f),b) = eval({c,, 8),b)), if and only if ¢; = ¢, and f and g are isomorphic. [|

Figure 1: EVBDD representation of f = —2 + 5y + yz + 3xy + dayz — 202 + z.

2.2 Operations

In this section we describe a general algorithm, called apply, which applies any binary op-
erator op that is closed over the integers to two EVBDDs. That is, apply takes (cs,f), (¢, g)
and op as arguments and returns (¢, h) such that ¢, + h = (¢; + f) op (¢, + g).

In algorithm apply, a terminal case (line 1) occurs when the result can be computed
directly. For example,if op = X then (cs,f) = (1,0) is a terminal case since (1,0) = 140 =1,
(cg,8) = ¢;+ g, and 1 X (¢; +g) = (¢, + 9) = {¢4,8). Thus the result can be returned
immediately without traversing the graph.

To speed up the computation, previously computed results are stored in a table called
comp_table. An entry in comp_table has the form (f,g,op, h) which stands for f op g = h.
To compute f op g, comp_table is first searched with the key (f, g, op). If an entry is found
then the last element of the entry h is retrieved as the result; otherwise, we perform the
operation op on the subgraphs of f and ¢ and store the result in comp_table. The entries of
comp_table are used in line 2 and stored in line 21.

After the left and right children have been computed, the result will be two EVBDDs,
(ch,,h1) and (ep,, hy) (lines 17 and 18), representing the functions ¢, + hy, and ¢, + h,. If
(ch,,h1) = (cp,, hy), then the algorithm returns (cs,, hy). This is to ensure that the structure
of the form (z,k, k, 0) will not occur.

If {en,, hy) # (en,, hy), and the current variable is x, then the resulting structure represents

the function x(ep, + hi) + (1—2)(en, + hy). Thisis expressed as ¢, + x(cp,—cn, + hi) + (1—

5

x)h,, ensuring that the right edge value is 0. Therefore, the procedure returns (¢, , (var, hy,
hy, en, — ¢p,)). Another table, called (uniq-table), is used to ensure the uniqueness property
of EVBDD nodes. Before apply returns its result, it checks this table through the operation
find_or_add, which either adds a new node to the table or returns the node found in the

table.

apply({cy,), (cy, 8), 0p)
{

1 if (terminal_case({cs,f),(cy, 8),0p)

return((es, f) op (¢y, 8)));
2 if (comp_table_lookup({cs,f),{cy, 8),0p,ans))

return(ans);
3 if (endex(f) > index(g)) {
4 (epg) = (o + valuelg), child(g)):
5 (g gr) = (e, child,(g);
6 var = variable(g);
T
8 else{
9 (g 81) = (¢y,,8r) = (cg.8);
10 var = variable(f);
1}
12 if (index(f) < index(g)) {
13 (cq,,f1) = (c5 + value(f), childi(f));
14 (cy,,fe) = (cy, child,(f));
15}

16 else { (cj, fi) = (e, fr) = (¢, 1)}

17 {en, hy) = apply({eys, 1), (cq), 81)5 0P);

18 <Chr7h1'> = apply(<6fr,fr>,<Cgr,g1->,0p);

19 if ({cp,, hy) == (cp,, hy)) return ({cp,, hy));
20 h = find_or_add(var,hy, hy, cp, — cp,);

21 comp_table_insert({cs,f),{cs 8),0p,(ch,,h));
22 return ({cp,,h));

Example 2.2 An example of apply((3,f), (0,g),+) is shown in Fig. 2. The variable ordering
zo < x1. Fig. 2 (a) shows the initial arguments of apply. Since index(f) < index(g), lines 9
and 10 are executed resulting in (cg,, g1) = (¢, ,8r) = (¢, 8) = (0,8) and var = xy. Next,
lines 13 and 14 are executed, resulting in (¢, fi) = (5,0), and {¢;,,fy) = (3,0). Figure 2(b)
shows the recursive call of apply on line 17, and the result of this call is shown in Figure 2(c).
Similarly, another call to apply on line 18 and its results are shown in (d) and (e). The final

result is shown in (f). [|

<3 f> <o0g> <Cg|g,> <Cf|f|> <Ch h >
3 o 0 5

(o) (%) (%) . ()
2 + 1 1 + 1

(€Y (b) (©

Ch hr>=<3hn
<cgrgr>:<ogr> <°hrhr>=<3hr> \3 <‘h, Nr>=<3h>

3

0

c -

G) " e e T '

1 + ﬁ 1 G
o] o] '

(d) (e) ®

Figure 2: Example of the apply({0,f), (0,g),+) operation.

2.2.1 Complexity Analysis

The time complexity of operations on OBDDs is O(|f| - |g]), where |f | and |g| denote the
number of nodes of OBDDs f and g, respectively. However, the time complexity of operations
on EVBDDs is not O(| (cs,£) | - | {cg,8) |), where |{¢s,f) | and | {c,,g) | denote the number
of nodes in EVBDDs (cy,f) and (¢;,g). This is because for an internal node v of {¢s,f) or

(cg,8), apply may generate more than one (c,,v) (lines 4, 5, 13, and 14).

Definition 2.4 Given an EVBDD (¢, f) with variable ordering x¢ < ... < #,-1 and a node
v of f with variable z;, the domain of v with respect to eval (D), and the cardinality of v
(| v |) are defined as follows.

Df,““l = A{eu | {cu,u) = eval({cy,T), (bo, .. . bi—1))
where u = v,V(by,...,b;i_1) € B'},

vl = 1Dyl
The cardinality of {(cy,f), denoted by | (cy,f) |, is given by | {(cs,) |= Xver | V- [

Note that | (cs,f) | is the number of possible (¢, v)’s which may be generated from (¢, f)
by apply.

(a) (b)

Figure 3: The (¢,,Vv)’s of node va.

Example 2.3 Let (0,x¢) be the EVBDD in Fig. 3(a) and v; be the node associated with
variable x;. Then, |vo|=1, |vi]=2, | v2|=4, |0|=38, and | (0,x0) |= 15. The {¢,,v)’s of
node vg are shown in Fig. 3(b). [

Since EVBDDs are acyclic directed graphs and there is no backtracking in apply, the time
complexity of apply is O(| (cs,£) | - | {cgy8) |) [17]. In many practical applications, the
number of nodes in an EVBDD may be small, but its cardinality can be very large. However,
there are some important properties of certain operators that can be exploited in the EVBDD

representation that result in significant reduction in the computation complexity. These are

described below.

2.2.2 The Additive Property

The EVBDD representation enjoys a distinct feature, called additive property, which is not

seen in the OBDD representation.

Definition 2.5 An operator op applied to {(¢s,f) and (¢,, g) is said to satisfy the additive
property it (cs + f) op (¢ + g) = (¢ op ¢g) + (f op g). u

Examples of operations that satisfy the additive property are (¢s + f) + (¢, + g), (¢f +
)—=(cg+9), (cs+ f)x(c+0), and (¢5 + f) << (¢4 0), where << is a left shift operator
as in C programming language (i.e., (¢y + f) X 2°).

To see how the additive property results in reduction in computation, consider the oper-

ation (¢s+ f) — (¢, +9) = (¢s —¢y) + (f — g). Because the values ¢y and ¢, can be separated

from the functions f and g, the key for this entry in comp_table is ((0,f), (0,g), —). After the
computation of ((0,f), (0,g),—), which results in (¢, h), we add ¢; — ¢, to ¢, to obtain the
complete result of ({c,f), (c,,8), —). Hence, every operation ((c},f),(c,,g), —) can utilize
the result of computing ((0,f), (0,g), —). For operators satisfying the additive property, the
time complexity of apply is O(|(cy.f)[- |(cy,8)[) (as opposed to O([{cs. £} | - [{cg,8)1))-
To take advantage of the additive property, the following lines are inserted between lines
1 and 2 of apply
1.1 cpy =cs op cy,
1.2 ¢y=¢, =0,
and lines 2, 19, and 22 of apply are replaced by
2 if (comp_table_lookup({cs,T),{c4 8),0p, {(ch, h)))
return ({¢, + ¢54, h));

19 if ({en,.) == (cp,, he)) return ((cp, + 54, hy));
22 return ({cp, + cs4, h));

For multiplication by a constant, e.g., (¢ + f) X ¢, and left-shift by a constant, e.g.,
(cs+f) << ¢, further simplification is possible. The following pseudo code times_c({cy,f), ¢)
performs operation (¢; + f) x ¢ with time complexity O(|f|). Note that the new edge value
value(f) x ¢ is computed in line 5 instead of propagating it downward to the next level in

line 3 (cf. line 4 or 13 of apply).

times_c({cy,f),)

{

1 if (f == 0) return (cy X ¢,0);

2 if (comp_table_lookup({0,f), c,times_c,(0,h)))
return {cs X ¢, h);

(cn,, hy) = times_c({0, childy(f)),c); [xep, = 0%/

(ch,, hy) = times_c((0, child.(f)),c); [xecp, = 0%/

h = find_or_add(variable(f), hy, hy, value(f) x ¢);

comp_table_insert((0,f),c,times_c, (0, h));

return {cs X ¢, h);

-~ O Ot = W

}

An important application of this class of operators is to interpret a vector of Boolean
functions as an integer function: 2™~ fo + ... +2°f,._;.
2.2.3 The Bounding Property

Before defining this property, we present a type of computation sharing that can be exploited
in the case of relational operations. Consider < as an example. Let (cf,f) <v (¢;,g) indicate

that {(¢s,f) < (¢;,g) holds for all input patterns. It can be easily shown that:

9

(0,f) <v(0,g) and (¢f —¢;) <0 = (e,) <v{cy,8).
Let m = —maxz({0,f) — (0,g)). Then,
(0,f) <v(0,g) and (¢f —c;) <m = (cf,f) <v (e, 8).

Based on the above implication, {(¢s,f) < (c¢,,g) can be replaced by two operations:
(cs,) —{cy,8) = (cn,h) and (¢, h) < (0,0). We store the maximum and minimum function
values with each EVBDD node and include the following terminal cases:

if (¢, + maz(h)) < 0 return (1, 0), and
if (¢, + min(h)) > 0 return (0, 0).

Storing the maximum and minimum values in each node is particularly useful when

EVBDDs are used for solving combinatorial optimization problems using branch and bound

techniques [16].

Definition 2.6 An operator op applied to {cs,f) and (c¢,, g) is said to satisfy the bounding
property it (e +m(f)) op (e +m(g)) =0, L, (es+f). or (¢ +g). where m(f) and m(g)

denote the maximum or the minimum of f and g¢. [|

Definition 2.6 implies that the result of an operation that satisfies the bounding property
can be immediately determined from m(f) and m(g). As an example, the following pseudo

code leq0({cy,f)), performs operation (¢s + f) < 0:

i€q0(<cfaf>)

if ((¢y + maz(f)) < 0) return((1,0));

if ((¢5 4+ min(£f)) > 0) return({0, 0));

if (comp_table_lookup({cy,f),leq0,ans))

W N =

return(ans);
(ch,, hy) = leq0({cs + value(f), child(f)));
(ch,, he) = leq0({cy, child,(f)));
i (e, by) == {e1, b)) return ((ep,, b))
h = find_or_add(variable(f), hy, hy, ¢y, — cp,);
comp_table_insert({cs,f),leq0, {cp,, h));
return ({(cp,,h));

— O 00 =1 O Ut ¥~

10

2.2.4 The Domain-Reducing Property

In {(ey,f) op {c,,8), where op satisfies the additive property, exactly one (0,v) pair is gen-
erated for each node v of f and g. Thus, the ‘effective’ domain of each node becomes {0}.

There are other operators which have similar effect on reducing the domain of EVBDD nodes.

Definition 2.7 Given an EVBDD (cys,f), the domain of a node v of f with respect to an

operator op is defined as:

D ={e, | {¢,,v)’s are the pairs that need to be generated with respect to op}. [|

Definition 2.8 An operator op applied to {(cs,f) and (c,,g) is said to satisfy the domain-
reducing property if there exist some node v of f or g such that D C DI, [|

An example of this is the following:
(¢t + f) mod ¢ = ((¢y mod ¢) + f) mod c.

The domain of a node v of fis D7 = D' N {0,...,c— 1}. In this case, {¢; + ke,) can
share the computation result of (¢y,f) for any integer k. When ¢ is small, the savings in
computation is large; when ¢ is large, then the following check (using the boundary property)

can be used to increase the sharing of computations.
if ((¢f + max(f)) < ¢ && (¢f + min(f)) > 0) then (cy,f).

Another example is integer division by a constant. If ¢; and ¢ are positive integers, then
(cs + [))e = (¢f/c) + ((¢; mod ¢) + f)/c. In fact, integer division operator by a constant
satisfies the three properties: (c¢s/c¢) satisfies the additive property, (¢; mod ¢) satisfies the

domain-reducing property, and
if ((¢f +max(f)) <ec&& ¢;+min(f)>0) then 0,

satisfies the bounding property.

2.2.5 Integer Multiplication

Unfortunately, the EVBDD representation of the multiplication function still requires expo-
nential number of nodes. One way to alleviate this problem is to perform an input variable

transformation as illustrated below.

11

Example 2.4 To represent xy where v is a 4-bit and y is a 2-bit unsigned integers, we

transform xy as follows:

xy = (8zo+4day + 229+ 23)(2y1 + yo)
= 16zoy1 + 8xoyo + 8x1y1 + 421Y0
+4xoy1 + 2w2y0 + 22391 + T3Y0
= 16wy + 8wy + 8wy + 4wz + 4wy
+2ws + 2we + wy

where xoyl, ..., x3ye are replaced by new variables wo, . .., wr. [|

By using the above method, an m-bit x n-bit integer multiplication can be represented

in EVBDD form using m X n nodes.

2.2.6 Some Remarks

Srinivasan et al. [21] proposed an extension of OBDDs to Multi-valued Decision Diagrams
(MDDs). In MDDs, a nonterminal node can have more than two children and a terminal
node assumes integer values. All operations are carried out through the CASE operator,
which although works for arbitrary discrete functions, cannot directly perform arithmetic
operations.

Clarke et al. [8, 9] recently proposed another extension of OBDDs, called Multi- Terminal
Binary Decision Diagram (MTBDD). This extension is the same as flattened EVBDDs [18].
In general, for functions where the number of distinct terminal values is large, an MTBDD
(or flattened EVBDD) will require larger number of nodes than an EVBDD. However, for
functions where the number of distinct terminal values is small, an MTBDD may require less
storage space depending on the number of nodes in the corresponding graphs.

An EVBDD requires n + 1 nodes to represent 2" 'z + ... + 2%z,_;, while an MTBDD
requires 2”71 — 1 nodes to represent the same function. When there are only two different
terminal nodes (e.g., 0 and 1), EVBDDs, MTBDDs, and OBDDs are equivalent in terms of the
number of nodes and the topology of the graph [17]. In this case, an EVBDD will require
more space to represent the the edge-values.

The worst case time complexity for performing operations on EVBDDs is the same as that
for MTBDDs. However, due to the properties stated above, many operations on EVBDDs are

much more efficient then corresponding operations on MTBDDs.

12

2.3 Representing Boolean Functions

By using integers 0 and 1 to represent Boolean values false and true, Boolean operations can

be implemented through arithmetic operations as shown below:

rANy = wy,

tVy = z+y-—uay,
rby = z+y-—2uy,
T = 1-—=z.

Thus, Boolean functions are a special case of integer functions, and OBDDs are a special case

of EVBDDs.

Example 2.5 The EVBDDs for the sum and carry functions of a full adder are shown in
Fig. 4. By using the above equations, sum and carry can be expressed as follows.

sum = x4+y+z-—2zy—2yz — 22z + 4dayz,
carry = zy—+yz+ zx—2zyz. |

A full adder represented by arithmetic functions may seem more complicated than when
it is represented by Boolean functions. However, the above equations are only for convert-
ing from Boolean functions to arithmetic functions. Procedure apply is capable of directly
performing Boolean operations. For example, Boolean disjunction is carried out through
apply({cs,T), (cs,8), V) with the following terminal cases:

L1 if ({ef, £) == (1,0) | {¢, 8) == (1,0))
return((1, 0));

L2 i ((ef, £) == (0,0) | (e, f) == (¢4, 8))
return({cy, g));

1.3 if ({¢g,8) == (0,0)) return({cy, f));

Furthermore, when a Boolean function is represented by an EVBDD, it requires the same
number of nonterminal nodes and nearly the same topology as when it is represented by an
OBDD. These properties are summarized in the following algorithm and lemmas.

Algorithm A: To convert a Boolean function from on OBDD to an EVBDD representation.
1. Convert terminal node 0 to (0,0) and 1 to (1,0).

2. For each nonterminal node (z;,1,r) in OBDD such that 1 and r have been converted to

EVBDDs as (¢, ') and (¢, '), apply the following conversion rules:

(a) <xi7 <07 l/>7 <07 I">> = <07 <xi7 1/7 rlv 0>>7
(b) <xi7 <07 l/>7 <17 I">> = <17 <xi7 1/7 rlv _1>>7

13

Figure 5: A full-adder represented in OBDDs: (a) carry (b) sum.

(C) <xi7 <171/>7 <0,I‘l>> = <07 <xivl/7r/71>>v
(d) (@, (1,1, (1,r")) = (1, (a;, I, 1/, 0)).

Example 2.6 Fig. 5 shows the OBDD representation of carry and sum. After Algorithm
A, they will be converted to the EVBDDs in Fig. 4 [|

Lemma 2.2 Algorithm A has the following properties.

Algorithm A converts an OBDD Vv to either (0,v') EVBDD or (1,v’) EVBDD.
1. Algorithm A will neither add nor delete any nonterminal node or edge.

2. Algorithm A preserves functionality. That is, given an OBDD v, if the application
of Algorithm A on v results in an EVBDD (¢, v’), then v and (¢, v') denote the same

function. [|

14

Theorem 2.1 Given a Boolean function represented by an OBDD v and an EVBDD (¢, V'),
then v and v’ have the same topology except that the terminal node 1 is absent from the

EVBDD v’ and the edges connected to it are redirected to the terminal node O. |

Lemma 2.3 When EVBDDs are used to represent Boolean functions, exactly one of (0,v)
or (1,v) can be generated during the process of apply (lines 4, 5, 9, 13, 14, and 16), where

v is a nonterminal node. [|

Theorem 2.2 Given two OBDDs f and g and the corresponding EVBDDs (cs, f') and (¢,, g'),

the time complexity of Boolean operations on EVBDDs (using apply) is O(|f| - |g]). [|

Based on the above theorem, we can use EVBDDs to replace OBDDs for representing

Boolean functions with the following overhead:
1. An integer representing the dangling edge for each function (graph),
2. An integer representing the left edge value for each nonterminal node, and

3. One addition and one subtraction for each call of apply operation (lines 4 and 20).

3 Formal Verification

Formal verification requires showing the equivalence between a specification of the intended
behavior and a description of the implemented design. Based on how circuit behavior is
modeled, many approaches have been proposed: symbolic-simulation based such as [5], state-
machine based such as [7], function based such as [2], calculus based such as [20], and logic
based such as [1, 11].

When using OBDDs or EVBDDs for logic verification, if both specification and implemen-
tation are Boolean expressions, then the correctness can only be proved up to the logic level.
On the other hand, if the specification is an arithmetic function while the implementation is
a set of Boolean expressions, then the equivalence can be demonstrated up to the arithmetic
level. Thus, EVBDDs provide two advantages over OBDDs. First, they allow equivalence
checking between Boolean functions and arithmetic functions. Second, they handle hierar-
chical designs, that is, the implementation of a design can be described using previously
verified components rather than having to flatten the design down to the gate level.

In this section, we first present a simple example of how to use EVBDDs to verify the func-

tional behavior of circuit designs and then describe our verification paradigm for proving data

15

=

SRR
1 + 1 + 1 -
0] 9] 9] 1

Figure 7: EVBDD expression: = + y + 2.

paths. In order to verify control paths and do hierarchical verification, we extend EVBDDs
to structured EVBDDs. Finally, the input variable ordering strategy for logic verification will

be discussed. !

Example 3.1 We prove that carry(z,y,z) and sum(x,y, z) implement the full adder x +
y + z. That is, with the interpretation of (carry,sum) as a 2-bit integer, we show 2 x
carry + sum = x +y + z. Given a gate-level (Boolean) description of a full adder, it is easy
to construct the EVBDD representation of the carry and sum functions as shown in Fig. 4.
Carrying out the expression 2 X carry + sum results in the rightmost EVBDD shown in Fig. 6.
On the other hand, the specification of the arithmetic behavior of the full adder, = + y + =,
represented in EVBDDs is shown in Fig. 7. The equivalence between 2 x carry 4+ sum and

x +y+ 2z can then be checked by comparing the two rightmost EVBDDs in Figures 6 and 7.1

As shown in the above example, the implementation of a design is described by Boolean

functions while its behavioral specification is described as an arithmetic function. The equiv-

!The experimental results in this section were generated on a Sun 3/200 with 8 MB of memory.

16

alence checking between two different levels of abstraction is carried out by using one repre-

sentation — EVBDD.

3.1 The Verification Paradigm

In this section, we show how EVBDDs can be used to perform functional verification.

We are given the following:

1. The description of an implementation:

imp(11y o k) = (G1(@115 oy Tnk)y e ooy G (115 - oy Tk)),s

where z;;’s are Boolean variables and ¢;’s are Boolean functions.

2. The interpretation of the input variables x;;’s:

X1 = filz11,...,215) (for a j-bit integer),
Xo = fal®p1,...,2ak) (for a k-bit integer),
where X; = fi(xi1,..., ;) describes how variables (w1, ..., ;) should be interpreted

as a p-bit integer through function f;. Thus, X; is an integer variable and f; specifies
the number system used. A number system may be unsigned, two’s complement, one’s
complement, sign-magnitude, or residue. For example, if X; is an unsigned integer,

then fi(xa,...,) =207 ey + .00+ 2%,

3. The interpretation of the output variables ¢;’s: G = ¢(¢1,...,9m). Again, g is a

function representing a number system.

4. The description of a specification:
spec(X1, ..., X)) = f(Xq,..., X0),

where function f specifies the intended behavior of the implementation.

To show tmp realizes spec, we show the following equivalence relation:

f(le"'vXn) = g(glvvgm) or
Az, z1y), oo fal@nt, o 2nk)) = 9((@i1s o Zak)s oo oy G211, -+ o Zak)).

Using the example in the previous section, we have:

17

imp(x,y,z) = (carry(z,y,z), sum(z,y,z)),

X =z

Y =

Z =z,

G = 2carry+ sum,
spec(X,Y,7Z) = X+Y+ 7.

The correctness of the full adder is verified by showing = + y + z = 2carry(z,y,2) +
sum(x,y, z).

The above paradigm can be reversed to result in a procedure for functional synthesis.
Again, we use the full adder as an example except now the goal imp(x,y, z) is not given.
From the description of spec, we have

sum(z,y,z) = spec mod 2,
carry(z,y,z) = (spec— (spec mod 2))/2,
where spec = v +y+2z. The following sequence of apply operations on EVBDDs then produces

the sum and carry automatically:

(0,xy) apply((0,%),(0,y), +),
<0,fa> = apply((O,z>, <07XY>7 +)7
(0, sum) = apply({0,fa), (2,0), mod),
(0,temp) = apply({0,fa), (0,sum), —),
(0,carry) = apply({(0,temp),(2,0),/).

As presented in Sec. 2.2.4, operations modulo and integer division can be effectively
carried out in EVBDDs. An application of the above synthesis procedure is in logic verification
where the mapping between the variables is not given. For example, we can specify a 64-bit
adder as ‘x 4+ y’ while the variable sets in the implementation are a’s and ’s. In this case,
we first convert the arithmetic expression into a vector of Boolean functions and then use

Boolean matching [14] to perform the equivalence checking.

Example 3.2 The design (imp) is a 64-bit 3-level carry lookahead adder which has 129
inputs, 65 outputs, and 420 logic gates. The intended behavior (spec) is specified as:

unsigned(65) add64(x, y, ¢)

unsigned(64) x, v;
unsigned c;

return(x + y + c);

18

where (64) and (65) declare the number of bits. In our experimental implementation, the
generation of 65 EVBDDs of imp (575 nodes in total) takes 1.47 seconds and the generation of
one EVBDD of spec (129 nodes) takes 0.17 seconds. The verification process which converts
65 EVBDDs into one, performing 25 x bo+. . .+2° x bgq, and then compares the result with the
spec takes 4.48 seconds. That is, it takes less than 5 seconds to show 65 Boolean expressions

are really carrying out an addition. [|

3.2 Structured Edge-Valued Binary Decision Diagrams

As shown in the previous section, we can use EVBDDs to show the equivalence between
Boolean expressions and arithmetic expressions. In this section, we introduce Structured
EVBDDs, or SEVBDDs for short, which can be used to show the equivalence between Boolean
expressions and conditional expressions. For example, the implementation of a multiplexer
can be described as ‘(x A y) V (& A z)” while the specification can be described as ‘if « then
y else z’. In addition to the specification of conditional statements, SEVBDDs also allow the

declaration of vectors.

Definition 3.1 SEVBDDs are recursively defined as follows:
1. An EVBDD is an SEVBDD. (This is the atomic type of SEVBDDs.)

2. (p — t;e) is an SEVBDD if p is an SEVBDD with the {0, 1} range, and ¢ and e are
SEVBDDs. For every input assignment b, the function denoted by (p — t;e) returns
the value #(b), if p(b) = 1; otherwise it returns e(b). (This is the conditional type of

SEVBDDs.)

3. [fi,---, fmu] is an SEVBDD if fi,..., f,, are SEVBDDs. For some input assignment b,
[fi,..., fm] returns the vector (fi(b),..., fm(b)). (This is the vector type of SEVBDDs.)
|

In the graphical representation of SEVBDDs, terminal nodes are atomic type SEVBDDs
(Fig. 8 (a)). There are two types of nonterminal nodes: a conditional node which has three

children (Fig. 8 (b)) and a vector node which has an indefinite number of nodes (Fig. 8 (¢)).

Example 3.3 Let x.y, 2z, y0, Y1, 20, and z; be EVBDDs. Consider the following expressions:

1. z, 2 ANy, z A z, and

19

@ (b) ©

Figure 8: Graphical representation of SEVBDDs.

Figure 9: Examples of SEVBDDs.
2. (x Ay)V(ZAz);
3. (v —=yz),(x = aAhy;2), (e = y;2Az), (e = a2 Ay;2Az), and
4. (2 — [yo, y1]; [20, 21]);
5. [(& = yo; 20), (¢ = y1;21)] and
6. [(xAyo)V(ZAz0),(x— xAy;T A z)l.

SEVBDDs in groups 1 and 2 are of a atomic type. Those in groups 3 and 4 are of a conditional
type and those in groups 5 and 6 are of a vector type. Note that the SEVBDDs in groups 2
and 3 represent a 1-bit multiplexer while the SEVBDDs in groups 4, 5, and 6 represent two
1-bit multiplexers which have the same control signal x. The graphical representation of

those in groups 4 and 5 are shown in Fig. 9 (a) and (b), respectively. [|

Definition 3.2 The type graph of an SEVBDD f is obtained by replacing all terminal nodes

of f by a unique terminal node A. [|

20

)
%

(@ (b)

Figure 10: Examples of type graph of SEVBDDs.
Example 3.4 The type graphs of the SEVBDDs in Fig. 9 are shown in Fig. 10. |

An SEVBDD would be a canonical representation if two SEVBDDs denote the same function
if and only if they are isomorphic. This is however not true because we can have two SEVBDDs
denoting the same function which have different types (e.g., Ex. 3.3). However, with proper
restrictions, SEVBDDs can still have the canonical property. That is, if two SEVBDDs satisfy
those conditions then they denote the same function if and only if they are isomorphic. In
the following, we define two conditions such that the subset of SEVBDDs which satisfy these
conditions have the canonical property.

The first condition is to be isotypic which is defined as follows:

Definition 3.3 Two SEVBDDs are isotypic if their type graphs are isomorphic. Equivalently,

two SEVBDDs f and ¢ are isotypic if
1. Both f and ¢ are EVBDDs, or
2. f=(p—tpes),g=(p—tye,), tyand t, are isotypic, and es and e, are isotypic, or
3. f=1f1,--sful, 9 =191,--.,9n] and every pair of f; and g¢; are isotypic. [|

Example 3.5 In Ex. 3.3, the SEVBDDs in groups 1 and 2 are isotypic; the SEVBDDs in group
3 are isotypic but none of them is isotypic to that of 4; SEVBDDs in groups 5 and 6 are not

isotypic. |

Note that two SEVBDDs which are isotypic but are not isomorphic, may still denote the
same function. In Ex. 3.3, the SEVBDDs in group 3 are isotypic but are not isomorphic, yet

they all denote the same function. Given an SEVBDD (p — ¢;¢e), for any input assignment

21

b such that p(b) = 1, the function value of e(b) will not influence the result; similarly,
if p(b) = 0, then t(b) is irrelevant. Therefore, we can use operators cofactor;(p,t) and
cofactorg(p,e) to transform ¢ and e to ¢’ and €’ such that if p(b) = 1, then #(b) = t(b) and
e'(b) = 0; if p(b) = 0, then #'(b) = 0 and €'(b) = e(b). Consequently, we obtain a reduced
form (p — t';€’) for (p — t;€). The cofactor,(p,t) operator is carried out in a similar way to
the restrict operator in [10] except for the following differences: When p = 0, restrict returns
error while co factory returns 0; Restrict applies to Boolean functions while cofactor; applies
to arithmetic and Boolean functions.

The second condition for SEVBDDs to be canonical is for them to be reduced.

Definition 3.4 An SEVBDD is reduced if
1. It 1s an EVBDD, or

2. It is a conditional SEVBDD of the form (p — t; ¢) with cofactori(p,t) = t, cofactory(p, €)

e, and t and ¢ are reduced, or

3. Itis [f1,..., [m] and every f; is reduced. [|

In Ex. 3.3, the SEVBDDs in groups 1 and 2 are reduced; the last SEVBDD in group 3 and

the one in group 6 are also reduced.

Lemma 3.1 If two SEVBDDs f and ¢ are isotypic and reduced, then f and ¢ denote the

same function if and only if they are isomorphic. [|

Since isotypic and reduced SEVBDDs are canonical, we need procedures for converting an
SEVBDD from one form to another and/or reducing an SEVBDD. Operators cofactor; and
cofactorg are used for converting from atomic (EVBDDs) to conditional form. To convert from
conditional to atomic form, we use operator ite, which is nearly the same as the one described
in [3] except that our ite operator is also applicable to arithmetic functions. Operator ite
takes a conditional SEVBDD such as (p — t;¢€) (f and e are EVBDDs) as arguments and returns
an EVBDD f such that (p — ¢;¢) and f denote the same function. The following procedures
conver the forms of SEVBDDs and reduce SEVBDDs. Note: cofactor_sy, cofactor_sy, and

1te_s are SEVBDD versions of cofactory, cofactory, and ite, respectively.

22

convert(f,g) /* converting g to same form of f %/
[+ assumes f and g have same number of outputs *

1 if (fis an EVBDD)
2 if (g is an EVBDD) return(g);
3 if(g==(p—te))
return(ite(p, convert(f,t), convert(f,e)));
4 elseif (f == (p— t;e))
5 return((p — convert(t, cofactor_s1(p, g));
convert(e, cofactor_so(p, g))));
6 else [*f=[fi,....fm]™*/
T if(g==(p—t;e))
8 return(ete_s(p, convert(f,t), convert(f,e)));
9 else return([convert(f1,91), ..., convert(fu, gm)]);
¥
reduce(f)

{

if (fis an EVBDD) return(f);
else if (f == (p— t;e))
return(reduce(p) — reduce(cofactor_si(p,t));
reduce(cofactor _so(p, €)));
4 else return([reduce(f1), ..., reduce(fn)]);

}

W N =

cofactor_s1(p,t) [x cofactor_so(p,t) is similarly defined «/

{

1 if (¢ is an EVBDD) return(cofactori(p,t));

2 elseif (t == (p = t';¢))

3 return((cofactor_s1(p,p’) — cofactor_si(p,t');
cofactor_sy(p,€')));

e

else [t =[ty,....15] */
return([cofactor_si(p,t1),...,cofactor_s1(p,tm)]);

ot

ite_s(p,t,€) [+ assuming t and e are isotypic */

{

1 if (p==(pp — tpi€p))

return(ite_s(ite_s(py, tp, €,),t,€));

2 if (¢t and e are EVBDDs) return(ite(p,t,¢€));

if (t==(pr— ti;e¢) && e == (pe — tejec))

4 return((ite_s(p, pr, pe) — tte_s(p, ts, te);
ite_s(p, e e.)));

5 if(t==[t1,....tn] && e == [e1,...,en])

6 return([ite_s(p,t1,€1), ..., ite_s(p,tm, €m)]);

w

23

To show the equivalence between a specification and an implementation described in
two different forms, we need to convert from one form to another. In our implementation,
we use the specification as the target form and convert the implementation to the target
form. This is because a specification usually has a more compact representation than an
implementation. For example, a specification of ‘(z <y — v+ y; 2 — y)’ where x and y are
n-bit integers, requires 3n, 2n, and 2n nonterminal nodes for representing = <y, * 4+ y, and
x — vy, respectively. On the other hand, a gate implementation of the above specification
requires n + 1 Boolean functions in which the i function (for generating :'" bit) requires
at least 2¢ nonterminal nodes, and the carry function (bit) requires at least 2n nonterminal
nodes. Thus, it requires at least n(n 4+ 3) nonterminal nodes. The following two examples
verify SNT4L85 and SN74181 chips [22], where the first one is a 4-bit comparator and the
second one is a 4-bit ALU.

Example 3.6 The implemented design (imp) is the SNT4L85 chip [22] which is a 4-bit
comparator. This chip has 11 inputs, 3 outputs and 33 gates. The specification (spec) of the
design may be described as:

unsigned(3) comp4(x, y, gt, It, eq)

unsigned(4) x, v;
unsigned gt, 1t, eq;

if (x > y) return((1,0,0));
else if (x < y) return({0,1,0));
else return((gt, It, eq))

}
It takes 0.05 seconds to generate the SEVBDD of imp which has 39 nodes and it takes 0.02
seconds to construct the conditional SEVBDD of spec which has 25 nodes. The conversion

from the SEVBDD of imp to that of spec, followed by the comparison, takes 0.02 seconds. B

Example 3.7 The implementation is the SN74181 chip which is a 4-bit ALU [22]. A par-
tial specification is given below. Note: un_comp, two and unsigned perform type coercion.
un_comp results in an unsigned integer, with the most significant bit being complemented.

two means that the result is to be a two’s complement integer.

24

SN74181(M, S, A, B, Cin)
unsigned M, Cin;
unsigned(4) S, A, B;

{

if (M =0)
if (S' 0) return((un_comp (5)) A 4+ (= Cin));

else i‘f (S = 3) return((two(5)) — Cin);

else
if (S = 0) return((unsigned (4)) not(A));
else 1f (S=1) return((unsigned(4)) not(A or B));

}

Note that we allow the interpretation of the same outputs in different number systems
as well as allow different sizes in different branches of conditional statements.

The implementation SEVBDD has 765 nodes and can be generated in 0.31 seconds. The
specification SEVBDD has 187 nodes and can be constructed in 0.13 seconds. And the verifi-

cation process takes 0.35 seconds. |

In addition to providing the ability to check equivalence between Boolean and arithmetic
expressions and between conditional and nonconditional expressions, SEVBDDs are suitable
for hierarchical verification, i.e., verification without having to flatten a component which
has already been verified. In the following two examples, a 64-bit comparator and a 64-bit
adder, the implementations are constructed from 4-bit comparators and 4-bit ALU’s. The
construction of implementation SEVBDDs are however based on the specification SEVBDDs of

the 4-bit comparator and 4-bit ALU’s.

Example 3.8 The design is a 64-bit comparator implemented through serial connection
of 16 SN74L85s. The specification of this design is the same as the one in Example 3.6
except that the size declaration is changed from 4 to 64. Generation of implementation
and specification SEVBDDs take 0.26 and 0.39 seconds respectively, and the proof takes 3.35

seconds. [|

Example 3.9 The design is a 64-bit ripple-carry adder implemented through serial connec-
tion of 16 SNT74181s. The specification of this design is exactly the same as the one used

in Example 3.2. Time to generate the SEVBDDs for the implementation and specification

25

are 2.09 and 0.16 seconds, respectively and time to verify their equivalence is 0.98 seconds.
Note that generation of implementation SEVBDD takes longer time while verification takes
less time than the case in Example 3.2. This is because, here, we generate 16 SEVBDDs each

with the sum of 4 bits instead of 64 SEVBDDs each with the sum of 1 bit. [|

3.3 Ordering Strategy

The conditional type of SEVBDDs provides information for determining the ordering of input
variables. For example, for SEVBDD (p — #;¢e), we assign variables occurring in p lower
indices compared to those in ¢ and e. This ordering strategy matches the suggestion (con-
trolling variables should be put on top of OBDDs) in [4]. It is more difficult to identify
controlling variables in a Boolean expression. In addition, we assign variables with larger
integer coefficients lower indices compared to those with smaller integer coefficients. This
ordering strategy also matches the observation in [4], and is easier to identify from arithmetic

expressions than from Boolean expressions.

4 Conclusions

It was demonstrated that by associating an integer with each edge of an OBDD and giving
a new meaning to each node of the OBDD, a new graphical data structure is created whose
domain is that of the integer functions. The new data structure, called EVBDD, admits
arithmetic operations. EVBDDs preserve the canonical property as well as the capability
to cache computational results. With these two properties, we have found EVBDDs to be
valuable in many applications.

Because of the compactness and canonical properties, EVBDDs have been shown to be
effective for handling verification problems. Because of the additive property, EVBDDs are
also useful for solving integer linear programming problems [16]. Other applications of

EVBDDs include performing spectral transformation and matrix representation.

References

[1] G. V. Bochmann, “Hardware specification with temporal logic: An example,” IFEFE Trans.
on Computers, 31(3):223-231, March 1982.

[2] R. T. Boute, “Representational and denotational semantics of digital systems,” IEEE Trans.
on Computers, 38(7):986-999, July 1989.

26

[3]

[4]

[5]

[6]

[7]

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a BDD package,”
Proc. of the 27th Design Automation Conference, pp. 40-45, 1990.

R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEFFFE Transac-
tions on Computers, C-35(8): 677-691, August 1986.

R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOS: a compiled simulator
for MOS circuits,” Proc. of the 24th Design Automation Conference, pp. 9-16, 1987.

R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision diagrams,” Com-
puting Surveys, Vol. 24, No. 3, pp. 293-318, Sept. 1992.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state concurrent
systems using temporal logic specifications,” ACM Trans. Prog. Lang. Syst., 8(2), 1986.

E. M. Clarke, M. Fujita, P. C. McGeer, K. I.. McMillan, and J. C.-Y. Yang, “Multi-terminal
binary decision diagrams: An eflicient data structure for matrix representation,” International
Workshop on Logic Synthesis, pp. 6a:1-15, May 1993.

E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. C.-Y. Yang, “Spectral transforms for
large Boolean functions with applications to technology mapping,” Proc. of the 30th Design
Automation Conference, pp. 54-60, 1993.

0. Coudert, C. Berthet, J. C. Madre, “Verification of synchronous sequential machines based
on symbolic execution,” Proc. of the Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, France, June 1989.

M. J. C. Gordon, “Why higher-order logic is a good formalism for specifying and verifying
hardware,” in G. J. Milne and P. A. Subrahmanyam, eds, Formal Aspects of VLSI Designs,
pp. 153-177, 1986.

P. L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related Areas,
Heidelberg, Springer Verlag, 1968.

Y-T. Lai and S. Sastry (S. B. K. Vrudhula), “Edge-Valued binary decision diagrams for multi-
level hierarchical verification,” Proc. of 29th Design Automation Conf., pp. 608-613, 1992.

Y-T. Lai, S. Sastry (S. B. K. Vrudhula) and M. Pedram, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,” Proc. International
Conf. on Computer Design, pp. 452-458, 1992.

Y-T. Lai, M. Pedram and S. Sastry (S. B. K. Vrudhula), “BDD based decomposition of logic
functions with application to FPGA synthesis,” Proc. of 30th Design Automation Conf, pp.
642-647, 1993.

Y-T. Lai, M. Pedram and S. Sastry (S. B. K. Vrudhula), “FGILP: An Integer Linear Program
Solver Based on Function Graphs,” Proc. Int. Conf. CAD, 1993.

Y-T. Lai, “Logic verification and synthesis using function graphs,” Ph.D. Dissertation, Com-
puter Engineering, Univ. of Southern Calif., December 1993.

27

[18] Y-T. Lai, M. Pedram and S.B.K. Vrudhula, “EVBDD-based Algorithms for Integer Linear
Programming, Spectral Transformation, and Function Decomposition,” IEFFE Trans. on CAD,

CAD-13(8): 959-975, August 1994.

[19] H-T. Liaw and C-S Lin, “On the OBDD-representation of general Boolean functions,” IEEFE
Trans. on Computers, C-41(6): 661-664, June 1992.

[20] G. J. Milne, “CIRCAL and the representation of communication, concurrency, and time,”
ACM Trans. of Programming Languages and Systems, 7(2):270-298, April 1985.

[21] A. Srinivasan, T. Kam, S. Malik and R. Brayton, “Algorithms for Discrete Function Manipu-
lation,” Proc. Int. Conf. CAD, pp. 92-95, 1990.

[22] Texas Instruments, “The TTL Data Book for Design Engineers,” Texas Instruments, 1984.

28

Contents

1 Introduction 1
2 Edge-Valued Binary-Decision Diagrams 3
2.1 Definitions 3
2.2 Operations i e 5
2.2.1 Complexity Analysis 7

2.2.2 The Additive Property 8

2.2.3 The Bounding Property 9

2.2.4 The Domain-Reducing Property 11

2.2.5 Integer Multiplication 11

2.2.6 Some Remarks 12

2.3 Representing Boolean Functions. 13

3 Formal Verification 15
3.1 The Verification Paradigm 17
3.2 Structured Edge-Valued Binary Decision Diagrams 19
3.3 Ordering Strategy oo 26

4 Conclusions 26

29

Captions of Figures

O 00 ~I O U = W N -

—_
)

EVBDD representation of f = —24+5y+yz+3xy+4dryz—2x2+2. 5
Example of the apply({0,f), (0,g),+) operation..

The {(c,,v)'sofnode va.

A full-adder represented in EVBDDs: (a) carry (b) sum. . . 14
A full-adder represented in 0BDDs: (a) carry (b) sum. . . . 14
EVBDD expression: 2 X carry + Sum. 16
EVBDD eXpression: & + 4 4+ 2. v v i v 16
Graphical representation of SEVBDDs. 20
Examples of SEVBDDs. L. 20
Examples of type graph of SEVBDDs. 21

30

List of Tables

31

