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Abstract
In this paper we present a statistical method for estimating the
maximum power consumption in VLSI circuits. The method is
based on the theory of extreme order statistics applied to the
probabilistic distributions of the cycle-by-cycle power
consumption, the maximum likelihood estimation, and the Monte-
Carlo simulation. It can predict the maximum power in the space
of constrained input vector pairs as well as the complete space of
all possible input vector pairs. The simulation-based nature of the
proposed method allows it to avoid the limitations of a gate-level
delay model and a gate-level circuit structure. Last, but not least,
the proposed method can produce maximum power estimates to
satisfy user-specified error and confidence levels. Experimental
results show that this method, on average, produces maximum
power estimates within 5% of the actual value and with a 90%
confidence level, by simulating only about 2500 vector pairs.

I. Introduction
Circuit reliability is an important issue in today’s VLSI
manufacturing. There are many sources that may cause circuit
failure, one of them is excessive power dissipation over a short
period of time. Unexpected high current in short time may lead to
permanent circuit damage, sudden voltage change on the supply
source and ground nets, or temporary circuit failure. To design a
circuit with high reliability, designers have to rely on the efficient
and accurate estimation of maximum cycle-by-cycle power (or for
short maximum power). Maximum power estimation in VLSI
circuits is also essential to determine the IR drop and bounce
noise on supply lines and to optimize the power and ground
routing networks.

In most of the previous research work, maximum power
estimation refers to the problem of estimating the maximum
power (or current) that the circuit may consume within any clock
cycle. The problem is thus equivalent to looking for the
maximum-power-consuming vector pair among all possible input
vector pairs. Therefore, these techniques focus on finding the
lower bound and upper bound of the maximum power. However,
different design requirements of today’s VLSI chips make things

a little bit more complicated. In general, we divide the scope of
maximum power estimation problem into two categories:

I.1 The maximum power for all possible vector pairs applied to
the inputs of the circuit. We refer to this as the unconstrained
maximum power.

I.2 The maximum power for given transition/joint-transition
probability specification for the circuit inputs. We refer to this as
the constrained maximum power.

A number of techniques have been developed to solve the
problems in Category I.1 [1]-[8] and Category I.2. The method
proposed in [1] propagates the signal uncertainty through the
circuits to obtain a loose upper bound on the maximum power.
The bound is then made tighter by doing a detailed search on part
of the primary inputs. The bound tightening method tends to be
time consuming when the number of the primary inputs is large.

The Automatic Test Pattern Generation (ATPG) based techniques
[3]-[4] try to generate an input vector pair that produces the
largest switched capacitance in the circuit. The power
consumption by the vector pair is then used as a lower bound on
the maximum power of the circuit. The ATPG based techniques
are very efficient and generate a tighter lower bound than that
generated by random vector generation. The limitations are
however that the ATPG based techniques can only handle simple
delay models such as the zero-delay and unit-delay models and
that the analysis is done at the gate-level. Consequently, the
estimation accuracy is not high. A continuous optimization
method was proposed in [5], which treats the input vector space as
a continuous real-valued vector space and then performs a
gradient search to find the function maximum. Similar to the
ATPG based techniques, the estimation accuracy is not high.

The authors of [6] proposed a technique for finding the maximum
power-consuming vector using a genetic search algorithm. The
limitation of this approach is that it requires simulation of a lot of
vectors, i.e., its efficiency is not high. Statistical methods have
been studied for maximum power estimation. In [3] a Monte-
Carlo based statistical technique for maximum current estimation
was briefly discussed. The method randomly generates high-
activity vector pairs and the maximum power is then estimated by
simulation. This method also suffers from low efficiency.

The theory of order statistics has been applied in [7][8] to estimate
maximum power by estimating the high quantile point. Their
efficiency is as low as the random vector generation technique.

In this paper, we present a simulation-based statistical method for
maximum power estimation for combinational circuits. It is a
method of estimating the maximum power using the theory of
Asymptotic Extreme Order Statistics. Compared to previous work,
our approach makes the following tangible contributions:



1. Our approach is the first approach that provides the
confidence interval for the estimated maximum power for the
user-specified confidence level.

2. Our approach is the first approach which can do maximum
power estimation for any given error and confidence levels.

3. Our approach can estimate the maximum power defined in
both categories I.1 and I.2.

4. Because it is a simulation-based technique, the delay model
or the circuit structure do not limit its accuracy.

5. By efficient statistical estimation of the extreme
distributions, the estimation efficiency is largely improved
compared to existing statistical methods (including simple
random sampling or quantile estimation).

On average, the method can do maximum power estimation by
simulating only about 2500 vector pairs to achieve a 5% error at a
confidence level of 90%.

This paper is organized as follows, Section II introduces the
theory of asymptotic extreme order statistics and maximum
likelihood estimation. Section III describes our approaches for
maximum power estimation. Section IV presents our experimental
results and Section V gives the concluding remarks.

II. Background
2.1 The asymptotic theory of extreme order statistics
The (cumulative) distribution function (in short d.f.) of a random
variable (in short r.v.) x is defined as:
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The quantile function (in short q.f.) of a d.f. F is defined as:
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where inf(S) calculates the lower bound of set S. Notice that the
q.f. F-1 is a real-valued function and F-1(q) is the smallest q
quantile of F, that is, if Z is a r.v. with d.f. F, then F-1(q) is the
smallest value t such that P{Z < t} ≤ q ≤ P{Z ≤ t}. We remark that
F(x)=sup{q∈[0,1]: F-1(q) ≤ x}. Let z1, z2, ..., zn be n random units
drawn from a common distribution. If they are drawn in a random
manner, they are called independent identically distributed (in
short i.i.d.) r.v.’s. If one is not interested in the order in which
z1,z2,...,zn are drawn, but interested in the order of the magnitude
of their values, one has to examine the ordered sample values
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which are the order statistics of a sample of size n.

Xr:n is called the rth order statistic and the random vector (X1:n,
X2:n, ..., Xn:n) is the order statistic. Note that X1:n is the sample
minimum and Xn:n is the sample maximum. X1:n is called the
minima order statistic and Xn:n is called the maxima order
statistic, or in general, they are called the extreme order statistics
of a sample of size n.

The distribution function of the sample maxima Xn:n, is given by:
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Three distribution functions are given for studying the limiting
d.f. of sample maxima (in other words: extreme value d.f.’s):
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Definition 1 [10] F is said to belong to the weak domain of
attraction of limiting d.f. G, if there exist serious of constants an >
0 and reals bn such that:
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for every continuity point of G.

Let us define the right endpoint of d.f. F as:
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Theorem 1 [10] A d.f. F belongs to the weak domain of attraction
of an extreme value d.f. Gi,α iff., one of the following conditions
holds:
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and ↓ represents approaching decreasingly, ↑ represents
approaching increasingly.

Moreover, constants an and bn can be chosen in the following way:
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If a distribution F satisfies one of the conditions in Theorem 1, we
simply call the corresponding Gi,α the asymptotic distribution of
the sample maxima of distribution F. Theorem 1 not only gives
the conditions of to which d.f. G the extreme distribution will
converge, but also the guidelines for us to choose a correct
asymptotic extreme distribution for a specific application.

Theorem 2 [10] The weak convergence to the limiting d.f. G
holds for other choices of constants an and bn if, and only if,
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Theorem 2 gives other possibilities of choosing an and bn in
theorem 1. In special cases when F(x) has a finite right endpoint,
by Theorem 2, the choice of bn (n→∞) in Eqn.(2.13) is unique.

2.2 Maximum-likelihood estimation for parameters of
the Weibull distribution when α > 2
For reasons that will be made clear in a later section, we are
interested in developing a maximum-likelihood estimator for
parameters of a generalized Weibull distribution defined as:
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where μ is a location parameter which determines the right
endpoint (i.e. maximum) of the distribution, β > 0 is a scale
parameter, and α is the shape parameter.

The maximum-likelihood estimation problem is defined as
follows: Given m independent random samples x1,x2,…,xm of G(x;
α, β, μ), find the values of α, β, μ which maximize the likelihood
function [9]:
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This maximum likelihood estimator, when it exists, will be

denoted by the vector )ˆ,ˆ,ˆ( mmm μβα and satisfies:



                         0)ˆ,ˆ,ˆ(
},,{

=
∂

∂
mmm

mL μβα
μβα

                        (2.18)

Let 000 ,, μβα  denote the actual values of parameters of the

distribution, G. It was proved in [9] that, when α > 2,

)ˆ,ˆ,ˆ( 000
2
1

μμββαα −−− mmmm  converges in distribution

(m→∞) to a normal random distribution vector with mean 0.
III. The estimation Approach
The problem of maximum power estimation can be stated as
follows: Given a set V (called population) of input vector pairs,
estimate the maximum power dissipation that the circuit may
exhibit for any vector pair in the population. A vector pair in V is
called a unit of the population. In this paper, the population may
include either all possible input vector pairs applied to a circuit, or
all possible vector pairs under some input transition probability
constraints. Although there could only be a finite number of
distinct vector pairs in the population, but the size of V,
represented by |V|, is assumed to be infinite since there is the
possibility of repeating the vector pairs.

3.2 The asymptotic distribution of the sample maximum
power
If we regard power consumption for a vector pair as a random
variable p, a distribution of p is then formed by the power
consumption values of vector pairs in set V. The average power is
the mean value of the distribution. The maximum power is then
the right endpoint of the distribution. Like other papers on
statistical power estimation, we assume the d.f. of power
consumption in a large LSI circuit as a continuous distribution.

Given population V, the ith sample for max power estimation is
formed by the power values of n randomly selected units:

                   m,,ippp niii ,21            ,,, ,2,1, �� =

where n is called the sample size and m the number of samples.
The maximum power in each sample is defined as:
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According to Eqn.(2.5), the d.f. of pi,MAX can be written as:
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MAX = . As mentioned in Theorem 1, H(bn+ pi,MAX

⋅an) asymptotically converges to one of the three distributions
defined in Eqn.’s(2.7), (2.8) and (2.9).
In the remainder of this paper, we will use ω(F) denoting the
actual maximum power of the population.

We know that power consumption in a LSI circuit is always a
finite value, i.e., ω(F) < ∞. Therefore the condition in (2.9) is not
met and H(bn+ pi,MAX ⋅an) can not converge to G1,α. Also, because
the upper bound of supporting domain for G3 is infinite while that
of G2,α is finite, The condition in (2.10) is more likely to hold than
that in (2.11). Therefore H(bn+ pi,MAX ⋅an) is more likely to
converge to G2,α rather than G3.
It is pointed out in [10] that, most frequently used continuous
distributions with finite right endpoint ))(( ∞<Fω  satisfy the
condition in Eqn.(2.10). Therefore, in many engineering
applications of maxima estimation, it is assumed that the
distribution under study belongs to the weak convergence domain
of G2,α. This statement has also been empirically proved to be true
by our experiments (cf. later this section).
Therefore, we state that the distribution of pi,MAX asymptotically
follows the Weibull distribution G2,α. This means that there exist
an and bn such that:

∞→→+=⋅+ npGpabFpabF MAXinn
n

MAXinn  ),()()( ,,2, α  (3.2)

or,     min
a

bp
GpF

n

nMAXi
MAXi ,,1 , ),()( ,

,2, �=∞→
−

→ α       (3.3)

From Eqn.’s (2.13) and (2.15), we get )(Fbn ω=  where ω(F) is
the maximum power consumption of the population. If we
substitute the generalized Weibull distribution defined in
Eqn.(2.16) into Eqn.(3.3),  we get

              minpGpF MAXiMAXi ,,2,1  ,  ),,,;()( ,, �=∞→→ μβα

where β=(1/an)
α and μ=bn.

Experiments have been designed to verify the asymptotic
distribution of sample maxima. The distributions of sample
maxima for different sample size (n = 2, 20, 30, 50) was formed
by 1,000 random samples from the population. Their closest
Weibull distributions are obtained by using least-square fitting
techniques. Figure 1 shows the results for circuit C3540.

Figure 1 The comparison between distribution of sample
maxima and Weibull distribution

Experiments are done for other circuits and populations and the
similar results are obtained. From these results we concluded that
the difference between distributions of pi,MAX

  and Weibull
distribution in the region near the maximum power is negligible
when n ≥ 30. Since we are only interested in estimating the
maximum power, we fix the sample size n to 30 and assum that
the distribution of pi,MAX follows Weibull distribution when n ≥ 30.
Consequently, pi,MAX (i=1,2,…,m) (n = 30) become the samples of
the generalized Weibull distribution in (2.16). Most importantly, if
previous assumptions hold, we have: μω =)(F .

Therefore, the problem of maximum power estimation is
equivalent to the problem of estimating the location parameter μ
of a generalized Weibull distribution from random samples. The
simplest way of doing this is to curve-fit the samples to Eqn.(2.16)
to get values of α, β, and μ. However, our study shows that the
curve fitting approach is unstable since the problem becomes
difficult when we trying to construct the distribution from small
number of samples. We choose another estimation method that is
more robust and has a solid theoretical support.

3.3 A Maximum-likelihood estimator of maximum
power dissipation
The maximum-likelihood estimators for parameters of generalized
Weibull distribution for α > 2 have been introduced in Section II.
In fact, α is always large than 2 if the sample size n is much

smaller than the population size |V|. Consequently, let mmm μβα ˆ,ˆ,ˆ

be the estimators that satisfy Eqn. (2.18), we can prove the
following result.

Theorem 3 mmm μβα ˆ,ˆ,ˆ  (m→∞) are the unbiased estimators of

μβα ,,  of the Weibull distribution, which means that

n = 2 n = 20

n = 30 n = 50



mmm μβα ˆ,ˆ,ˆ  (m→∞) follow normal distributions with mean

values of 000 ,, μβα  and covariance matrix VAR. The matrix

VAR is defined as:
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From Theorem 3 we know that the maximum power estimator

mμ̂  converges to a normal distribution with mean of μ0 (which is

the actual maximum power ω(F)) and variance of m2
μσ .

Theorem 4 mμ̂  is an unbiased estimator for maximum power

ω(F). Given confidence level l (l∈(0,1)), the confidence interval
of the estimated maximum power mμ̂  (m→∞) is given by:

               ])(     ,)([ 22 muFmuF ll μμ σωσω ⋅+⋅−           (3.5)

where ω(F) is the actual maximum power, m is the number of

samples, 2
μσ  is defined in Eqn.(3.4), and ul is defined as:
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Theorem 4 states that the probability that the estimated maximum
power falls into the interval defined in Eqn.(3.5) is l. For a given l,
smaller confidence interval means higher estimation accuracy.
Therefore, the relative estimation error is inversely proportional to
the square root of the variance of the estimator.
In practice, the theoretical confidence interval cannot be

calculated directly because 2
μσ  is unknown. Therefore, we do not

know a priori how many samples are needed to achieve certain
confidence interval at given confidence level.  An iterative
(Monte-Carlo) method has been designed to solve this problem.

3.4 The iterative estimation procedure
Experiments have been designed to study the distribution of the
maximum likelihood estimator for maximum power in cases when
the number of samples m is finite (we know from Theorem 3 that
when m→∞ this maximum likelihood estimator for ω(F) follows
a normal distribution). The sample size is fixed at n=30 and
different number of samples are used (m=10,50). During each
single experiment, m samples with sample size n are randomly
selected from the population. Maximum power is then estimated
by using the maximum likelihood estimator mμ̂ . The program for
maximum likelihood estimation can be found in many places. For
each distinct m, the sampling-estimation procedure is repeated
100 times to form the distribution of estimated value. The
distributions of estimated maximum power for different values of
m are then formed and their nearest normal distributions are
obtained by least-square curve fitting. The results for circuit
C3540 are shown in Figure 2.

Figure 2   The distributions of estimated maximum power
compared with the nearest normal distribution

Similar results are obtained for other circuits. From the
experimental results, we can conclude that the estimator for

maximum power is approximately normally distributed when the
number of samples is large enough (m≥10). Therefore, we assume
normal distribution of estimator for maximum power when m≥10.

Before we introduce our practical maximum power estimation
procedure, we summarize our discussions in earlier part of this
section as shown in Figure 3.

Figure 3   Synopsis of maximum power estimation method

In Figure 3, a hyper-sample is defined as the result of one run of
maximum power estimation for m samples with size n. We fix the
value of n to 30 and value of m to 10, then the number of units
which is needed to form a hyper-sample is 300.

Theorem 5 Let MAXiP ,
ˆ  (i=1,2,...,k) denote the ith hyper-sample,

for n=30 and m=10, MAXiP ,
ˆ  follows the normal distribution with

mean value of ω(F) and variance of 102
μσ , where 2

μσ  is defined

in Eqn.(3.4). By define:
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Theorem 6 MAXP  and s2 are unbiased estimators of the actual

maximum power ω(F) and 102
μσ , respectively. Given

confidence level l, the confidence interval for the actual maximum
power is given by:
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where tl,k-1 is the l×100% percentile point of the t distribution with
degree of freedom of k-1.

Theorem 6 gives us a guideline for designing an iterative
procedure for maximum power estimation subject to the required
accuracy (relative error less than or equal to ε) at given confidence
level l. The basic workflow is shown in Figure 4.
In Figure 4, the generation of a hyper-sample follows the
procedure shown in Figure 3. Confidence interval is calculated
using Eqn.(3.8). The maximum relative error is calculated using

the confidence interval as MAX
kl P

k

st ⋅−1, . If this quantity is

m=10 m=50

Distribution of sample
maxima  follows the
generalized Weibull
distribution G(pi,MAX;
α,β,μ) when n≥30

Population

1 2 n

Sample

The distribution of
sampled units  follows
the distribution of the
original population
F(p)

MAX MAX

Maximum-
Likelihood
Estimation

1 m

Hyper
Sample

The estimated maximum power
follows normal distribution when
m≥10

Sample



larger than the required ε, then the estimated value has not
converged and we add one more hyper-sample; otherwise, the
estimation has converged and we report the estimation result.

Figure 4 Iterative flow of maximum power estimation

3.5 Practical issue: finite population versus infinite
population
The approach discussed in the earlier part of this section is
designed for estimating the maximum power of an infinite
population. However, we must deal with a finite population in real
applications. As an example, our experimental setup in the next
section uses finite populations. Experimental results shows that, if
we use the same approach for finite population as for the infinite
population, there will be bias in maximum likelihood estimation
in the sense that the mean of the estimated value is always larger
than the actual maximum power of the population. This happens
because estimator mμ̂  is estimating the maximum power of an
infinite population that should have (with some probability) an
even tail after the actual maximum power of the population.
While this tail does not exist in the case of a finite population.

To solve this problem, we can regard the finite population V as a
sample of size |V| selected randomly from the assumed continuous
distribution for the infinite population. Assume there is only one
unit in the finite population which consumes the maximum power,
then the maximum power of the finite population becomes the
estimated (1-1/|V|) quantile point of the assumed continuous
distribution. According to the tail-equivalence property between a
distribution and the limiting distribution of its sample maxima
[10], estimating the (1-1/|V|) quantile point of the original
population is equivalent to estimating the (1-1/|V|) quantile point
of the asymptotic Weibull distribution of the sample maxima.
Therefore, when estimating the maximum power of a finite
population, instead of using the theoretical mμ̂  (which is the
100% quantile point of the estimated generalized Weibull
distribution), we use the (1-1/|V|) quantile point of the Weibull
distribution (whose parameters can be estimated by using the
maximum likelihood estimator) as the estimator for the maximum
power. We call this the “modified estimator” for the finite
population. Experimental results show that the modified estimator
gives us an unbiased estimator for finite populations.

IV. Experimental results
Category I.1. Estimating the unconstrained maximum power.

Proposed method: In this category, the goal is to estimate the
maximum power of the circuit for all possible input vector pairs.

Consequently the simple random sampling procedure can be
realized by randomly generating vector pairs, that is, the two
method (i.e. random vector generation and simple random
sampling) are equivalent in this case. Except for the fact that the
sampling technique is replaced by the random vector generation,
the remaining part of our approach (cf. Figure 3 and Figure 4)
remains the same.

Experimental results and discussion:
Let us give a theoretical study on the efficiency of the estimation
method of random vector generation, or simple random sampling.
Assume we want to estimate maximum power of error less than
5% at confidence level 90% for a population. Let the size of the
population be |V|. Define the “qualified units” as those units
whose values are within 5% difference of the actual maximum.
Assume the number of the “qualified units” is Z. The portion of
the “qualifies units” in the whole population is then Y=Z/|V|. If we
sample x units from the population, the probability that there is at
least one “qualified unit” in these x units is given by:

xYP )1(1 −−= . For P to be larger than or equal to 90%, we need
on average x = log(0.1)/log(1-Y) sampled units. From our
experiments, we have observed that Y is very small (e.g.,
<0.0001). This leads to very large x (e.g., >23,000).
The experimental setup is as follows. The population contains
160,000 randomly generated high activity (average switching
activity larger that 0.3) vector pairs. Random vector generation is
equivalent to simple random sampling vector pairs from the
population. The whole population is simulated using Powermill
[11] to get the power consumption value for each unit and in the
process the actual maximum power. Our approach (n=30, m=10)
and simple random sampling (SRS) have been applied to do
maximum power estimation for relative error < 5% at confidence
level 90%. The experimental results are shown in Table 1 and
Table 2. Our approach has been applied to do maximum power
estimation 100 times for each circuit.

Table 1 shows the comparison of efficiency and accuracy of our
approach versus simple random sampling. The portion of the
“qualified units” in the whole population is given in the 2nd

column. The maximum, minimum and average number of units
needed for our approach to converge are reported in the 3rd, 4th,
and 5th columns, respectively. The 6th column gives the
theoretically calculated (according to the discussion of the second
paragraph from the bottom of page 14) number of units needed by
simple random sampling to achieve the same error (5%) and
confidence (90%) level. The 7th and 8th columns give the absolute
value of the maximum and minimum estimation error of our
approach. We have not given the relative error for SRS because
the SRS technique is not able to predict the maximum power
subject to given error and confidence levels.

Table 2 shows the comparison for the estimation quality. Simple
random sampling techniques using 2500, 10K, and 20K units are
performed 100 times, respectively. The 2nd column gives the
actual maximum power of the population. Columns 3, 4, 5 and 6
give the results of largest-error estimates for different techniques.
Column 7, 8, 9 and 10 give the results of the percentage of the
time when the estimated value exceeds the error level.

The experimental results shows that, our approach is much more
efficient than the simple random sampling technique (about 12X
speedup on average). More importantly, however, simple random
sampling or similar techniques are not reliable because they
cannot provide confidence interval and confidence level for
maximum power estimation. Also the estimation quality of our
approach is obviously better than simple random sampling. From
the results of Table 2, if we compare our approach with simple

Add one hyper-sample

Is the confidence interval
smaller than the  required

value?
YES

START

Add one more
hyper-sample

Compute the
confidence

interval for given
confidence level

NO

Report Result



random sampling with 20K units, the average largest error is 5.3%
for our approach, and 10.4% for SRS. As to the average
percentage of estimated value with error larger than 5%, it is 4.3%
for our approach and 23% for SRS. It can be foreseen that the
advantage of our approach over SRS will be more predominant
for infinite population.

# of units needed Relative error
Our approach SRS Our approachCircuit

Portion of the
“qualified

units” MAX MIN AVE AVE MAX MIN
C1355 0.0001 2700 900 1924 23024 6.0% 0.3%
C1908 0.00015 3600 1500 2410 15349 5.3% 2.4%
C2670 0.000288 1500 600 924 7993 6.2% 0.6%
C3540 0.000094 5100 600 2553 24494 5.2% 1.2%
C432 0.000038 5400 2100 3544 60593 7.7% 1.7%

C5315 0.000194 2700 600 1653 11868 5.8% 0.8%
C6288 0.000163 900 600 676 14125 6.2% 0.05%
C7552 0.00005 4500 3300 3825 46050 8.2% 0.6%
C880 0.000063 3000 2700 2859 36547 5.4% 2.9%

Table 1 Results for comparing the efficiency and accuracy

Largest estimation error % of estimates with error >
5%

SRS SRS

Circuits
Actual
max.

power
(mW)

Our
appr. 2500 10K 20K

Our
appr. 2500 10K 20K

C1355 2.145 -6.0% -13% -8.5% -6.3% 6% 80% 52% 15%
C1908 2.745 -5.3% -14% 7.5% -6.3% 3% 73% 28% 8%
C2670 6.529 -6.2% -8.6% -5.4% -2.5% 1% 38% 2% 0%
C3540 10.732 5.2% -14% -10% -8.9% 5% 80% 52% 33%
C432 1.818 -7.7% -22% -13% -14% 8% 89% 73% 57%

C5315 14.372 5.8% -9.7% -7.7% -6.2% 2% 73% 27% 3%
C6288 126.62 6.2% -21% -21% -21% 3% 76% 26% 5%
C7552 31.237 8.2% -14% -10% -7.3% 7% 92% 69% 54%
C880 4.312 5.4% -20% -15% -11% 4% 88% 42% 29%

Table 2 Results for comparing the estimation quality

# of units needed Relative error
Our approach SRS Our approachCircuit

Portion of the
“qualified units”

MAX MIN AVE AVE MAX MIN
C1355 0.000241 3900 600 2112 9553 5.4% 1.8%
C1908 0.000378 3000 600 2403 6090 7.3% 2.0%
C2670 0.000778 900 600 675 2958 4.1% 0.5%
C3540 0.000196 1200 900 1054 11747 6.7% 4.0%
C432 0.000071 3300 1200 2259 32430 7.7% 2.2%

C5315 0.000488 1200 900 975 4717 7.1% 4.1%
C6288 0.000427 1200 600 1052 5391 4.5% 1.7%
C7552 0.000308 3900 900 2252 7475 8.0% 0.9%
C880 0.000135 2700 600 1703 17055 12% 2.1%

Table 3   Results for comparing efficiency and accuracy

Category I.2. Estimating the constrained maximum power.

Proposed method: Similar to Category I.1, except that vector pairs
are generated under given constraints.

Experimental setup: Similar to Category I.1, this time we generate
two populations (each of size 80,000) subject to the constraint that
the average switching activity per input line is 0.7 and 0.3,
respectively. Detailed comparison with simple random sampling
has been performed as well. However we give only the tables for
comparing efficiency and accuracy in order to save space. The
experimental results for populations of average switching activity
0.7 and 0.3 are shown in Table 3 and Table 4, respectively. The
meaning of entries in different columns is the same as that in

Table 1. The estimation quality comparison can be seen from the
value of the portion of the “qualified units” in the 2nd columns of
both tables. As expected when he number of qualified units in the
population decreases, the number of units needed to estimated the
maximum power dissipation in the circuit increases.

# of units needed Relative error
Our approach SRS Our approachCircuit

Portion of the
“qualified

units” MAX MIN AVE AVE MAX MIN
C1355 0.000119 4800 1500 3348 19384 3.6% 2.2%
C1908 0.000246 2700 900 2001 9359 6.6% 3.5%
C2670 0.000313 3600 1500 2584 7355 5.3% 1.7%
C3540 0.000053 5100 600 3587 43444 7.4% 2.9%
C432 0.000179 3000 1500 2389 12862 6.8% 2.4%

C5315 0.000231 3600 1200 2623 9967 13% 3.4%
C6288 0.000079 6000 2700 5424 29145 5.1% 0.6%
C7552 0.000194 2400 1200 1976 16446 7.1% 3.3%
C880 0.000018 2700 900 1897 127920 5.0% 1.9%

Table 4   Results for comparing efficiency and accuracy

V. Conclusion
In conclusion, a statistical approach has been proposed based on
the asymptotic theory of extreme order statistics. This is the first
maximum power estimation approach which can provide
confidence interval at given confidence level. This is also the first
approach which can do maximum power estimation for any user-
specified error and confidence levels. The proposed approach can
predict the maximum power in the space of constrained input
vector pairs as well as the complete space of all possible input
vector pairs. It is an efficient simulation-based approach with high
accuracy. The generality of this approach makes it also applicable
to other fields of VLSI design automation, for example, maximum
delay estimation.
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