
1

GatedClockRoutingforLowPower
MicroprocessorDesign

Jaewon Oh and Massoud Pedram

Dept. of Electrical Engineering – Systems
University of Southern California

Los Angeles, CA 90089
Tel: (213) 740-4480

e-mail: [joh, massoud]@zugros.usc.edu

Abstract

This paper presents a zero-skew gated clock routing technique for VLSI circuits. Gated clock
trees include masking gates at the internal nodes of the clock tree, which are selectively turned on
and off by the gate control signals during the active and idle times of the circuit modules to
reduce the switched capacitance of the clock tree. We construct a clock tree topology based on
the locations and the activation frequencies of the modules, while the locations of the internal
nodes of the clock tree (and hence the masking gates) are determined using a dynamic
programming approach followed by a gate reduction heuristic. This work assumes that the gates
are turned on/off by a centralized controller. Therefore, the additional power and routing area
incurred by the controller and the gate control signal routing are examined. Various tradeoffs
between power and area for different design options and module activities are discussed and
detailed experimental results are presented. Finally, good design practices for implementing the
gated clocks are suggested.

Keywords: gated clock, low power, clock routing, VLSI

2

1. Introduction

Clock gating is an effective way of reducing power dissipation in digital circuits. In a typical

synchronous circuit, e.g., a general-purpose microprocessor, only a portion of the circuit is active

at any given time. Recently, the system-on-a-chip (SOC) design has become popular. A typical

SOC design consists of one or more CPUs, RAM banks, bus interface units, I/O and memory

controllers, floating point coprocessor, etc. By shutting down the idle units, one can prevent the

circuit from consuming unnecessary power. In addition, we can shut down a portion of the clock

tree by masking off the clock at the internal node of the tree using an AND-gate. This prevents

wasteful switching in the clock tree and saves power in the clock tree in addition to saving power

in the functional units, which are fed by the clock.

In general, processor instructions not executed with the same occurrence frequency, that is, some

instructions are executed more frequently than others. This fact motivated the development of

Reduced Instruction Set Computer architecture. Our work is also guided by this same principle:

gated clock routing for low power is driven by the occurrence frequency of different instructions.

In this paper, we use the term circuit module, or simply module, to refer to a circuit block that

has a single clock entry point for driving all of the clock pins of the registers in the block. The

modules are leaf nodes of the clock tree.

We assume that the modules are sequential machines with latches at the inputs (see Figure 1) or a

cluster of such sequential machines. This assumption is made because in such a machine, there is

no switching activity once the clock is shut off. In fact, this type of machine is commonly used in

Figure 1: Model of a sequential machine

Combinational
Logic

R
egister

State

In

Clock

Out

3

industrial designs for its simplicity and ease of timing verification [1]. The basic idea of clock

gating is to mask off the clock to the registers of idle modules. This keeps the inputs of the

combinational logic block steady, preventing any switching in the block. Therefore, dynamic

power dissipation of the circuit is reduced.

In this paper, we address a particular form of the gated clock routing problem. In our gated clock

tree, we insert gates immediately after every internal node of the clock tree to minimize the

dynamic power consumption. These gates also serve as buffers and can be sized to adjust the

phase delay of the clock signal. They are turned on and off by the control signals generated from

a centralized gate controller. An example of a gated clock tree is shown in Figure 2, where the

sink nodes correspond to the locations of modules and the internal nodes refer to the Steiner

points of the clock routing.

A gate in the clock tree must be enabled (i.e., given a true control signal) whenever any of its

descendant gates are enabled. This suggests that the control signal of a gate is the OR function of

the control signals of its descendant gates.

Figure 2: Model of a gated clock tree

gate control signals

Controller

Clock source

- sinks - Steiners

clock tree edges

4

In [6], an algorithm for constructing the topology of a gated clock tree was suggested. This

algorithm takes advantage of the activity patterns of the modules in the circuit to design the clock

tree topology. The authors use high-level design information to extract these activity patterns.

However, the routing overhead and power dissipation cost of the control signals for the masking

gates in the clock tree were not modeled.

In this paper, we propose a method for clock tree construction, which is based on detailed

statistics about instruction frequencies and module activation per instruction. This information is

extracted from instruction level simulation of the processor with a large number of benchmark

programs and is compiled into Instruction Frequency and Instruction Transition-Module

Activation Tables. Using these two tables, we are able to calculate the power dissipation of a

candidate gated clock tree routing solution efficiently and accurately. In addition, we consider

the control signal overhead in constructing the clock tree routing. We therefore show how

probabilistic information (instruction usage and module activation statistics) and geometrical

information (locations of the clock tree sinks) can be used to generate a low power clock routing

solution.

The remainder of this paper is organized as follows. Section 2 gives the terminology and the

precise problem statement. Section 3 describes how the probabilities of the gate control signals

are calculated. Section 4 presents the clock tree construction algorithm. Sections 5 and 6 show

our experimental results and conclusions.

Preliminary work contributing to this paper has been published in [4] and [5].

2. Problem Definition

We assume that the topology of the clock tree is full binary, that is, every non-leaf node has

exactly two children. However, the tree is not necessarily a balanced tree (i.e., the depth of the

leaf nodes may not be the same). Let T be the rooted clock tree topology. Let {M1, M2,…,MN} be

the modules. If there are N modules, there are N–1 internal nodes. Let {v1, v2,…,v2N-1} be the

nodes of the clock tree where {v1, v2,…,vN} are leaves and the rest are internal nodes of the tree.

Let {e1, e2,…,e2N-2} be the edges of the tree. We identify each point vi, except the root, of the

rooted topology T with edge ei so that ei connects vi to its parent in T. Let | ei | be the length of

edge ei. An example of the clock tree topology is shown in Figure 3.

5

We assume that the controller is located at the center of the chip. The routing used for the control

signals is Star (shortest path) routing as shown in Figure 2. We denote the controller tree as S.

We label each edge in the controller tree as ENi. Edge ENi controls the gate on edge ei of the

clock tree. The signal probability of ENi (probability that ENi is 1) is denoted as P(ENi), and the

transition probability of ENi (probability that ENi changes logic value per cycle) is denoted as

Ptr(ENi). Let | ENi | be the length of edge ENi .

2.1 Switched capacitance in the clock tree
Consider a clock tree without gates. For a particular edge ei , the power dissipation on the edge ei

is defined as

2
02

1
)(ddii Vfecepower α= (1)

where c0, α, f , and Vdd are the unit wire capacitance, transition probability of the clock net, the

clock frequency, and the supply voltage, respectively. For the clock net, α = 2 since there is one

rising and one falling edge in every clock cycle. So the above equation becomes

Figure 3: Topology of the gated clock tree

M1 M2 M3 M4

Gate
Control
Logic

CLOCK IN

Modules

v1 v2 v3 v4

v5 v6

v7

e1

e6e5

e2 e3 e4

6

2
0)(ddii Vfecepower =

When the masking gates are present, power is dissipated only when the control signal is on. Thus

the power dissipation in edge ei is

2
0)()(ddiii VfENPecepower =

During the layout synthesis step, Vdd and f are fixed parameters; hence we can use the switched

capacitance as an exact measure of the power dissipation. The switched capacitance w(ei) of an

edge ei is defined as

)()(0 iii ENPecew =

There may be a load capacitance associated with each node of the clock tree. Including the node

capacitance Ci at node vi, the switched capacitance of ei becomes

)()()(0 iiii ENPCecew +=

The total switched capacitance in the clock tree is therefore

∑
∀

+=
ie

iii ENPCecTW)()()(0

2.2 Switched capacitance in the controller tree
Similar to Equation (1), we can write the switched capacitance of edge ENi as

)()(
2

1
)(0 itrgii ENPCENcENw +=

where Cg is the input capacitance of an AND gate. The total switched capacitance in the

controller tree is

∑
∀

+=
iEN

itrgi ENPCENcSW)()(
2

1
)(0

7

The objective of our gated clock routing is to find trees T and S so as to minimize the following

equation

)()(SWTWW +=

subject to zero skew constraints. Notice that the signal probability of ENi determines the

switched capacitance in the clock tree whereas its transition probability determines the switched

capacitance in the controller tree.

3. Computation of P(ENi) and Ptr(ENi)

To calculate W(T) and W(S), we need to compute the signal probabilities P(ENi) and the transition

probabilities Ptr(ENi). Let P(Mi) be the probability that Mi is active (i.e. Mi receives the clock

signal). Suppose node vi has modules M1, M2,…,Ml at the leaves. If any of these modules are

active, then ENi must be turned on. Thus P(ENi) is given by

)()(21 li MMMPENP ∪∪∪= ! (2)

where P(Mi ∪ Mj) means the probability that either Mi or Mj is active.

To find Ptr(ENi), we need the module activation statistics over two consecutive clock cycles. Let

AT(Mi) be a two-bit activation tag which represents the module activities in two consecutive

clock cycles. For example, AT(Mi) = 01 means that Mi is idle in the current clock cycle and

becomes active in the next clock cycle. AT(Mi) can have four possible values, and their

corresponding ENi logic value transitions are shown below.

1. AT(Mi) = 00 (ENi stays at 0)

2. AT(Mi) = 01 (ENi makes a 0 to 1 transition)

3. AT(Mi) = 10 (ENi makes a 1 to 0 transition)

4. AT(Mi) = 11 (ENi stays at 1)

Cases 1 and 4 do not cause ENi transition, so we only need to consider cases 2 and 3 in the

computation of the transition probability.

8

If Register Transfer Level (RTL) simulation is used to find these probabilities, a huge number of

clock-by-clock module usages have to be recorded. Certainly, the time complexity will be very

large, especially for general-purpose microprocessors. So we propose a method for computing

activities using a more efficient instruction level simulation of the processor and knowledge about

the RTL description of the processor.

3.1 RTL description
For simplicity, we assume that the microprocessor has four instructions and six modules

throughout the rest of this section. The RTL description of each instruction tells us what modules

are used to execute each instruction. For example, we may have the following RTL description of

the instructions.

Instruction Used Modules
I1 M1, M2, M3, M5

I2 M1, M4

I3 M2, M5, M6

I4 M3, M4

Table 1. RTL description of instructions

3.2 Instruction stream
By simulating the processor at the instruction level with a number of benchmark programs, we

can trace the instructions that are executed. For example, our instruction stream for 20 clock

cycles may be given as follows.

I1 I2 I4 I1 I3 I2 I2 I1 I2 I1 I3 I2 I1 I3 I1 I2 I1 I1 I4 I2

From this, we can find any probabilities by scanning the instruction stream. For example, M1

appears in I1 and I2 in Table 1, and these two instructions occur 15 times in the stream. Therefore

P(M1) = 15/20 = 0.75. If a node vi in the clock tree has two leaf nodes M5 and M6, any

instructions that use either of these modules should contribute to the signal probability of ENi.

Since I1 and I3 are such instructions and they appear 11 times in the stream, P(ENi) = P(M5 ∪ M6)

= 11/20 = 0.55.

The transition probability of this ENi can be also found by scanning the instruction stream. We

examine every two consecutive instructions during the scanning and count the number of ENi

transitions (a 01 transition occurs when both M5 and M6 are idle in the current clock cycle and any

9

of M5 or M6 are active in the next clock cycle and a 10 transition is the inverse of this). We can

see that Ptr(ENi) = 10/19= 0.526 (there are ten transitions out of 19 in the stream).

However, the instruction stream can be very long. Because some instructions are rarely executed,

the instruction stream should be very long in order to get a reasonable probability value for the

rare instructions. To get accurate instruction statistics, we may need some millions of

instructions. Therefore, the above brute-force method is very expensive.

To overcome this problem, we propose a method that computes all the necessary probabilities

from the tables that can be generated by one scan of the instruction stream.

3.3 Table-driven probability computation
Instruction Frequency Table (IFT) enlists the probability that each instruction is executed in any

cycle. By scanning the previous instruction stream, we have the IFT in Table 2.

Instruction I1 I2 I3 I4

Probability 0.4 0.35 0.15 0.1
Table 2: Instruction Frequency Table (IFT)

To find P(M5 ∪ M6), we simply add the two probabilities of I1 and I3 in Table 2, obtaining 0.55.

Any signal probability P(ENi) can be found using Table 1 and Table 2 without rescanning the

instruction stream. The time complexity of computing this probability is O(KL), where K is the

total number of instructions and L is the maximum number of used modules for any instructions

(K = L = 4 in our example), as will be shown next.

Let IFT(Ii) be the instruction frequency of Ii (Table 2) and RTL(Ii) be the set of modules used

during the execution of Ii (Table 1), and let M(vk) be the leaves of vk. Then P(ENi) can be found

by the procedure given below.

PROCEDURE ComputeSignalProb (ENk)
Begin

P ← 0;
For each instruction Ii

If RTL(Ii) ∩ M(vk) ≠ φ then

P ← P + IFT(Ii);
end for
Return P;

End PROCEDURE

10

Let K be the total number of instructions. Also let L = max (|M(Ii)|) for all i. For the above

procedure, we can implement disjoint set data structures on modules in which FIND_SET(Mi) and

UNION(Mi) can be done in O(1) and O(N) time respectively. The If statement can be done by

performing FIND_SET(Mi) for every used module in the instruction, which takes at most O(L)

time. With K iterations of the For loop, the above procedure takes O(KL) time.

Instruction Transition-Module Activation Table (ITMAT) enlists AT(Mi) for every possible

combination of two consecutive instructions. In addition, ITMAT keeps the probability that the

two instructions occur in two consecutive clock cycles. By scanning the previous instruction

stream, we obtain the ITMAT shown in Table 3.

Prob. Instr.
Trns.

M1 M2 M3 M4 M5 M6

0.057 I1→I1 11 11 11 00 11 00
0.158 I1→I2 11 10 10 01 10 00
0.158 I1→I3 10 11 10 00 11 01
0.057 I1→I4 10 10 11 01 10 00
0.184 I2→I1 11 01 01 10 01 00
0.057 I2→I2 11 00 00 11 00 00
…. … … … … … … …
0.000 I4→I4 00 00 11 11 00 00

Table 3: Instruction Transition – Module Activation Table (ITMAT)

For example, I1 → I3 occurs three times in the instruction stream. So its probability is 3/19 =

0.158.

Assume that vi has leaf nodes M1, M2,…,Ml. In order for ENi to make a 01 transition, at least one

of AT(Mk), k=1,…,l should be 01 while the remaining AT(Mk)s should be either 00 or 01.

Likewise, in order for ENi to make a 10 transition, at least one of the AT(Mk)s, for k=1,…,l should

be 10 while the remaining AT(Mk)s should be either 00 or 10. All other cases force ENi to remain

at 0 or 1.

Alternatively, we perform logical OR over all the AT(Mk)s, and, if its result is 10 or 01, we have

transitions on ENi. For example, if vi has leaf nodes M2, M3, M5, and M6, I1 → I2 causes ENi to

make a 10 transition since the OR of the four corresponding table entries is 10. For each row in

Table 3, if the corresponding modules’ activation tags cause ENi to make a transition, the

probability on that row should be added to the transition probability of ENi. The time complexity

of computing the transition probability of ENi is O(K2N), where K is the total number of

instructions and N is the total number of modules.

11

The ITMAT can be constructed as a by-product of the instruction-level
simulation of the processor. Creating the tables is very fast since it
takes linear time in the length of the instruction stream. A question
arises as to how long the instruction stream should be in order to
obtain a reliable and dependable table. Certainly, the longer the
instruction stream, the higher the accuracy of the table. The validation
of any processor design involves simulation of long instruction streams.
Consequently, processor designers end up generating a rich pool of
benchmark data (instruction traces) during the course of their design,
which can provide us with the data trace that is long enough to provide
good accuracy for ITMAT entry calculation.

4. Clock Tree Construction

4.1 Delay modeling
To estimate the phase delay of the clock tree, we use the Elmore delay model as was used in [7]

for zero-skew clock routing. Inserting gates reduces the subtree capacitance in the Elmore delay

computation, thereby reducing the phase delay.

4.2 Minimum switched capacitance heuristic
Bottom-up merging followed by a top-down placement method is commonly used in clock

routing. In [2], the merging sector is a line segment with slope ±1, which represents the possible

locations of the Steiner node where its two subtrees are merged. These merging sectors are found

in bottom-up fashion. The actual locations of the Steiner nodes are determined in top-down

fashion (see an example in Figure 4).

Figure 4: An example of bottom-up merging and top-down placement

source

Steiner nodes

Sinks

Merging sectors

12

The nearest-neighbor heuristic of [3] greedily merges two nodes when the geometric distance

between the corresponding merging sectors is at a minimum. Our method is also greedy, but the

merging sequence is determined by the switched capacitance.

Let ms(vi) be the merging sector of vi. Suppose we try to merge ms(vi) and ms(vj) and the root of

the merged tree is vk. We can uniquely determine |ei|, |ej| such that the zero skew constraint is

satisfied. As mentioned before, we assume that the gate controller is located at the center of the

chip. Let this center be CP. To compute the switched capacitance in an edge of the controller

tree, we need to estimate the distance between the gate location (location of the Steiner node) and

the CP. Since we do not know the exact locations of the Steiner nodes during the bottom-up

phase, we approximate the edge length of the controller tree as the distance between the CP and

the middle point of the merging sector. Let this distance be dist(CP, mid(ms(vj))). Then the

switched capacitance SC after merging ms(vi) and ms(vj) is

0 0

0

0

(,) () () () ()

1
((, (()))) ()

2
1

((, (()))) ()
2

i j i i i j j j

i g tr i

j g tr j

SC v v c e C P EN c e C P EN

c dist CP mid ms v C P EN

c dist CP mid ms v C P EN

= + + +

+ +

+ +

(3)

When we merge subtrees bottom-up, we merge sectors that result in the smallest switched

capacitance (SC) as given in Equation (3). We have the algorithm outlined below.

PROCEDURE GatedClockRouting
Input: Instruction Stream,

RTL description of each instruction,
Sink locations;

Output: Clock Tree Layout with gates

Begin
scan the instruction stream and create IFT and ITMAT;
find P(ENi) and Ptr(ENi) for every sink;
compute SC between every pair of sinks;

// bottom-up merge
Repeat

pick the pair ms(vx), ms(vy) whose SC is minimum
create new node vk;
compute P(ENk) and Ptr(ENk);
find ms(vk);
remove node vx, vy;
For each remaining node vn

13

determine |ek|, |en| satisfying zero-skew;
compute SC between vk, vn;

end for
until only the root is left

// top-down placement
place internal nodes vk within each ms(vk);

end PROCEDURE

Scanning the instruction stream and creating the tables takes O(B) time, where B is the length of

the stream. The second and third statements take O(N (KL + K2N)) and O(N2) time respectively.

Since L < N, the combined complexity is O(K2N2). The repeat loop iterates N times, and within

each iteration the dominating complexity is the probability computation which takes O(K2N)

time. So the overall time complexity is O(B + K2N2).

Small switched capacitance means that

• the distance between vi, vj is short

• the activity of vk will be small.

It has been shown that merging the nearest neighbors is effective in reducing the total wire length

[3]. Also, if we merge small activities, the resultant activity will be also small. That is, if we

merge nodes with higher activities first, in the merging sequences that follow, the activity of the

nodes will be higher because activities increase monotonically as we go up the tree. This means

that we want to bring the high activity nodes into the tree as late as possible so that the overall

activity in the tree will be reduced. This is illustrated in Figure 5. Our method is similar to the

tree construction of Huffman encoding except that our method considers the geometry of the

nodes in addition to the probability of the nodes.

high
activity

low
activity

high
activity

low
activity

(a) (b)

root root

14

We do not claim any optimality or near-optimality in our clock tree
design. Our method is intended for use on top of the designers’ clock
layout methodology, such as a DME or DME-like methodology, to provide a
means of reducing the power consumption in the circuit. Choosing the
middle point CP as the distance measure may cause overestimation of the
switched capacitance in some places and underestimation in other places.
However, when summed up, these over/under estimations tend to cancel
each other out when there are enough nodes. Choosing the middle point
is a reasonable choice since we do not know where the Steiner nodes will
be placed.

4.3 Reducing the Number of Gates
Inserting gates at every node of the clock tree may result in a large area and increase the

complexity of the control circuit and the routing of the enable signals. This is especially

significant because the routing of enable signals is Star-like, and therefore its area can be larger

than that of the clock tree routing if we do not reduce the number of gates. There are cases when

inserting gates hardly reduces switched capacitance. We can think of three cases when a node

does not need a gate:

1. Activity of the node is close to 1

2. Switched capacitance of the node is very small

3. Activity of the parent node is almost the same as the activity of the node.

Case (1) is obvious since there is no timeframe during which the node can be shut off. In case

(2), the node's switched capacitance is so small that having a gate can only reduce switched

capacitance marginally. In case (3), there is very little increase in activity when we go up from

the node to its parent. In this case, it is not necessary for both the node and its parent to have

gates. Only the parent will have a gate, and the resulting switched capacitance is at most slightly

higher than the case in which both nodes have gates.

The gate removal schemes may remove so many gates in the tree that the phase delay of the clock

signal may increase rapidly. So we include a rule for enforcing a gate insertion regardless of

these three rules as follows: if the subtree capacitance of the node reaches, for example 20Cg,

Figure 5: The two clock tree topologies dissipate different power. In (a), low activity
nodes are merged first and the switching activities decrease as we go up the
tree. In (b) however, high activity nodes are merged first, and the switching
activities increase, thereby dissipating more power than (a).

15

where Cg is the input capacitance of a gate, we insert a gate. However, when we override the gate

reduction rule to in fact insert a gate, we insert a buffer instead since the purpose of this insertion

is simply to improve the delay and not mask off the clock. Obviously, the gate control signal will

be removed if a buffer is inserted instead of a masking gate. Using buffers and removing control

signals contributed to further reduction of the switched capacitance.

5. Results

We implemented our algorithm in C++ on a Sun Sparc 20 workstation. For sink locations

(module locations) and the sink load capacitance, we used benchmarks r1-r5 from [7]. The

instruction stream and the used modules for each instruction were generated randomly. However,

to simulate that some instructions are more frequently executed than the others, 10% of the

instructions were made to appear 50% of the time in the instruction stream. The remaining 90%

of the instructions made up the remaining 50% of the instruction stream. The benchmark

characteristics are shown in Table 4. The length of the instruction stream was 100 thousands of

instructions in all the benchmarks. The program ran for two minutes for the biggest benchmark

r5 and ran in less time for other benchmarks.

Bench No. of sinks No. of instr Ave(M (Ii))
r1 267 64 107
r2 598 89 240
r3 862 108 345
r4 1093 120 438
r5 3101 160 1240

Table 4: Benchmark characteristics for gated clock routing

The average number of used modules per instruction is about 40% for all the benchmarks (this

can be seen in the column labeled Ave(M(Ii)). That is, about 40% of the modules are active at any

given time on the average. Note that the power consumption of the gated clock tree will be at

least 40% of the ungated clock tree as a result.

Obtaining the right test bench set was the biggest difficulty in writing
this paper. The test bench requires almost all the information about a
processor, e.g., the instruction set, the RTL description of the design,
the physical layout, and the technology information. Industry does not
provide us with such detailed information about any of their products.
So we had to rely on the design data for an artificially constructed
processor. However we believe that the assumptions we made and the
setup that we used to generate the test bench for our gated clock
routing technique, are generally valid and industrial processors will
exhibit nearly the same kind of behavior and statistics.

16

5.1 Buffered clock tree vs. gated clock tree
The clock tree buffering is a commonly used method in clock routing. The buffered clock tree is

constructed using the nearest neighbor heuristic [3], and the size of a buffer is assumed to be half

the size of an AND gate. The comparison between a buffered clock tree, a gated clock tree, and

a gated clock tree with gate reduction heuristics is shown in Figure 6.

As can be seen from the figure, if the gate reduction heuristic is not applied, the gated clock

routing is worse than the conventional buffered clock routing. The major overhead in the

switched capacitance and the area comes from the Star-like routing scheme assumed for the

control signals. After the gate reduction, it consumes about 30% less power than the buffered

clock routing. However, there is still an area overhead.

5.2 Impact of average module activity
If the average activity is too high, then there is little room for power savings. The average

module activity vs. switched capacitance is shown in Figure 7. As the average module activity

increases, the power consumption difference between the two routing methods diminishes. Thus

the gated clock routing is more effective when the module activity is low.

Figure 6: Comparison among different clock routing methods.
Switched capacitance in pF, area in 106 units

0

200

400

600

800

r1 r2 r3 r4 r5

Switched Capacitance

0

10

20

30

40

50

60

70

r1 r2 r3 r4 r5

Area

Buffered

Gated

Gate Red.

0

10

20

30

40

50

60

20 40 60 80 100

Gate Red.

Buffered

17

5.3 Optimum number of gates
The proportion of power dissipation between the clock tree and the
controller tree is shown in Figure 8. We picked only one benchmark to
show this proportion since other benchmarks showed similar graphs.

If there are a lot of masking gates in the clock tree, then the switched capacitance in the clock tree

will be reduced, but the switched capacitance and the area of the controller tree will be increased.

On the contrary, if there are too few gates, the switched capacitance in the clock tree will be

increased. Intuitively, there is an optimum number of masking gates that minimizes the total

switched capacitance. This optimum value is clearly observed in Figure 8.

We control the number of gates by giving different parameters in the gate reduction heuristic.

When there are many gates, the controller tree dominates the switched capacitance and the area.

As the number of gates is reduced, the switched capacitance in the controller tree is reduced but

that of the clock tree is increased. In Figure 8, the optimum gate reduction to achive the

minimum power dissipation is at 55%.

Figure 7: Average module activity (x-axis) vs. switched
capacitance (y-axis) for benchmark r1

Figure 8: Gate reduction vs. switched capacitance and area for benchmark r1

0
10
20
30
40
50
60
70
80

0 20 55 75 85 90
gate reduction (%)

Switched Capacitance

Controller tree

Clock tree

0

5

10

15

20

0 20 55 75 85 90
gate reduction (%)

Area

18

6. Conclusion

We presented a gated clock routing that has lower switched capacitance over buffered clock trees.

We presented a clock topology generation heuristic based on the module activities and the sink

locations. We proposed a method to find the signal probability and the transition probability of

the gate control signals from the tables generated from the instruction stream.

Our experimental results showed that the gated clock routing significantly reduces power

dissipation over buffered clock routing with a marginal increase in the routing area and the

number of gates. Furthermore, our experimental results showed that there is an optimum number

of gates in order to achieve the lowest switched capacitance. This helps a designer choose a more

effective trade-off between the power, area, and routing complexity.

We assumed a binary tree topology in order to take advantage of the
efficient bottom-up merging (know as DME, Deferred Merge & Embedding)
technique for clock routing. Notice however that the clock tree is
binary only in its topology. In fact, zero skew merging may result in a
tree where some edge length becomes zero (this indeed occurred in our
test benches). In this case, two nodes of the tree collapse into one,
resulting in a non-binary tree in physical layout.

The goal of this paper was to propose a power reduction technique based
on gated clock routing, not to propose a new zero-skew or bounded-skew
clock routing algorithm. Our basic model of the power consumption in a
gated clock tree can be used with any other clock routing algorithm
(e.g., a bounded-skew clock routing algorithm) to produce power savings.

We understand that the Elmore delay is no longer suitable for deep
submicron design, but we used the Elmore delay in this paper as the
basis for our delay calculator only for the sake of presentation. The
Elmore delay model can indeed be replaced with other delay calculation
equation. Furthermore, because in clock routing we are interested in the
delay difference, the choice of the delay calculator is not as critical
as an application in which the absolute delay accuracy is required.

In our power estimation of the clock tree, we have not included the short circuit power, the power

associated with the additional control logic. However, also not included is the power saving on

modules, which may be a more significant saving than the power saving in the clock tree itself.

We believe that the power saving in the clock tree and the modules is large enough to compensate

the additional power consumption due to the control logic and the enable signal routing.

Furthermore, a module in this paper refers to (from coarse to fine grain), a chip, a large functional

unit, or a flip-flop. If the granularity is too coarse, the benefit of power saving is less. On the

contrary, if it is too fine, the complexity of gate control logic and the routing of the enable signal

19

is too high. A simulation of different design styles may be needed to get optimum module

granularity.

References

[1] Luca Benini and Giovanni De Micheli, “Automatic Synthesis of Low-Power Gated-Clock
Finite-State Machines,” IEEE Transactions on Computer-Aided Design, vol. 15, no. 6, pp.
630-643, June 1996.

[2] Kenneth D. Boese and Adrew B. Kahng, “Zero-Skew Clock Routing Trees With Minimum
Wirelength,” Proc. of IEEE International Conference on ASIC, pp. 1.1.1-1.1.5, 1992.

[3] M. Edahiro, “Minimum Path-Length Equi-Distance Routing,” Proc. of IEEE Asia-Pacific
Conf. on Circuits and Systems, pp. 41-46, 1992.

[4] Jaewon Oh and Massoud Pedram, “Power Reduction in Microprocessor Chips by Gated
Clock Routing,” Proc. of Asia South Pacific Design Automation Conference, pp. 313-318,
1998.

[5] Jaewon Oh and Massoud Pedram, “Gated Clock Routing Minimizing the Switched
Capacitance,” Proc. of Design Automation and Test in Europe, pp. 692-697, 1998.

[6] Gustavo E. Téllez, Amir Farrahi, and Majid Sarrafzadeh, “Activity Driven Clock Design for
Low Power Circuits,” Proc. International Conference on Computer-Aided Design, pp. 62-65,
1995.

[7] R-S Tsay, “Exact zero skew,” Proc. of International Conference on Computer-Aided Design,
pp. 336-339, 1991.

20

Appendix: Design issues in gated clock routing
In this appendix, we discuss some of the issues in designing the gated clock tree.

Timing

Assume that the clock rising edge or the clock ‘high’ triggers all the registers. The gated clock

should be designed so that every sink must see the clock pulse as if the clock signal is never

gated. Both the timing of the clock rising edge and the clock pulse duration should be preserved

for correct operation of the entire circuit. To pass the correct clock pulses, all the gates from the

root to the active module must be enabled before the clock edge comes in. That is, if a module is

to be active in the current clock cycle, this fact must be known in the previous clock cycle. This

can be done, for example, in a microprocessor with a pipeline. The instruction-decode stage

determines the instruction type and modules to use, and then the control logic enables gates

necessary to deliver the clock signal from the root to the specific modules in the execution stage.

In that sense, the gate controller itself is a FSM since it needs to store a state at the instruction

decoding stage and send out appropriate gate-control signals at the execution stage, which are not

back-to-back clock cycle operations. The gate controller will need uninterrupted clocks all the

time, and there may be some other critical modules that it will also need uninterrupted clocks.

This will reduce the amount of power savings in the clock gating methodology.

If the gate enable signal comes while the clock is high, the sink may see unwanted transitions.

Thus, the enable signal should be on/off only when the clock is low. Besides, the enable signals

should not have glitches while the clock is high because this may introduce extra clock pulse. The

timing diagram of an enable signal is shown in Figure 9.

21

In practice, however, designing a glitch-free circuit is difficult. Reference [1] suggests the use of

a latch in addition to the gate to filter out glitches while the clock is high. Their method is

illustrated in Figure 10. Fi is the signal to stop the clock when it is low, and L is a latch

transparent when the clock CLK is low. When CLK is low, Fi pass through the latch to create gate

enable signal ENi. When CLK is high, ENi retains its value regardless the value of Fi. This circuit

ensures that no glitch in Fi is propagated while the clock is high.

Figure 9: Timing requirements of the gate enable signals

Figure 10: Generating a glitch-free gate enable signal

CLK

Enable

Gated CLK

idle active idleModule

ENiFi

CLK

L To clock gate

Gate controller

22

Distributed Gate Controller

Processors generate data path control signals for enabling tri-state buffers or for addressing MUX

outputs to feed the data from the registers to specific combinational circuits. Naturally, these data

path control signals have similar timing as the gate control signals. Some gate control signals may

even be shared with existing data path control signals. Therefore gated clock control logic can be

easily integrated with the existing control circuitry in the processor.

For simplicity in this paper, we assumed a centralized controller. However, it is possible to have

a distributed controller. In a typical microprocessor, the modules are control block, data-path

block, or memory block. Usually a data-path block or a memory block accompanies one or more

control blocks nearby to control how they run. These control blocks can serve as the clock gate

controllers since they have information about the active/idle states of the modules they are

controlling. In addition, the clock masking gates that provide the clock signal to the modules they

control, are apt to be in the neighborhood of the control block and the controlled block. The

result of the distributed controller is a reduction in the length of a Star-like routing. This is

illustrated in Figure 11.

Assume that the chip is square and its side is of length D. The longest edge length of the star tree

is D/2 (assuming Manhattan length). Assuming the average edge length is half of this (D/4), the

total routing area is GD/4 where G is the number of gates. If we divide the chip into k equal sized

partitions (where k is a power of two), then each partition has G/k gates and the average edge

length is kD 4/ . Therefore the total routing area is

k

GD

k

D

k

G
k

44
=

Figure 11: (a) one centralized controller vs. (b) four distributed controller

(b)(a)

23

As the number of partition increases, the star routing area is reduced by a factor of k .

Suppose a module is active for a number of consecutive clock cycles. This results in a waste of

energy if enabling signals go on/off during this time. To prevent this, the gate enable signal may

be designed to remain high for one or two clock cycles even after the module is gone idle. This

prevents unnecessary switching of the enable signal between the consecutive active cycles of the

module. Note that it is harmless to feed the clock during the idle time of the module.

