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Abstract - This paper presents an effective technique for
compacting a large sequence of input vectors into a much
smaller one such that when the two sequences are applied to
any circuit, the resulting power dissipations are nearly the
same. Specifically, this paper introduces the hierarchical
modeling of Markov chains as a flexible framework for
capturing not only complex spatiotemporal correlations, but
also dynamic changes in the sequence characteristics. The new
framework has a high degree of adaptability, i.e. the
hierarchical model is dynamically grown according to the
sequence behavior. Experimental results demonstrate that
large compaction ratios can be obtained without significant loss
in accuracy (less than 5% on average) for power estimates.

I. INTRODUCTION
With the growing need for low-power systems, power analysis and
low-power synthesis have become primary concerns for the design
community. Power estimation is in general a difficult problem. To
date, both simulative [1][2] and nonsimulative approaches [3]-[6]
have been tried, each one having its own advantages and
limitations. More specifically, general simulation techniques
provide sufficient accuracy, but have high computational cost. On
the other hand, nonsimulative approaches are in general faster, but
are less accurate.

Referring to simulation based techniques, the input statistics  and
the length of the input sequences are two important issues for
power estimation. Our objective in this paper is to solve efficiently
the following problem: having an initial sequence (assumed
representative for the application data), transform that input
sequence into a smaller one, such that the new body of data
represents a good approximation of the initial sequence as far as
total power consumption is concerned.

Attempts to solve this probleme do exist. Elaborate and effective
techniques were presented in [7][8] where authors succeed in
compacting large sequences without significant loss in accuracy.
However, both techniques may introduce new vectors in the final
compacted sequence and do not adapt very well to changes in the
input characteristics. To illustrate the significance of this latter
issue, we consider an example.
Example 1: Let S1 be a 5-bit sequence as shown in Fig.1a; next to
it, we represent the word-level transition graph that corresponds to
this sequence. Each state in this graph corresponds to a distinct
pattern in the sequence and each edge represents a valid transition
between any two patterns that occur in the sequence; the label of
each edge captures the conditional probability of transition from
the source node to the destination node. This particular set of
inputs behaves like a pseudorandom sequence because any vector
*This research was supported by DARPA under contract F33615-95-
C1627, SRC under contract 97-DJ-559, NSF under contract MIP-9457392
and a grant from Toshiba Corp.

is equally likely to be followed by any other remaining pattern.
The total number of bit-flippings in the whole sequence is 36; then,
dividing this value by the sequence length, we get an average value
of 3 transitions per time step.

Fig.1: Two sequences and their corresponding transition graphs
In Fig.1b we consider another sequence S2, which is completely
deterministic and highly correlated. It has an average value of 1.33
transitions per step, thus producing less activity compared to S1.

Suppose that we duplicate 25 times the original sequence S1 and
100 times the sequence S2, getting two new sequences S1* and
S2*, respectively. Based on S1* and S2*, we construct now a new
sequence S* which is formed by concatenating S1* and S2* in the
order S1* → S2* → S1*; the transition graph representation of this
new ‘macrosequence’ is given in Fig.2.

Fig.2: The transition graph for the composite sequence S*

The question becomes now, how will the average power
consumption look like as a function of time, when S* is applied to
any circuit? Obviously, the circuit has now two very different
modes of operation: one where a lot of activity is generated at the
primary inputs, and a second one where about one single input bit
toggles at every time step. In Fig.3 we can see the effect of these
two different regimes on average power consumption for
benchmark C17. Starting initially with S1*, after 300 time steps
the value of average power stabilizes around 110μW; after that,
when the characteristics of the input sequence change, the power
value goes down toward 70μW and finally, due to the increase of
the switching activity at the primary inputs, it comes up towards
90μW.

This type of behavior is very common in practice. More
precisely, only homogenous input sequences (which contain
statistically similar vectors) will exercise the circuit such that the
value of average power will converge rapidly. A typical example is
a set of pseudorandom vectors where the average power value
stabilizes after applying only tens of vectors. However, in practical
applications, the stimuli may contain a mixture of vectors, each
one very different as far as average switching activity per bit is
concerned.
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 Fig.3: Average power dissipation for C17
The approach suggested in [7] tries to model the average

behavior which might result when such a mixture of vectors is
present at the primary inputs of the circuit. To this end, the authors
synthesize first a stochastic machine that is probabilistically
equivalent to the initial sequence. After that, by applying randomly
generated inputs to the stochastic machine, a random walk through
the states of the transition graph is emulated and a new and shorter
sequence is generated. However, a compaction procedure based on
random walks in graphs where some pairs of vectors have very
small transition probabilities, has the potential drawback of
‘hanging’ into a small subset of states. As a consequence, an
erroneous power value can be obtained depending on which
component (low or high activity) is visited. The same type of
phenomenon is observed for statistical methods when the
distribution is very different from a normal one (e.g. bi-modal
distributions), or when one selects from the initial sequence only
the first few hundred vectors. Thus, in practice, to compact large
sequences that contain non-homogeneous power behaviors, a
technique with high adaptability is needed.

The present paper improves the-state-of the art by providing an
original solution for the vector compaction problem. The
foundation of our approach is probabilistic and relies on adaptive
(dynamic) modeling of binary input streams as first-order Markov
sources of information. As distinctive feature, we use hierarchical
Markov models to structure the input space into a hierarchy of
macro- and micro-states: at the first (high) level in the hierarchy
we have a Markov chain of macrostates; at the second (low) level,
each macrostate is in turn characterized by a Markov chain for all
its constituent microstates. Our primary motivation for this
hierarchical structure is to enable a better modeling of the different
stochastic levels that are present in sequences that arise in practice.
Another important property of such models is to capture the
different operating modes of a circuit using the first level in the
hierarchical Markov model, thus providing high adaptability to
different operating modes of the circuit.

After constructing the hierarchy for an input sequence, starting
with some macrostate, a compaction procedure with a specified
compaction ratio is applied to compact the set of microstates
within that macrostate. Next, the control returns to the higher-level
in the hierarchy and, based on the conditional probabilities that
characterize the Markov chain at this level, a new macrostate is
entered and the process repeats. While the compaction procedure
in [7] can be adapted to work in this new environment, we prefer
instead to combine the advantages offered by the hierarchical
model with a new and computationally more efficient technique,
called dynamic Markov chain (DMC) modeling. The initial
formulation of DMC modeling [9], was extended in [10] to
manage not only correlations among adjacent bits that belong to
the same input vector, but also correlations between successive
input patterns.

This new framework is very effective in power estimation. The
basic idea is illustrated in Fig.4. To evaluate the total power
consumption of a target circuit for a given input sequence L0
(Fig.4a), we derive first the hierarchical Markov model (HMM) of

the input sequence and after that, having this compact
representation, we generate a much shorter sequence L, equivalent
with L0, which can be used with any available simulator to derive
accurate power estimates (Fig.4b).

Fig.4: Sequence compaction using HMM
The paper is organized as follows: Section II formalizes the

power-oriented vector compaction problem and discusses
parameters that make this approach effective in practice. Section
III introduces and characterizes the concept of hierarchy associated
with the input space. Section IV presents a DMC-based procedure
for vector compaction and finally, in section V, we give some
practical considerations and experimental results. We conclude by
summarizing our main contribution.

II. POWER ORIENTED DATA COMPACTION
Capturing only signal probabilities at the primary inputs of the
circuit is not enough for accurate power estimation therefore it is
critical to distinguish between sequences which exhibit the same
signal probabilities on different bit lines, yet showing very
different spatial and temporal correlations. Assuming that a gate
level implementation is available, to estimate the total power
dissipation, one can sum over all the gates in the circuit the average
power dissipation due to the capacitive switching currents, that

is: , where fclk is the clock

frequency, VDD is the supply voltage, Cn and swn are the
capacitance and the average switching activity of gate n,
respectively. Hence, the average switching activity per node (gate)
is the key parameter that needs to be correctly determined,
especially if we are interested in a node-by-node power estimation.
Consequently, the vector compaction problem can be formulated
as follows: for any k-bit sequence of length n (consisting of vectors
v1,v2,...,vn), find another sequence of length m < n (consisting of
the subset u1,u2,...,um of the initial sequence), such that the average
transition probability on the primary inputs is preserved wordwise.
More formally, for any generic input v and u (seen as a collection
of bits) in the original and in the compacted sequence, respectively,
the following holds:

           (1)

In relation (1), v-, v+ (u-, u+) denote the current and the next vector,
respectively, in the original (compacted) sequence and α, β are any
two patterns that appear in the initial sequence. The condition
above simply requires that the joint transition probability for any
group of bits is preserved within a given level of error, for any two
consecutive vectors.

III. HIERARCHICAL MODELING OF THE INPUT SEQUENCE
Our objective now is to structure the transition graph associated
with an input sequence into a hierarchy of subgraphs that
correspond to different behaviors (in particular, different power
consumptions). To this end, we provide first some useful
definitions.
A. Micro/Macro-state modeling
Definition 1. (Lag-one Markov chain). A discrete stochastic
process {vn}n ≥1 is said to be a lag-one Markov chain (or Markov
chain for simplicity) if at any time step n we have:
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                                            (2)

where  is the conditional

probability of vn given vn-1.
In other words, the probability of having a symbol depends only on
the previous vector and is independent on the ‘history’ of the
sequence.
Definition 2. (Weighted transition graph). A weighted transition
graph is a directed graph where any edge from state si to state sj is

labelled with a conditional probability and a weight wij

associated with the transition si → sj.
We shall see later in this section the meaning of these weights for

our particular application.
Definition 3. (Weight of a random walk). The weight of a random
walk in a weighted transition graph is given by:

where wij is the weight associated with transition si → sj.
Definition 4. ((ε, δ)-property). A weighted transition graph is said
to have the (ε, δ)-property if there exists a grouping {S1, S2,...,Sp}
on the set of states {s1, s2,..., sn} of the transition graph satisfying:
• (ε-criterion): ∀ si ∈ Sk, sj ∈ Sl then p(si|sj) < ε and p(sj|si) < ε;
• (δ-criterion): ∀ Sk, ∃ Wk such that | Wk - wij | < δ, for any two

states si, sj ∈ Sk. Also, if k < l, Wk’s are such that Wk < Wl. Sk’s are
called the macrostates whereas si ∈ Sk are called the microstates
within macrostate Sk.

The intuitive reason for the above definition is the following:
conditional probabilities from any microstate in Sk to another
microstate in Sl (Sk ≠ Sl) are negligible (ε-criterion), and all
transitions among microstates belonging to the same macrostate
have similar weights (δ-criterion). For instance, in Fig.2
microstates ‘10’, ‘21’, ‘26’, ‘29’ form the macrostate S1* (with
high activity), while ‘15’, ‘30’, ‘31’ form S2* (with low activity).

In general, a particular microstate may appear in more than one
macrostate since not only the vector itself, but also the context in
which it appears is important (as in Definition 4, the weight value
for a transition determines whether the microstates belong to the
macrostate or not). Therefore, the grouping of states is done such
that transitions are clustered according to their associated weights.

From what we defined so far, we are able to structure the input
space hierarchically. More precisely, instead of considering the
input sequence as a flat sequence of vectors we can see it as a
structured multi-level discrete stochastic process called
Hierarchical Markov Model (HMM). HMM generalizes the
familiar Markov chain concept by making each of its macrostates a
stochastic model on its own, i.e. each macrostate is a HMM as
well. For instance, the graph in Fig.2 can be represented
hierarchically as shown below, where the macrostate S1* identifies
the high activity mode and S2* the low activity one.

Fig.5: A two-level hierarchy for sequence S*
We should point out that in general the high-level Markov chain

is not autonomous, that is the conditional probabilities may be
different than 1. For example, if the initial sequence is: S1 → S2 →
S3 → S2 → S1 (thus having three modes of operation), then in the
high-level Markov chain we have p(S3|S2) = p(S1|S2) = 0.5

(because from S2 is equally likely to go to either S3 or S1).
The initial problem of compacting a flat input sequence becomes

now that of compacting a hierarchy of subsequences. Since the
vectors from each macrostate are gathered using the same δ−
criterion, the compaction is done now inside each macrostate. This
way, the ‘hang-up’ problem mentioned in the introductory part is
avoided, that is all macrostates are guaranteed to be visited (as
their transition probabilities ‘scale-up’ after hierarchization). For
instance, in Fig.2, the transition probabilities between S1* and S2*
equal 0.001 and 0.007 respectively; in the hierarchical organization
shown in Fig.5, these probabilities become 1.

In what follows we present some useful results for HMM
characterization. (Proofs are given in [14].)
Theorem 1. If the state probability of each macrostate and the state
probabilities for all microstates within a macrostate are preserved,
then the state probability distribution for the initial (flat) sequence
is completely captured.
Theorem 2. In a hierarchical model satisfying the ε−criterion, if
transition probabilities of the microstates are preserved within each
macrostate and if the state probabilities of the macrostates are
correctly captured, then transition probabilities of the initial
sequence are reproduced with an error less than or equal to ε.
Theorem 3. If the hierarchy satisfies the (ε, δ)-property (as in
Definition 4), then the weight of a random walk in the flat model
satisfies:

where p(Sk) is the probability of being in macrostate Sk, Wk is the
weight associated to macrostate Sk as in Definition 4 and p(SkSl) =
p(Sk) p(Sl|Sk) is the transition probability from macrostate Sk to
macrostate Sl.

In other words, a random walk on the HMM preserves up to
some error the average weight of the original sequence. The first
term in the above sum represents the average weight per
macrostate, whereas the second accounts for the weight of
transitions among them.

This general formulation applies immediately to our problem
defined in Section II. In fact, if the input sequence is hierarchically
structured, Theorem 2 guarantees that inequality (1) is still
satisfied. Moreover, Theorem 3 guarantees that the average power
value is maintained. Practically, this is very important because the
hierarchical model has the advantage of being highly adaptive as
opposed to a flat processing of the input which does well ‘on
average’.

B. A Hamming distance-based criterion for microstate grouping
In practice, it is hard to determine the weight wij for each
individual transition. This would mean to have detailed
information about the circuit (e.g. capacitive loads, internal
structure) and to employ a simulation procedure to derive the exact
power consumption for each pair of vectors from the original
sequence [13]. For all practical purposes, this is at least
inconvenient if not impossible, and therefore we suggest a
different, circuit independent, criterion to structure the input space.
As suggested in Example 1, what we need is an indicator for the
level of activity at the primary inputs. For this purpose, we use the
average Hamming distance between two consecutive vectors
because, from our investigation, it seems to be a reliable indicator
of the average power consumption. However, the framework we
provide is open to other, more elaborate, weighting functions.

In this particular example (see Fig.6), based on the Hamming
distance criterion, we can roughly classify the input sequence into
‘high activity’ and ‘low activity’ macrostates (that is, if more than
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3 out of 5 bits change, then we are in the high activity mode,
otherwise in low activity mode). While this kind of partitioning
into high and low activity modes can be always used, in practice it
is better to have a more refined model.

Fig.6: Average Hamming distance variation
For instance, if the set of all possible values for the Hamming
distance is divided in three equally-sized regions that correspond
to low, medium and high activity, then we can identify more than
two modes of operation.

A more refined model might be required if we are not only
interested in preserving the total power consumption, but are also
required to identify the different modes of operation (e.g. an
initialization mode, a normal operation mode, a standby mode, and
a sleep mode).  To detect the changes in the input sequence, a
sliding window is used to compute the average value of the
predictor function. We note that the size of the window should not
be chosen too small (due to the fragmentation, the high-level
Markov chain becomes very similar to the flat model) or too large
(the low-level Markov chain becomes very similar to the flat
model). However, our experience shows that a window size of 50-
100 vectors works well in practice. We should note that the ε-
criterion (if satisfied) is already taken care of by this procedure:
since all macrostates are guaranteed to be visited (due to the
scaling of conditional probabilities in the high-level model), we
cannot end up with a wrong value for the total power consumption
as is the case for the flat model.

IV. A DMC-BASED VECTOR COMPACTION PROCEDURE
A. Background on dynamic Markov models
Suppose that the set of events of interest is the set S of all finite
binary sequences on k bits. A particular sequence S1 in S consists
of vectors v1, v2,..., vn (which may be distinct or not), each having
a positive occurrence probability. Imposing a total ordering among
bits, such a sequence may be conveniently represented as a binary
tree DMT0 (Dynamic Markov Tree of order zero) where nodes at
level j correspond to bit j (1 ≤ j ≤ k) in the original sequence; each
edge that emerges from a node is labelled with a positive count
(and therefore with a positive probability) which indicates how
many times the substring from the root to that particular node,
occurs in the original sequence.

The construction procedure for trees DMT0 and their properties
are described in detail in [10]. However, we observe that DMT0
alone cannot capture temporal correlations because the relative
order of vectors in the initial sequence is irrelevant for the
construction of DMT0. Consequently, we refine now the above
structure by incorporating first-order temporal effects and defining
a new tree called DMT1 (Dynamic Markov Tree of order 1).
Example 2: For the following 4-bit sequence consisting of 8 non-
distinct vectors: (v1, v2, v3, v4, v5, v6, v7, v8) = (0000, 0001, 1001,
1100, 1001, 1100, 1001, 1100) the construction of the tree DMT1
is shown in Fig.7. Without any loss in generality, we assume a left-
to-right order among bits that is, the leftmost bit in any vector v1 to

v8 is considered as being bit number one (and consequently
represented at level one in DMT1), the next bit is considered as
being bit number two and so on. Every time a vector is completely
scanned (this corresponds to reaching level four in the tree), we
construct a new tree, rooted at that node and representing the next
vector. For instance, vector v2 = 0001 follows immediately after v1
= 0000; consequently, when we reach the node that corresponds to
v1 (the leftmost path in Fig.7a), instead of going back to the root
(and therefore ‘forgetting’ the context), we start to build a new
tree, rooted at the current leaf. The newly constructed tree will
preserve the context in which v2 = 0001 occurred that is,
immediately after v1 = 0000 (denoted by v1 → v2). After
processing the pair (v1,v2), we come back to the root and continue
with (v2,v3) as shown in Fig.7b.

Fig.7: Construction of first-order dynamic Markov trees
What is important to note here, is that all vector pairs in the

original sequence are processed that is, none of them is skipped
during the construction of DMT1. This is the theoretical basis for
accurate modeling of the input sequences as first-order Markov
sources of information. Continuing this process for all vectors we
end up by building the whole tree DMT1 as shown in Fig.8. The
upper subtree in DMT1 (levels 1 to 4) represents in fact DMT0, that
is, it sets up the state probabilities for the sequence; the lower
subtrees (levels 5 to 8), give the actual sequencing between any
two successive vectors. To keep the counts in these subtrees
consistent, while we traverse the lower subtrees and update the
counts on their edges, we also accordingly increment the counts on
the paths in the upper subtree. Obviously, DMT1 provides more
information than DMT0. To give an example, from Fig. 8, we can
see that string ‘1001’ can follow only after ‘0001’ or ‘1100’,
information that cannot be gathered by analyzing DMT0 alone.

Fig.8: Structure of DMT1

Proposition 1. At every node in DMT0 we have:

                                                                             (3)

for all v in S, where vx represents the event corresponding to the
joint occurrence of the strings v and x.

The above condition, simply states that the sum of the counts
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attached to the immediate successors of node v equals its own
value p(v). As we can easily see in Fig.8, condition (3) is satisfied
at every node in this representation. In addition, based on the
counts of the terminal edges, we may easily compute the
probability of occurrence for a particular vector in the sequence.
For instance, the probability of occurrence for string ‘1001’ is 3/8
(because the count on the terminal edge that corresponds to ‘1001’
is 3 and the length of the sequence is 8) while the probability of
string ‘1111’ is zero, ‘1111’ being a ‘forbidden’ vector for this
particular sequence.
Proposition 3 [11]. We write the probability of a vector string v =
v1v2...vn as follows:

                     (4)

This property, used in connection with the counts on the edges,
allows a quick calculation of the transitions probabilities that
characterize a particular sequence. For example, if we want to
calculate the transition probability ‘1001’ → ‘1100’ we have from
Proposition 3

which is exactly the count on the path ‘10011100’ in the tree
DMT1 divided by the sequence length.
Theorem 4. Any sequence in S can be modeled as a first-order
Markov source using the structure DMT1 and its parameters. We
call this process Dynamic Markov Chain (DMC) modeling.

B. A practical procedure for sequence generation
We describe now a practical procedure to construct DMT1 and
generate the compacted sequence. First, vectors are assigned to
macrostates during a one-pass traversal of the input sequence
based on average Hamming distance as explained in Section III.

During the second traversal of the original sequence (when we
extract the bit-level statistics of each individual vector and also
those statistics that correspond to pairs of consecutive vectors
(v1v2), (v2v3),...,(vn-2vn-1),(vn-1vn)), we grow simultaneously the
trees DMT1 inside each macrostate (the low-level of the hierarchy)
and also the DMT1 tree for the sequence of macrostates (the high-
level of the hierarchy). Vectors within each macrostate are
sequenced together in the same DMT1. If the input sequence
satisfies the (ε, δ) property, the transitions introduced this way do
not change the characteristics (average weight and transition
probabilities) of the model by much. We continue to grow the trees
at both levels of hierarchy as long as the Markov model is smaller
than a user-specified threshold, otherwise we just generate the new
sequence up to that point and discard (flush) the model. A new
Markov model is started again and the process is continued until
the original sequence is completely processed.

For the generation phase itself, we use a modified version of the
dynamic weighted selection algorithm [12]. The pseudocode for
the generation phase and detailed examples involving flushes are
given in [14]. In general, by alternating the generation and flush
phases in the DMC procedure, the complexity of the model can be
effectively handled. To see how the flushing technique affects the
accuracy, assume that an input sequence of length n is modeled by
the DMC approach. Suppose that during the building of the
Markov model, flushing occurs after the first n1 vectors, then after
the next n2 vectors, and so on. If the number of flushes is f, then n1
+ n2 +... + nf = n and the following result holds:
Theorem 5. The error ε in estimating transition probabilities with a
model that supports flushing satisfies:

                                                              (5)

where εi, ni are the error and the number of vectors processed
when the sequence between the i-th and (i+1)-th flushes is

generated. Differently stated, we do not have to worry about the
number of flushes (needed to manage complexity) if the individual
Markov models capture accurately the characteristics of the
subsequences.

The only remaining issue is to determine how many vectors must
be generated inside each macrostate before a transition to another
macrostate is performed. In general, if a subsequence of length Li
is assigned to macrostate Si, after compaction with ratio r, it has to
be reduced to Li/r. We note that inside all macrostates the same
compaction ratio should be used, otherwise the composition of the
sequence (as far as power consumption is concerned) may be
totally different than that of the initial one. On average, each
macrostate Si should be visited  times where M is the

length of the ‘macrosequence’ (i.e. the length of the initial
sequence of macrostates). Thus, each time a macrostate Si is

visited we need to generate a number of

vectors. Since we do compaction only at the microstate level, the
length of the macro-sequence is preserved (the generation
procedure stops when M macrostates are obtained).

We also note that this strategy does not allow ‘forbidden’ vectors
that is, those combinations that did not occur in the original
sequence, will not appear in the final compacted sequence either.

V. EXPERIMENTAL RESULTS
The overall strategy is depicted in Fig.9.

Fig.9: Experimental setup
We assume that the input data is given in the form of a sequence

of binary vectors. Starting with a k-bit input sequence of length n,
we perform a one-pass traversal of the original sequence to assign
microstates to macrostates. Next, we build the trees DMT1 for the
entire hierarchy (macro- and microstates); during this process, the
frequency counts on DMT1’s edges are dynamically updated.

The next step in Fig.9 does the actual generation of the output
sequence (of length m). If the initial sequence has length n and the
new generated sequence has length m < n, then the outcome of this
process is a compacted sequence, equivalent to the initial one as far
as total power consumption is concerned; we say that a compaction
ratio of r = n/m was achieved.

Finally, a validation step is included in the strategy; we use a
real-delay gate-level logic simulator developed under SIS. The
total power consumption of some benchmarks has been measured
for the initial and the compacted sequences. In Table 1, we provide
only the real-delay results for a set of highly biased sequences (of
length 4,000) which contains three modes of operation: a high
activity sequence duplicated 4 times, followed by a low activity
sequence, and finally by a pseudorandom one. As shown in Table
1, the initial sequences were compacted with two different
compaction ratios (namely r = 5 and 10); we give in this table the
total power dissipation measured for the initial sequence (column
2) and for the compacted sequence (columns 3-6). The time in
seconds (on a Sparc 20 with 64 Mbytes of memory) necessary to
read and compress data with DMC modeling was below 5 seconds
in all cases, for both the flat and the hierarchical models. Since
compaction with DMC modeling is linear in the number of nodes

P v( ) P v1( ) P v2 v1( ) … P vn v1v2…vn 1–( )⋅ ⋅ ⋅=

P v( ) P v1v2( ) P v1( ) P v2 v1( )⋅ 3 8⁄= = =

ε 1
n
--- ni εi⋅

i 1=
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∑⋅= max εi( )≤
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Li r p Si( ) M⋅ ⋅( )⁄
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Comparison
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Gate-level logic simul.
 total power estimation  of length m

 dynamically
level models andlow

them
and
update
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in the DMT1 structure, this value is far less than the actual time
needed to simulate the whole sequence. During these experiments,
the number of nodes allowed in the Markov model was 20,000 on
average (around 500Kbytes of memory). The sequences satisfied
the ε-criterion for ε = 0.001, while the parameter δ in Definition 4,
was set to 0.05⋅(# of input bits).

As we can see, the quality of results is very good even when the
length of the initial sequence is reduced by one order of
magnitude. Thus, for C432 in Table 1, instead of simulating 4,000
vectors with an exact power of 1810.02μW, one can use only 800
vectors with an estimate of 1888.42μW or just 400 vectors with a
power consumption estimated as 1906.84μW. This reduction in the
sequence length has a significant impact on speeding-up the
simulative approaches where the running time is proportional to
the length of the sequence which must be simulated. On the other
hand, if one uses the flat model (i.e. a single DMT1 is built for the
whole sequence), for the same benchmark the relative errors in
power prediction are 18% and 32%, respectively. The main reason
for this inaccuracy is the lack of adaptability which characterizes
the flat model when it is applied to multi-modal sequences. This is
not true for ‘well-behaved’ sequences, that is uni-modal
sequences, for which the flat model performs very well as reported
in [10].

Finally, we compare our results generated by HMM with simple
random sampling (SRS) of vector pairs from the original
sequences. In simple random sampling, we performed 1,000
simulation runs with 0.99 confidence level and 5% error level on
each circuit1. We report in Table 2 (columns 2, 3) the maximum
and average number of vector pairs needed for total power values
to converge. We also indicate the percentage of error violations for
total power values, using as thresholds 5%, 6% and 10% (columns
4-6). Using different seeds for the random number generator (and
therefore choosing different initial states in the sequence
generation phase), we run a set of 1,000 experiments for the HMM
technique. In Table 2 (columns 8-10), we give the results obtained
with the hierarchical model, for the same thresholds as those used
in simple random sampling.

Once again, the results obtained with HMM modeling technique
score very well and prove the robustness of the present approach.
As we can see, using fewer vectors, the accuracy of HMM is
higher than that of simple random sampling in most of the cases.

VI. CONCLUSION
In this paper, we addressed the vector compaction problem from

a probabilistic point of view. Structuring the input space as a two-
level hierarchy, we proposed an original approach to compact an
initial sequence into a much shorter equivalent one, which can be
used after that with any available simulator to derive power
estimates in the target circuit.

A major contribution of this paper is that it introduces the

1This means that the probability of having a relative error larger than 5% is
only 1%.

hierarchical modeling of Markov chains as a flexible framework
for capturing not only complex spatiotemporal correlations, but
also the dynamic changes in the sequence characteristics such as
different circuit operating modes or varying power distributions.
The results obtained on standard benchmarks, show that using this
hierarchical model, large compaction ratios can be obtained
without much loss in accuracy in total power estimates.

The issues brought into attention represent an important step to
reduce the gap between simulative and nonsimulative techniques
which are currently the norm.
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Table 1: Total power consumption for ISCAS’85 circuits

Flat model Hierarchical model

Circ. Exact power r = 5 r = 10 r = 5 r = 10

C432 1810.02 1491.58 1230.77 1888.42 1906.84
C499 4390.79 5341.74 6126.58 4497.01 4591.46
C880 3788.22 4504.40 2803.14 3851.42 4006.19
C1355 3783.35 3065.71 4333.81 3910.45 3933.25
C1908 6352.07 4565.87 7094.39 6145.49 6493.44
C3540 14471.46 9005.19 3527.65 15056.43 15021.08
C6288 104158.25 81100.59 82652.47 98112.01 96295.36

Avg.% err. 23.64 31.45 3.55 4.74

Table 2: Results obtained for SRS and HMM

Simple Random Sampling Hierarchical Markov Model

# of vector pairs Error violations (%) # of
vectors

Error violations (%)

Circ. Max. Avg. > 5% > 6% >10% > 5% > 6% >10%

C432 3300 2176 1.1 0.7 0.4 800 2.6 0.6 0.0
C499 1500 862 1.4 1.3 0.2 800 0.1 0.0 0.0
C880 3990 2705 1.8 0.4 0.7 800 2.8 0.9 0.0
C1355 1380 814 1.7 1.0 0.2 800 0.1 0.0 0.0
C1908 1620 846 1.9 1.3 0.2 800 0.1 0.0 0.0
C3540 2340 1446 2.0 1.3 0.4 1200 1.6 0.3 0.0
C6288 7470 5422 1.4 1.4 0.3 3600 1.5 0.0 0.0


