
 1 

Power Minimization Techniques at the RT-Level and 

Below 

 

Afshin Abdollahi and Massoud Pedram 

Dept. of Electrical Engineering 

University of Southern California 

Los Angeles, CA 90089 U.S.A. 

 

 

Abstract – Power consumption and power-related issues have become a first-order 

concern for most designs and loom as fundamental barriers for many others.  And, while 

the primary method used to date for reducing power has been supply voltage reduction, 

this technique begins to lose its effectiveness as voltages drop to sub-one volt range and 

further reductions in the supply voltage begin to create more problems than are solved.  

Under these circumstances, the process of design and the automation tools required to 

support that process become the critical success factors. In the last decade, huge effort 

has been invested to come up with a wide range of design solutions that help solve the 

power dissipation problem for different types of electronic devices, components and 

systems. These techniques range from multiple voltage assignment and dynamic voltage 

scaling, to RTL power management and power-aware sequential logic synthesis, to 

leakage power reduction techniques. This tutorial paper explains a number of 

representative low power design techniques from this large set. More precisely, we will 

describe basic techniques, applicable at RT-level and below, that have proven to hold 

good potential for power optimization in practical design environments. 

1 Introduction 

A dichotomy exists in the design of modern microelectronic systems: they must be low 

power and high performance, simultaneously. This dichotomy largely arises from the use 
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of these systems in battery-operated portable (wearable) platforms. Accordingly, the goal 

of low-power design for battery-powered electronics is to extend the battery service life 

while meeting performance requirements. Unless optimizations are applied at different 

levels, the capabilities of future portable systems will be severely limited by the weight of 

the batteries required for an acceptable duration of service. In fixed, power-rich 

platforms, the packaging cost and power density/reliability issues associated with high 

power and high performance systems also force designers to look for ways to reduce 

power consumption. Thus, reducing power dissipation is a design goal even for non-

portable devices since excessive power dissipation results in increased packaging and 

cooling costs as well as potential reliability problems. Meanwhile, following Moore’s 

Law, integrated circuit densities and operating speeds have continued to go up in 

unabated fashion. The result is that chips are becoming larger, faster, and more complex 

and because of this, consuming increasing amounts of power. 

These increases in power pose new and difficult challenges for integrated circuit 

designers.  While the initial response to increasing levels of power consumption was to 

reduce the supply voltage, it quickly became apparent that this approach was insufficient.  

Designers subsequently began to focus on advanced design tools and methodologies to 

address the myriad of power issues. Complicating designers’ attempts to deal with these 

issues are the complexities – logical, physical, and electrical – of contemporary IC 

designs and the design flows required to build them.   

The established front-end approach to designing for lower power is to estimate and 

analyze power consumption at the register transfer level (RTL), and to modify the design 

accordingly. In the best case, only the RTL within given functional blocks is modified, 

and the blocks re-synthesized. The process is re-iterated until the desired results are 

achieved. Sometimes, though, the desired power consumption reductions may be 

achieved only by modifying the overall design architecture. Modifications at this level 

affect not only power consumption, but also other performance metrics, and may indeed 

greatly affect the cost of the chip. Thus, such modifications require re-evaluation and re-

verification of the entire design. The architectural optimization techniques, however, fall 

outside the coverage of the present article. 
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This article reviews a number of representative RTL design automation techniques that 

focus on low power design. It should be of interest to designers of power efficient 

devices, IC design engineering managers, and EDA managers and engineers. More 

precisely, it covers techniques for, sequential logic synthesis, RTL power management, 

multiple voltage design, and leakage power minimization and control techniques. 

Interested readers can find wide-ranging information on various aspects of low power 

design in  [1]- [3].  

2 Multiple-Voltage Design 

Using different voltages in different parts of a chip may reduce the global energy 

consumption of a design at a rather small cost in terms of algorithmic and/or architectural 

modifications. The key observation is that the minimum energy consumption in a circuit 

is achieved if all circuits paths are timing-critical (there is no positive slack in the circuit.) 

A common voltage scaling technique is thus to operate all the gates on non-critical timing 

paths of the circuit at a reduced supply voltage. Gates/modules that are part of the critical 

paths are powered at the maximum allowed voltage, thus, avoiding any delay increase; 

the power consumed by the modules that are not on the critical paths, on the other hand, 

is minimized because of the reduced supply voltage. Using different power supply 

voltages on the same chip of circuitry requires the use of level shifters at the boundaries 

of the various modules (a level converter is needed between the output of a gate powered 

by a low VDD and the input of a gate powered by a high VDD, i.e., for a step-up change.)  

Figure 1 depicts a typical level converter design. Notice that if a gate that is supplied with 

VDD,L drives a fanout gate at VDD,H, transistors N1 and N2 receive inputs at reduced 

supply and the cross-coupled PMOS transistors do the level conversion. Level converters 

are obviously not needed for a step-down change in voltage. Overhead of level converters 

can be mitigated by doing conversions at register boundaries and embedding the level 

conversion inside the flip flops (see  [4] for details.)   

A polynomial time algorithm for multiple-voltage scheduling of performance-constrained 

non-pipelined designs is presented by Raje and Sarrafzadeh in  [5]. The idea is to establish 

a supply voltage level for each of the operations in a data flow graph, thereby, fixing the 
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latency of that operation. The goal is then to minimize the total power dissipation while 

satisfying the system timing constraints. Power minimization is in turn accomplished by 

ensuring that each operation will be executed using the minimum possible supply 

voltage. The proposed algorithm is composed of a loop where, in each iteration, slacks of 

nodes in the acyclic data flow graph are calculated.  Then, nodes with the maximum slack 

are assigned to lower voltages in such a way that timing constraints are not violated. The 

algorithm stops when no positive slack exists in the data flow graph. Notice that this 

algorithm assumes that the Pareto-optimal voltage versus delay curve is identical for all 

computational elements in the data flow graph. Without this assumption, there is no 

guarantee that this algorithm will produce an optimal design.  

In  [6], the problem is addressed for combinational circuits, where only two supply 

voltages are allowed. A depth-first search is used to determine those computational 

elements, which can be operated at low supply voltage without violating the circuit 

timing constraints. A computational element is allowed to operate at VDD,L only is all its 

successors are operating at VDD,L. For example, Figure 2(a) demonstrates a clustered 

voltage scaling (CVS) solution in which each circuit path starts with VDD,H and switches 

to VDD,L when delay slack is available. The timing-critical path is shown with thick line 

segments. Here gray-colored cells are running at VDD,L. Level conversion (if necessary) is 

done in the flip flops at the end of the circuit paths. An extension to this approach is 

proposed in  [7], which is based on the observation that by optimizing the insertion points 

of level converters, one can increase the number of gates using VDD,L without increasing 

the number of level converters. This leads to higher power savings. For example, in the 

CVS solution depicted in Figure 2(a), assume that the path delay from flip-flop FF3 to 

gate G2 is much longer than that of the path from FF1 to G2. In addition, assume that if 

we apply VDD,L to G2, then the path from FF3 to FF5 through G2 will miss its target 

combinational delay i.e., G2 must be assigned a supply level of VDD,H. With the CVS 

approach, it immediately follows that G3 must be assigned VDD,H although a potentially 

large positive slack remains in the path from FF1 to G2. The situation is the same for G4 

and G5. Consequently, the CVS approach can miss opportunities for applying VDD,L to 

some gates in the circuit. If the insertion point of the level converter LC1 is allowed to 
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move up to the interface between G3 and G2, the gates G3 through G5 can be assigned a 

supply of VDD,L, as depicted in Figure 2(b). The structure shown there is one that can be 

obtained by the extended CVS (ECVS) algorithm. Both CVS and ECVS assign the 

appropriate power supply to the gates by traversing the circuit from the primary outputs 

to the primary inputs in a topological order. ECVS allows a VDD,L-driven gate to feed a 

VDD,H driven gate along with the insertion of a dedicated level converter.  

In  [8], the authors propose an approach for voltage assignment in combinational logic 

circuits. First, a lower bound on dynamic power consumption is determined by exploiting 

the available slacks and the value of the dual-supply voltages that may be used in solving 

the problem of minimizing dynamic power consumption of the circuit. Next, a heuristic 

algorithm is proposed for solving the voltage-assignment problem, where the values of 

the low and the high supply voltages are either specified by the user or fixed to the 

estimated ones.  

In  [9], Manzak and Chakrabarti present resource and latency constrained scheduling 

algorithms to minimize power/energy consumption when the resources operate at 

multiple voltages. The proposed algorithms are based on efficient distribution of slack 

among the nodes in the data-flow graph. The distribution procedure tries to implement 

the minimum energy relation derived using the Lagrange multiplier method in an iterative 

fashion. 

An important phase in the design flow of multiple-voltage systems is that of assigning the 

most convenient supply voltage, selected from a fixed number of values, to each 

operation in the control-date flow graph (CDFG). The problem is to assign the supply 

voltages and to schedule the tasks so as to minimize the power dissipation under 

throughput/resource constraints. An effective solution has been proposed by Chang and 

Pedram in  [10]. The technique is based on dynamic programming and requires the 

availability of accurate timing and power models for the macro-modules in a RTL library. 

A preliminary characterization procedure must then be run to determine an energy-delay 

curve for each module in the library and for all possible supply-voltage assignments. The 

points on the curve represent various voltage assignment solutions with different 
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tradeoffs between the performance and the energy consumption of the cell. Each set of 

curves is stored in the RTL library, ready to be invoked by the cost function that guides 

the multiple supply-voltage scheduling algorithm. We provide a brief description of the 

method for the simple case of control and data flow graphs (CDFG’s) with a tree 

structure. The algorithm consists of two phases: first, a set of possible power-delay 

tradeoffs at the root of the tree is calculated; then, a specific macro-module is selected for 

each node in such a way that the scheduled CDFG meets the required timing constraints. 

To compute the set of possible solutions, a power-delay curve at each node of the tree 

(proceeding from the inputs to the output of the CDFG) is computed; such a curve 

represents the power-delay tradeoffs that can be obtained by selecting different instances 

of the macro-modules, and the necessary level shifters, within the subtree rooted at each 

specific node. The computation of the power-delay curves is carried out recursively, until 

the root of the CDFG is reached. Given the power-delay curve at the root node, that is, 

the set of tradeoffs the user can choose from, a recursive preorder traversal of the tree is 

performed, starting from the root node, with the purpose of selecting which module 

alternative should be used at each node of the CDFG. Upon completion, all the operations 

are fully scheduled; therefore, the CDFG is ready for the resource-allocation step.  

More recently, a level-converter free approach is proposed in  [11] where the authors try 

to eliminate the overhead imposed by level converters by suggesting a voltage scaling 

technique without utilizing level converters. The basic initiative is to impose some 

constraints on the voltage differences between adjacent gates with different supply 

voltages based on the observation that there will be no static current if the supply voltage 

of a driver gate is higher than the subtraction of the threshold voltage of a PMOS from 

the supply voltage of a driven gate. In  [12], Murugavel and Ranganathan propose 

behavioral-level power optimization algorithms that use voltage and frequency scaling. In 

this work, the operators in a data flow graph are scheduled in the modules of the given 

architecture, by applying voltage and frequency scaling techniques to the modules of the 

architecture such that the power consumed by the modules is minimized. The global 

optimal selection of voltages and frequencies for the modules is determined through the 

use of an auction-theoretic model and a game theoretic solution. The authors present a 
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resource constrained scheduling algorithm, which is based on applying the Nash 

equilibrium function to the game theoretic formulation. 

3 Dynamic Voltage Scaling and Razor Logic  

The dependence of both performance and power dissipation on supply voltage results in a 

tradeoff in circuit design. High supply voltage results in high performance while low 

supply voltage makes an energy efficient design. Dynamic voltage scaling (DVS)  [13] is 

a powerful technique to reduce circuit energy dissipation in which, the application or 

operating system identifies periods of low processor utilization that can tolerate reduced 

frequency which allows reduction in the supply voltage. Since dynamic power scales 

quadratically with supply voltage, DVS significantly reduces energy consumption with a 

limited impact on system performance  [14]. 

Several factors determine the voltage required to reliably operate a circuit in a given 

frequency. The supply voltage must be sufficiently high to fully evaluate the critical path 

in a single clock cycle (i.e., critical voltage). To ensure that the circuit operates correctly 

even in the worst-case operating environment some voltage margins are added to the 

critical voltage (e.g., process margin due to manufacturing variations, ambient margins to 

compensate high temperatures and noise margins due to uncertainty in supply and signal 

voltage levels.) 

To ensure correct operation under all possible variations, a conservative supply voltage is 

typically selected using corner analysis. Hence, margins are added to the critical voltage 

to account for uncertainty in the circuit models and to account for the worst-case 

combination of variations. However, such a worst-case combination of variations may be 

highly improbable; hence this approach overly conservative. 

In some approaches the delay of an embedded inverter chain is used as a prediction of the 

critical path delay of the circuit and the supply voltage is tuned during processor 

operation to meet a predetermined delay through the inverter-chain  [15]. This approach to 

DVS allows dynamic adjustment of the operating voltage to account for global variations 

in supply voltage drop, temperature fluctuation, and process variations. However, it 
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cannot account for local variations, such as local supply voltage drops, intra-die process 

variations, and cross-coupled noise, and therefore requires the addition of some margins 

to the critical voltage. Also, the delay of an inverter chain does not scale with voltage and 

temperature in the same way as the delays of the critical paths of the actual design, which 

can contain complex gates and pass-transistor logic, which again requires extra voltage 

margins. 

In  [16] the authors propose a different approach to DVS, referred to as Razor logic, 

which is based on dynamic detection and correction of speed path failures in digital 

designs. The basic idea is to tune the supply voltage by monitoring the error rate during 

operation, which eliminates the need for voltage margins that are necessary for “always-

correct” circuit operation in conventional DVS. In Razor logic, the operation at sub-

critical supply voltages does not constitute a failure, but instead represents a trade-off 

between the power dissipation penalties incurred from error correction versus the 

additional power savings obtained from operating at a lower supply voltage. 

The Razor logic based DVS utilizes a combination of circuit and architectural techniques 

for low cost error detection and correction of delay failures. Each flip-flop in the critical 

path is augmented with a shadow latch which is controlled using a delayed clock. The 

operating voltage is constrained such that the worst-case delay meets the shadow latch 

setup time, even though the main flip-flop could fail. By comparing the values latched by 

the flip-flop and the shadow latch, a timing error in the main flip-flop can be detected. 

The value in the shadow latch, which is guaranteed to be correct, is subsequently utilized 

to correct the delay failure.  

This concept is illustrated in Figure 3(a) for a pipeline stage. The operation of a Razor 

flip-flop is shown in Figure 3(b). In clock cycle 1, the combinational logic L1 meets the 

setup time by the rising edge of the clock and both the main flip-flop and the shadow 

latch will latch the correct data. In this case, the error signal at the output of the XOR gate 

remains low and the operation of the pipeline is unaltered. In cycle 2, the combinational 

logic delay exceeds the intended delay due to sub-critical voltage scaling. In this case, the 

correct data is not latched by the main flip-flop. However, because the shadow-latch 
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operates from a delayed clock, it successfully latches the correct data some time in cycle 

3. By comparing the valid data of the shadow latch with the data in the main flip-flop, an 

error signal is generated in cycle 3. Later, in cycle 4, the valid data in the shadow latch is 

restored into the main flip-flop and becomes available to the next pipeline stage L2.  

If an error occurs in pipeline stage L1 in a particular clock cycle, the data in L2 in the 

following clock cycle is incorrect and must be flushed from the pipeline. However, since 

the shadow latch contains the correct output data of pipeline stage L1, the instruction 

does not need to be re-executed through this failing stage. In addition to invalidating the 

data in the following pipeline stage, an error stalls the preceding pipeline stages 

(incurring one cycle penalty) while the shadow latch data is restored into the main flip-

flops. Then data is re-executed through the following pipeline stage. A number of 

different methods, such as clock gating or flushing the instruction in the preceding stages, 

were presented in  [16]. 

4 RTL Power Management 

Digital circuits usually contain portions that are not performing useful computations at 

each clock cycle. Power reductions can then be achieved by shutting down the circuitry 

when it is idle. 

4.1 Precomputation Logic  

Precomputation logic, presented in  [17], relies on the idea of duplicating part of the logic 

with the purpose of precomputing the circuit output values one clock cycle before they 

are required, and then uses these values to reduce the total amount of switching in the 

circuit during the next clock cycle. In fact, knowing the output values one clock cycle in 

advance allows the original logic to be turned off during the next time frame, thus 

eliminating any charging and discharging of the internal capacitances. Obviously, the size 

of the logic that pre-calculates the output values must be kept under control since its 

contribution to the total power balance may offset the savings achieved by blocking the 

switching inside the original circuit. Several variants to the basic architecture can then be 

devised to address this issue. In particular, sometimes it may be convenient to resort to 
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partial, rather than global, shutdown, i.e., to select for power management only a 

(possibly small) subset of the circuit inputs. 

The synthesis algorithm presented in  [17] suffers from the limitation that if a logic 

function is dependent on the values of several inputs for a large fraction of the applied 

input combinations, then no reduction in switching activity can be obtained. In  [18], the 

authors focus on a particular sequential precomputation architecture where the 

precomputation logic is a function of all of the input variables. The authors call this 

architecture the “complete input-disabling architecture.” It is shown that the complete 

input disabling architecture can reduce power dissipation for a larger class of sequential 

circuits compared to the subset input-disabling architecture. The authors present an 

algorithm to synthesize precomputation logic for the complete input-disabling 

architecture.  

4.2 Clock Gating 

Another approach to RT and gate-level dynamic power management, known as gated 

clocks  [19]– [21], provides a way to selectively stop the clock, and thus, force the original 

circuit to make no transition, whenever the computation that is to be carried out at the 

next clock cycle is redundant. In other words, the clock signal is disabled according to the 

idle conditions of the logic network. For reactive circuits, the number of clock cycles in 

which the design is idle in some wait states is usually large. Therefore, avoiding the 

power waste corresponding to such states may be significant.  

The logic for the clock management is automatically synthesized from the Boolean 

function that represents the idle conditions of the circuit (cf. Figure 4.) It may well be the 

case that considering all such conditions results in additional circuitry that is too large 

and too power consuming. It may then be necessary to synthesize a simplified function, 

which dissipates the minimum possible power and stops the clock with maximum 

efficiency. The use of gated clocks has the drawback that the logic implementing the 

clock-gating mechanism is functionally redundant, and this may create major difficulties 

in testing and verification. The design of highly testable-gated clock circuits is discussed 

in  [22]. 
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Another difficulty with clock gating is that one must stop hazards/glitches on EN signal 

from corrupting the clock signal to the register sets. This can be accomplished by 

introducing a transparent negative latch between EN and the AND gate as shown in 

Figure 5. 

4.3 Computational Kernels 

Sequential circuits may have an extremely large number of reachable states, but during 

normal operation, these circuits tend to visit only a relatively small subset of the 

reachable states. A similar situation occurs at the primary outputs; while the circuit walks 

through the most probable states, only a few distinct patterns are generated at the 

combinational outputs of the circuit. Many researchers have proposed approaches for 

synthesizing a circuit that is fast and power-efficient under typical input stimuli, but 

continues to operate correctly even when uncommon input stimuli are applied to the 

circuit. 

Reference  [23] presents a power optimization technique by exploiting the concept of 

computational kernel of a sequential circuit, which is a highly simplified logic block that 

imitates the steady-state behavior of the original specification. This block is smaller, 

faster, and less power consuming than the circuit from which it is extracted and can 

replace the original network for a large fraction of the operation time.  

The p-order computational kernel of an FSM is defined with respect to a given 

probability threshold p and includes the subset of the states, SP, of the original FSM 

whose steady-state occupation probabilities are larger than p. The combinational kernel 

also includes the subset of states, RP, where for each state in Rp there is an edge from a 

state in Sp to that state. As an example, consider the simple FSM shown in Figure 6(a) in 

which the input and output values are omitted for the sake of simplicity and the states are 

annotated with the steady-state occupation probabilities calculated through Markovian 

analysis of the corresponding state transition graph (STG.) If we specify a probability 

threshold of p=0.25, then the computational kernel of the FSM is depicted in Figure 6(b). 

States in black represent set Sp, while states in grey represent Rp. The kernel probability 

is Prob(Sp) = 0.29 + 0.25 + 0.32 = 0.86. 
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Given a sequential circuit with the standard topology depicted in Figure 7(a), the 

paradigm for improving its quality with respect to a given cost function (e.g., power 

dissipation, latency) is based on the architecture shown in Figure 7(b). 

The basic elements of the architecture are: the combinational portion of the original 

circuit (block CL), the computational kernel (block K), the selector function (block S), 

the double state flip-flops (DSFF), and the output multiplexers (MUX.) 

The computational kernel can be seen as a “dense" implementation of the circuit from 

which it has been extracted. In other terms, K implements the core functions of the 

original circuit, and because of its reduced complexity, it usually implements such 

functions in a faster and more efficient way. The purpose of selector function S is that of 

deciding what logic block, between CL and K, will provide the output value and the next-

state in the following clock cycle. To take a decision, S examines the values of the next-

state outputs at clock cycle n. If the output and next-state values in cycle n+1 can be 

computed by the kernel K, then S takes on the value 1. Otherwise, it takes on the value 0. 

The value of S is fed to a flip-flop, whose output is connected to the MUXes that select 

which block produces the output and the next-state. The optimized implementation is 

functionally equivalent to the original one.  Computational kernels are a generalization of 

the precomputation architecture from combinational and pipelined sequential circuits to 

finite state machines. The authors in  [23] proposed an algorithm for generating the 

computational kernel of a FSM by iterative simplification of the original network by 

redundancy removal. 

In  [24], the authors raise the level of abstraction at which the kernel-based optimization 

strategy can be exploited and show how RTL components for which only a functional 

specification is available can be optimized using the computational kernels. They present 

a technique for computational kernel extraction directly from the functional specification 

of a RTL module. Given the state transition graph (STG) specification, the proposed 

algorithm calculates the kernel exactly through symbolic procedures similar to those 

employed for FSM reachability analysis. The authors also provide approximate methods 

to deal with large STG’s. More precisely, they propose two modifications to the basic 



 13 

procedure. The first one replaces the exact probabilistic analysis of the STG with an 

approximate analysis. In the second solution, symbolic state probability computation is 

bypassed and the set of states belonging to the kernel is determined directly from RTL 

simulation traces of a given (random or user-provided) stream. 

4.4 State Machine Decomposition 

Decomposition of finite state machines for low power has been proposed in  [25]. The 

basic idea is to decompose the STG of a finite state machine (FSM) into two STGs that 

jointly produce the equivalent input-output behavior as the original machine. Power is 

saved because, except for transitions between the two sub-FSMs, only one of the sub-

FSMs needs to be clocked. The technique follows a standard decomposition structure. 

The states are partitioned by searching for a small subset of states with high probability 

of transitions among these states and a low probability of transitions to and from other 

states. This subset of states will then constitute a small sub-FSM that is active most of the 

time. When the small sub-FSM is active, the other larger sub-FSM can be disabled. 

Consequently, power is saved because most of the time only the smaller, more power-

efficient, sub-FSM is clocked.  

In  [26], the combinational logic block is partitioned (for example to CL1 and CL2) and 

the active part is decided based on the encoding of the present state. The states selected 

for one of the sub-FSMs (i.e., M1) are all encoded in such a way that the enable signal is 

always on for CL1 while it is off for CL2. Conversely, for all states in the other sub-FSM 

(i.e., M2), the enable signal is always off for CL1 while it is on for CL2. Consequently, 

for all transitions within M1, only CL1 will be active and vice-versa.  

Consider as an example dk27 FSM from the MCNC benchmark set, depicted in Figure 8. 

Assume that the input signal values, 0 and 1, occur with equal probabilities. The steady 

state probabilities which are shown next to the states in this figure have been computed 

accordingly. Suppose we partition the FSM into two sub-machines M1 and M2 along the 

dotted line. Then around 40% of the transitions occur in submachine M1, 40% of the 

transitions occur in submachine M2, and 20% of the transitions occur between sub-

machines M1 and M2. Now suppose that the FSM is synthesized as two individual 
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combinational circuits for sub-machines M1 and M2. Then we can turn off the 

combinational circuit for submachine M2 when transitions occur within submachine M1. 

Similarly, we can turn off the combinational circuit for submachine M1 when transitions 

occur within submachine M2. The states are partitioned such that the probability of 

transitions within any sub-FSM is maximized and the estimated overhead is minimized.  

These methods for FSM decomposition can be considered as extensions of the gated-

clock for FSM self-loops approach proposed in  [27]. In FSM decomposition the cluster of 

states that are selected for one of the sub-FSMs can be considered as a “super-state” and 

then transitions between states in this cluster can be seen as self-loops on this “super-

state”.  

4.5 Guarded Evaluation 

Guarded evaluation  [29] is the last RT and gate-level shutdown technique we review in 

this section. The distinctive feature of this solution is that, unlike precomputation and 

gated clocks, it does not require one to synthesize additional logic to implement the 

shutdown mechanism; instead, it exploits existing signals in the original circuit. The 

approach is based on placing some guard logic, consisting of transparent latches with an 

enable signal, at the inputs of each block of the circuit that needs to be power managed. 

When the block must execute some useful computation in a clock cycle, the enable signal 

makes the latches transparent. Otherwise, the latches retain their previous states, thus, 

blocking any transition within the logic block. 

Guarded evaluation provides a systematic approach to identify where transparent latches 

must be placed within the circuit and by which signals they must be controlled. For 

Example, Let C be a combinational logic block (cf. Figure 9(a)), X be the set of primary 

inputs to C, and z be a signal in C. Furthermore, let F be the portion of logic that drives z 

and Y be the set of inputs to F. Finally, let DZ(X) be the observability don’t-care set for z 

(that is, the set of primary input assignments for which the value of z does not influence 

the outputs of C). Now consider a signal s in C which logically implies DZ(X), that is, 

s⇒DZ(X). Then, if s=1, then the value of z is not required to compute the outputs of C. If 

we call te(Y) the earliest time at which any input to F can switch when s=1, and tl(s) as the 
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latest time at which s settles to one, then signal s can be used as the guard signal for F (cf.  

Figure 9(b)) if tl(s)< te(Y). This is because z is not required to compute the outputs of C 

when s=1, and therefore,  block F can be shut down. Notice that the condition tl(s)< te(Y) 

guarantees that the transparent latches in the guard logic are shut down before any of the 

inputs to F makes a transition. 

This technique, referred to as pure guarded evaluation, has the desirable property that 

when applied, no changes in the original combinational circuitry are needed. On the other 

hand, if some resynthesis and restructuring of the original logic is allowed, a larger 

number of logic shutdown opportunities may become available. 

5 Sequential Logic Synthesis for Low Power 

Power can be minimized by appropriate synthesis of logic. The goal in this case is to 

minimize the so-called switched capacitance of the circuit by low power driven logic 

minimization techniques. 

5.1 State Assignment 

State encoding/assignment, as a crucial step in the synthesis of the controller circuitry, 

has been extensively studied. Roy et al. was the first to address the problem of reducing 

switching activity of input state lines of the next state logic, during the state assignment, 

formulating it as a Minimum Weighted Hamming Distance problem  [30]. Olson et al. 

used a linear combination of switching activity of the next state lines and the number of 

literals as the cost function  [31]. Tsui et al.  [32] used simulated annealing as a search 

strategy to find a low power state encoding that accounts for both the switching activity 

of the next state lines and switched capacitance of the next state and output logic.   

For example, consider the state transition graph for a BCD to Excess-3 Converter 

depicted in Figure 10. Assume that the transition probabilities of the thicker edges in this 

figure are more than those of the thin edges. The key idea behind all of the low power 

state assignment techniques is to assign minimum Hamming distance codes to the states 

pairs that have large inter-state transition probabilities. For example the coding, S0=000, 

S1=001, S2=011, S3=010, S4=100, S5=101, S6=111, S7=110 fulfills this requirement. 
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In  [33], Wu et al. proposed the idea of realizing a low power FSM by using T flip-flops. 

The authors showed that use of T flip flops results in a natural clock gating and may 

result in reduced next state logic complexity. However, that work was mostly focused on 

BCD counters which have cyclic behavior. The cyclic behavior of counters results in a 

significant reduction of combinational logic complexity and, hence, lowers power 

consumption. Reference  [34] introduces a mathematical framework for cycle 

representation of Markov processes and based on that, proposes solutions to the low 

power state assignment problem. The authors first identify the most probable cycles in 

the FSM and encode the states on these cycles with Gray codes. The objective function is 

to minimize the Weighted Hamming Distance. This reference also teaches how a 

combination of T and D flip-flops as state registers can be used to achieve a low power 

realization of a FSM.  

5.2 Retiming 

Retiming is to reposition the registers in a design to improve the area and performance of 

the circuit without modifying its input-output behavior. The technique was initially 

proposed by Leiserson and Saxe  [35]. This technique changes the location of registers in 

the design in order to achieve one of the following goals: 1) minimize the clock period; 2) 

minimizing the number of registers; or 3) minimize the number of registers for a target 

clock period. 

Minimizing dynamic power for synchronous sequential digital designs is addressed in the 

literature. In  [36], Monteiro et al. presented heuristics to minimize the switching activity 

in a pipelined sequential circuit. Their approach is based on the fact that registers have to 

be positioned on the output edges of the computational elements that have high switching 

activity. The reason for power savings is that in this case the output of a register switches 

only at the arrival of the clock signal as opposed to potentially switching many times in 

the clock period. Consider the simple example of a logic gate belonging to a synchronous 

circuit and a capacitive load driven by the output gate. In CMOS technology, the power 

dissipated by gate is proportional to the product of the switching activity of the output 
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node of the gate and the output load. At the output of gate some spurious transitions (i.e., 

glitches) may occur, which can result in a significant power waste. Suppose a register is 

inserted between the output of the gate and the capacitive load. In the new circuit, the 

output of the register can make, at most, one transition per clock cycle. In fact, the gate 

output may have many redundant transitions but they are all filtered out by the register; 

hence, these logic hazards do not propagate to the output load.  

The heuristic retiming technique of  [36] applies to a synchronous network with pipeline 

structure. The basic idea is to select a set of candidate gates in the circuit such that if 

registers are placed at their outputs, the total switching activity of the network gets 

minimized. The selection of the gates is driven by two factors: the amount of glitching 

that occurs at the output of each gate and the probability that such glitching propagates to 

the gates located in the transitive fanout. Registers are initially placed at the primary 

inputs of the circuit, and backward retiming (which consists of moving one register from 

all gate inputs to the output) is applied until all the candidate gates have received a 

register on their outputs. Then, registers that belong to paths not containing any of the 

candidate gates are repositioned, with the objective of minimizing both the delay and the 

total number of registers in the circuit. This last retiming phase does not affect the 

registers that have been already placed at the outputs of the previously selected gates. In 

 [37], fixed-phase retiming is proposed to reduce dynamic power consumption. The edge-

triggered circuit is first transformed to a two-phase level-clocked circuit, by replacing 

each edge-triggered flip-flop by two latches. Using the resulting level-clocked circuit, the 

latches of one phase are kept fixed, while the latches belonging to the other phase are 

moved onto wires with high switching activity and loading capacitance. 

Fixed-phase retiming is best illustrated by the example shown below. Figure 11(a) shows 

a section of a pipelined circuit with edge-triggered flip-flops. The numbers on the edges 

represent the potential reduction in power dissipation when an edge-triggered flip-flop is 

present on that edge, assuming that the rest of the circuit remains unchanged. Negative 

values of power reduction indicate an increase in power dissipation when a flip-flop is 

placed on an edge. This reduction in power dissipation can be achieved if the edge has a 

high glitching-capacitance product [3]. After replacing each edge-triggered flip-flop by 
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two back-to-back level-clocked latches, the resulting circuit is fixed-phase retimed to 

obtain the circuit in Figure 11(b).  

Assuming a non-overlapping two-phase clocking scheme π =  〈φ0 = 4, γ0 = 1, φ1 = 4, γ1 = 

1〉 such as the one shown in Figure 11(c), power dissipation can be reduced by 11.8 units. 

Specifically, the glitching on edges B→D, E→F and E→H is “masked” for 60% of the 

clock cycle which decreases power dissipation by 0.6×(12 + 13 -2) = 13.8 units of power. 

At the same time, the glitching on edges G→J and H→K is “exposed” for 40% of the 

clock cycle which increases power dissipation by 0.4×(10 – 5) = 2 power units. In order 

to simplify the computation of changes in power dissipation for this example, it is 

assumed that glitching is uniformly distributed over the entire clock period and that the 

relocation of latches does not change glitching significantly. 

In  [38], Chabini and Wolf propose a hybrid retiming and supply voltage scaling. They 

observe that critical paths are related to the position of registers in a design so they try not 

only to scale down the supply voltage of computational elements that are off the critical 

paths, but also to move registers to maximize the number of computational elements that 

are off the critical paths, thereby further minimizing the circuit power consumption. 

Registers have to be moved from their positions by the standard retiming technique. 

Instead of unifying basic retiming and supply voltages scaling, the authors propose to 

apply “guided retiming” followed by the application of voltage scaling on the retimed 

design. Polynomial time algorithms based on dynamic programming to realize the guided 

retiming as well as the supply voltage scaling on the retimed design are proposed. 

6 Leakage Power Reduction Techniques 

In many new high performance designs, the leakage component of power consumption is 

comparable to the switching component. Reports indicate that 40% or even higher 

percentage of the total power consumption is due to the leakage of transistors. This 

percentage will increase with technology scaling unless effective techniques are 

introduced to bring leakage under control. This section focuses mostly on RTL 

optimization and design automation techniques that accomplish this goal.  
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There are four main sources of leakage current in a CMOS transistor: 

1. Reverse-biased junction leakage current (IREV) 

2. Gate induced drain leakage (IGIDL) 

3. Gate direct-tunneling leakage (IG) 

4. Subthreshold (weak inversion) leakage (ISUB) 

Let IOFF denote the leakage of an OFF transistor (VGS=0V for an NMOS device which 

results in IG=0.)  

OFF REV GIDL SUBI I I I= + + . 

Components, IREV and IGIDL are maximized when VDB = VDD. Similarly, for short-channel 

devices, ISUB increases with VDB because of the DIBL effect. Note the IG is not a 

component of the OFF current, since the transistor gate must be at a high potential with 

respect to the source and substrate for this current to flow. An effective approach to 

overcome the gate leakage currents while maintaining excellent gate control is to replace 

the currently-used silicon dioxide gate insulator with high-K dielectric material such as 

TiO2 and Ta2O5. Use of the high-k dielectric will allow a less aggressive gate dielectric 

thickness reduction while maintaining the required gate overdrive at low supply voltages 

 [39].  High-K gate dielectrics are expected to be introduced in 2006  [40]. Therefore, it is 

reasonable to ignore the IG component of leakage. Among the three components of IOFF, 

ISUB is the dominant component. Hence, most leakage reduction techniques focus on ISUB.  

6.1 Power Gating and Multi-Threshold CMOS 

The most obvious way of reducing the leakage power dissipation of a VLSI circuit in the 

STANDBY state is to turn off its supply voltage. This can be done by using one PMOS 

transistor and one NMOS transistor in series with the transistors of each logic block to 

create a virtual ground and a virtual power supply as depicted in Figure 12. In practice 

only one transistor is necessary. Because of the lower on-resistance, NMOS transistors 

are usually used. 
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In the ACTIVE state, the sleep transistor is on. Therefore, the circuit functions as usual. 

In the STANDBY state, the transistor is turned off, which disconnects the gate from the 

ground. To lower the leakage, the threshold voltage of the sleep transistor must be large. 

Otherwise, the sleep transistor will have a high leakage current, which will make the 

power gating less effective. Additional savings may be achieved if the width of the sleep 

transistor is smaller than the combined width of the transistors in the pull-down network. 

In practice, Dual VT CMOS or Multi-Threshold CMOS (MTCMOS) is used for power 

gating  [41] [42]. In these technologies there are several types of transistors with different 

VT values. Transistors with a low VT are used to implement the logic, while high-VT 

devices are used as sleep transistors.  

To guarantee the proper functionality of the circuit, the sleep transistor has to be carefully 

sized to decrease its voltage drop while it is on. The voltage drop on the sleep transistor 

decreases the effective supply voltage of the logic gate. Also, it increases the threshold of 

the pull-down transistors due to the body effect. This increases the high-to-low transition 

delay of the circuit. This problem can be solved by using a large sleep transistor. On the 

other hand, using a large sleep transistor increases the area overhead and the dynamic 

power consumed for turning the transistor on and off. Note that because of this dynamic 

power consumption, it is not possible to save power for short idle periods. There is a 

minimum duration of the idle time below which power saving is impossible. Increasing 

the size of the sleep transistors increases this minimum duration. 

Since using one transistor for each logic gate results in a large area and power overhead, 

one transistor may be used for each group of gates as depicted in Figure 13. Notice that 

the size of the sleep transistor in this figure ought to be larger than the one used in Figure 

12. To find the optimum size of the sleep transistor, it is necessary to find the vector that 

causes the worst case delay in the circuit. This requires simulating the circuit under all 

possible input values, a task that is not possible for large circuits. 

In  [42], Kao and Chandrakasan describe a method to decrease the size of sleep transistors 

based on the mutual exclusion principle. In their method, the authors first size the sleep 

transistors to achieve delay degradation less than a given percentage for each gate. Notice 
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that this guarantees that the total delay of the circuit will be degraded by less than the 

given percentage. In fact the actual degradation can be as much as 50% smaller. The 

reason for this is that NMOS sleep transistors degrade only the high-to-low transitions 

and at each cycle only half of the gates switch from high to low. If two gates switch at 

different times (i.e., their switching windows are non-overlapping), then their 

corresponding sleep transistors can be shared.  

Although sleep transistors can be used to disconnect logic gates from ground, using them 

to disconnect Flip Flops from ground or supply voltage results in the loss of data. The 

authors of  [43] solve this problem by using high threshold transistors for the inverters that 

hold data and low threshold transistors for other parts of Flip Flops. In the sleep mode, 

the low threshold transistors are disconnected from the ground, but the two inverters that 

hold data stay connected to the ground. Since high threshold transistors have been used in 

the inverters, their leakage is small. Other possibilities for saving data when MTCMOS is 

applied to a sequential circuit are to utilize leakage-feedback gates and flip flops  [44] or 

balloon latches  [45]. 

6.2 Multiple Threshold Cells 

Multiple threshold voltages have been available on many CMOS processes for a number 

of years. Multiple-Threshold CMOS circuit, which has both high and low threshold 

transistors in a single chip, can be used to deal with the leakage problem. The high 

threshold transistors can suppress the subthreshold leakage current, while the low 

threshold transistors are used to achieve the high performance. Since the standby power is 

much larger for low VT transistors compared to the high VT ones, usage is limited to 

using low VT transistors on timing-critical paths, with insertion rates on the order of 20% 

or less. Since Tox and Lgate are the same for high and low VT transistors, low VT insertion 

does not adversely impact the active power component or the design size. Drawbacks are 

that variation due to doping is uncorrelated between the high and low threshold 

transistors and extra mask steps incur a process cost.  

The technology used for fabricating circuits can restrict the manner in which transistors 

can be mixed. For example, it may not be possible to use different threshold voltages for 
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transistors in a stack due to their proximity. Furthermore, to simplify the design process 

and Computer-Aided Design (CAD) algorithms, one may wish to restrict the way 

transistors are mixed. For example, when transistors of the same type are used in a logic 

cell, the size of multi-threshold cell library is only twice that of the original (single 

threshold) cell library. This reduces the library development time as well as the 

complexity and run time of CAD algorithms and tools that use the library. 

In general, one expects that the leakage saving increases as the freedom to mix low and 

high VT devices in a logic cell is increased. However, the percentage improvement is 

usually minor. Compared to the case of using logic cells with the same type of transistors 

(i.e., low threshold or high threshold) everywhere, reference  [46] reports an average of 

only 5% additional leakage savings by using logic cells with the same type of transistors 

in a transistor stack.  

Although using two threshold voltages instead of one significantly decreases the leakage 

current in a circuit, using more than two threshold voltages marginally improves the 

result  [47]. This is true even when the threshold values are optimized to minimize the 

leakage for a given circuit. Thus, in many designs, only two threshold voltages are used.  

6.3 Minimum Leakage Vector Method 

The leakage current of a logic gate is a strong function of its input values. The reason is 

that the input values affect the number of OFF transistors in the NMOS and PMOS 

networks of a logic gate.  

Table 1 shows the leakage current of a two-input NAND gate built in a 0.18µm CMOS 

technology with a 0.2V threshold voltage and a 1.5V supply voltage. Input A is the one 

closer to the output of the gate. 

 

Table 1. The leakage values of a NAND gate. 

Inputs Output 

A B O 

Leakage Current 

(nA) 
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0 0 1 23.06 

0 1 0 51.42 

1 0 0 47.15 

1 1 0 82.94 

 

The minimum leakage current of the gate corresponds to the case when both its inputs are 

zero. In this case, both NMOS transistors in the NMOS network are off, while both 

PMOS transistors are on. The effective resistance between the supply and the ground is 

the resistance of two OFF NMOS transistors in series. This is the maximum possible 

resistance. If one of the inputs is zero and the other is one, the effective resistance will be 

the same as the resistance of one OFF NMOS transistor. This is clearly smaller than the 

previous case. If both inputs are one, both NMOS transistors will be on. On the other 

hand, the PMOS transistors will be off. The effective resistance in this case is the 

resistance of two OFF PMOS transistors in parallel. Clearly, this resistance is smaller 

than the other cases. 

In the NAND gate of Table 1 the maximum leakage is about three times higher than the 

minimum leakage. Note that there is a small difference between the leakage current of the 

A=0, B=1 vector and the A=1, B=0 vector due to the body effect. The phenomenon 

whereby the leakage current through a stack of two or more OFF transistors is 

significantly smaller than a single device leakage is called the “stack effect”. Other logic 

gates exhibit a similar leakage current behavior with respect to the applied input pattern. 

As a result, the leakage current of a circuit is a strong function of its input values. It is 

possible to achieve a moderate reduction in leakage using this technique, but the 

reduction is not as high as the one achieved by the power gating method. On the other 

hand, the MLV method does not suffer from many of the shortcomings of the other 

methods. In particular, 

1. No modification in the process technology is required. 

2. No change in the internal logic gates of the circuit is necessary. 

3. There is no reduction in voltage swing. 
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4. Technology scaling does not have a negative effect on its effectiveness or its 

overhead. In fact the stack effect becomes stronger with technology scaling as 

DIBL worsens. 

The first three facts make it very easy to use this method in existing designs. This 

technique is also referred to as input vector control (IVC)  [48]. The problem of finding 

MLV for an arbitrary circuit is NP-complete  [49] for which a number of heuristics have 

been proposed including a random simulation based approach presented in  [48]. In  [49], 

the authors used a constraint graph to solve the problem for circuits with only a small 

number of inputs. An explicit branch and bound enumeration technique is described in 

 [50]. For large circuits, bounds on the minimum and maximum leakage values were 

obtained by using heuristics. Abdollahi et al.  [51] formulated the problem of determining 

the MLV using a series of Boolean Satisfiability problems and solved accordingly. The 

authors report between 10% to 55% reduction in the leakage by using the MLV 

technique. Note that the saving is defined as 100)1( ×−
AVG

MLV

Leakage

Leakage
, where LeakageMLV is 

the leakage when the minimum leakage vector drives the circuit whereas LeakageAVG is 

the expected leakage current under an arbitrary input combination (this is used because 

the input value prior to entering the sleep mode is unknown.)  

Lee and Blaauw  [52] used the combination of MLV and dual-VT assignment for leakage 

power reduction. They observe that within the performance constraints, it is more 

effective to switch off a high-VT transistor than a low-VT one. Naidu et al.  [53] proposed 

an integer linear programming (ILP) model for circuits composed of NAND or AOI 

gates, which obtains the MLV. Gao and Hayes  [54] proposed an ILP model for finding 

MLV, called the virtual-gate or VG-ILP model. Virtual gates are cells that are added to 

the given circuit to facilitate model formulation, but have no impact on the functionality 

of the original circuit. The leakage current is viewed as a pseudo-Boolean function of the 

inputs, which is subsequently linearized. The authors resort to ILP to obtain the input 

MLV using linearized leakage current functions. They also propose a fast, heuristic 

technique for MLV calculation, which selectively relaxes variables of the ILP model, 

leading to a mixed-integer linear programming (MLP) model. 
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6.4 Increasing the Transistor Channel Lengths 

Active leakage of CMOS gates can be reduced by increasing their transistor channel 

lengths  [55]. This is because there is a VT roll-off due to the Short Channel Effect (SCE). 

Therefore, different threshold voltages can be achieved by using different channel 

lengths. The longer transistor lengths used to achieve high threshold transistors tend to 

increase the gate capacitance, which has a negative impact on the performance and 

dynamic power dissipation. Compared with multiple threshold voltages, long channel 

insertion has similar or lower process cost, taken as the size increase rather than the mask 

cost. It results in lower process complexity. In addition, the different channel lengths 

track each other over process variation. This technique can be applied in a greedy manner 

to an existing design to limit the leakage currents  [56]. A potential penalty is that the 

dynamic power dissipation of the up-sized gate is increased proportional to the effective 

channel length increase. In general, circuit power dissipation may not be saved unless the 

activity factor of the affected gates is low. Therefore, the activity factor must be taken 

into account when choosing gates whose transistor lengths are to be increased. 

6.5 Transistor Sizing with Simultaneous Threshold and Supply Voltage 

Assignment 

Increasing the threshold voltage of a transistor reduces the leakage current exponentially, 

but it has a marginal effect on the dynamic power dissipation. On the other hand, 

reducing the width of a transistor reduces both leakage and dynamic power, but at a linear 

rate only.  Nguyen et al. in  [57] report an average 60% and 75% reduction in the total 

power dissipation by using sizing alone and sizing combined with VT assignment, 

respectively. The combination of the technique with dual Vdd assignment resulted in 

only a marginal improvement, probably because of the optimization algorithm used by 

the authors. Combining the three optimizations is currently an active area of research and 

will enable synthesizing lower power circuits in the near future. 

7 Conclusion 

Several key elements emerge as enablers for an effective low power design methodology.  

The first is the availability of accurate, comprehensive power models.  The second is the 
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existence of fast, easy to use high level estimation and design exploration tools for 

analysis and optimization during the design creation process, while the third is the 

existence of highly accurate, high capacity verification tools for tape-out power 

verification. As befitting a first-order concern, successfully managing the various power-

related design issues will require that power be addressed at all phases and in all aspects 

of design, especially during the earliest design and planning activities.  Advanced power 

tools will play central roles in these efforts. 

An RTL design methodology supported by the appropriate design automation tools is one 

of the most effective methods of designing complex chips for lower power dissipation. 

Moreover, this methodology drastically reduces the risk of not meeting often harsh power 

constraints by the early identification of power hogs or hot spots, and enabling the 

analysis and selection of alternative solutions. Such methodologies have already been 

adopted by designers of complex chips and constitute the state-of-the-art in designing 

complex, high-performance, yet low power, designs.  

This paper reviewed a number of RTL techniques for low power design of VLSI circuits 

targeting both dynamic and leakage components of power dissipation in CMOS VLSI 

circuits. A more detailed review of techniques for low power design of VLSI circuits and 

systems can be found in many references, including  [58]. 
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Figure 1: A typical level-converter design. 
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Figure 2: Examples of (a) CVS solution, (b) ECVS solution. 
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(a) 

 

(b)  

Figure 3. Illustration of Razor logic and DVS (a) Pipeline augmented with Razor latches. 

(b) Control lines for RAZOR flip-flops. 
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Figure 4: Clock gating logic for ALU in a typical processor microarchitecture with 

negative-edge triggered flip-flops. 
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Figure 5: Clock is disabled when EN = 0; Furthermore, a hazard on EN will be stopped 

from reaching GCLK. 

 

 

 

(a)       (b)  

Figure 6:  (a) Moore-type FSM and (b) its 0.25-order computational kernel. 
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(a)       (b)  

Figure 7: Illustration of computational kernel utilization (a) Baseline architecture (b) 

Kernel-based optimized architecture. 
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Figure 8: Example of an FSM (dk27) that may be decomposed into two sub-FSMs such 

that one sub-FSM can be shut off when the other is active and vice versa. 

 

 

 

(a)     (b) 

Figure 9: Example of guard logic insertion. 
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Figure 10: Excess-3 Converter state transition graph. 
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(a) 

 

(b) 

 

(c) 

Figure 11: Illustration of fixed-phase retiming. (a) Initial edge-triggered circuit. (b) 

Fixed-phase retimed circuit. (c) A two-phase clocking scheme π =  〈φ0 = 4, γ0 = 1, φ1 = 4, 

γ1 = 1〉. 
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Figure 12: Power gating circuit. 
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Figure 13: Using one sleep transistor for several gates. 

 

 

 
 


