
 1

Power Minimization Techniques at the RT-Level and

Below

Afshin Abdollahi and Massoud Pedram

Dept. of Electrical Engineering

University of Southern California

Los Angeles, CA 90089 U.S.A.

Abstract – Power consumption and power-related issues have become a first-order

concern for most designs and loom as fundamental barriers for many others. And, while

the primary method used to date for reducing power has been supply voltage reduction,

this technique begins to lose its effectiveness as voltages drop to sub-one volt range and

further reductions in the supply voltage begin to create more problems than are solved.

Under these circumstances, the process of design and the automation tools required to

support that process become the critical success factors. In the last decade, huge effort

has been invested to come up with a wide range of design solutions that help solve the

power dissipation problem for different types of electronic devices, components and

systems. These techniques range from multiple voltage assignment and dynamic voltage

scaling, to RTL power management and power-aware sequential logic synthesis, to

leakage power reduction techniques. This tutorial paper explains a number of

representative low power design techniques from this large set. More precisely, we will

describe basic techniques, applicable at RT-level and below, that have proven to hold

good potential for power optimization in practical design environments.

1 Introduction

A dichotomy exists in the design of modern microelectronic systems: they must be low

power and high performance, simultaneously. This dichotomy largely arises from the use

 2

of these systems in battery-operated portable (wearable) platforms. Accordingly, the goal

of low-power design for battery-powered electronics is to extend the battery service life

while meeting performance requirements. Unless optimizations are applied at different

levels, the capabilities of future portable systems will be severely limited by the weight of

the batteries required for an acceptable duration of service. In fixed, power-rich

platforms, the packaging cost and power density/reliability issues associated with high

power and high performance systems also force designers to look for ways to reduce

power consumption. Thus, reducing power dissipation is a design goal even for non-

portable devices since excessive power dissipation results in increased packaging and

cooling costs as well as potential reliability problems. Meanwhile, following Moore’s

Law, integrated circuit densities and operating speeds have continued to go up in

unabated fashion. The result is that chips are becoming larger, faster, and more complex

and because of this, consuming increasing amounts of power.

These increases in power pose new and difficult challenges for integrated circuit

designers. While the initial response to increasing levels of power consumption was to

reduce the supply voltage, it quickly became apparent that this approach was insufficient.

Designers subsequently began to focus on advanced design tools and methodologies to

address the myriad of power issues. Complicating designers’ attempts to deal with these

issues are the complexities – logical, physical, and electrical – of contemporary IC

designs and the design flows required to build them.

The established front-end approach to designing for lower power is to estimate and

analyze power consumption at the register transfer level (RTL), and to modify the design

accordingly. In the best case, only the RTL within given functional blocks is modified,

and the blocks re-synthesized. The process is re-iterated until the desired results are

achieved. Sometimes, though, the desired power consumption reductions may be

achieved only by modifying the overall design architecture. Modifications at this level

affect not only power consumption, but also other performance metrics, and may indeed

greatly affect the cost of the chip. Thus, such modifications require re-evaluation and re-

verification of the entire design. The architectural optimization techniques, however, fall

outside the coverage of the present article.

 3

This article reviews a number of representative RTL design automation techniques that

focus on low power design. It should be of interest to designers of power efficient

devices, IC design engineering managers, and EDA managers and engineers. More

precisely, it covers techniques for, sequential logic synthesis, RTL power management,

multiple voltage design, and leakage power minimization and control techniques.

Interested readers can find wide-ranging information on various aspects of low power

design in [1]- [3].

2 Multiple-Voltage Design

Using different voltages in different parts of a chip may reduce the global energy

consumption of a design at a rather small cost in terms of algorithmic and/or architectural

modifications. The key observation is that the minimum energy consumption in a circuit

is achieved if all circuits paths are timing-critical (there is no positive slack in the circuit.)

A common voltage scaling technique is thus to operate all the gates on non-critical timing

paths of the circuit at a reduced supply voltage. Gates/modules that are part of the critical

paths are powered at the maximum allowed voltage, thus, avoiding any delay increase;

the power consumed by the modules that are not on the critical paths, on the other hand,

is minimized because of the reduced supply voltage. Using different power supply

voltages on the same chip of circuitry requires the use of level shifters at the boundaries

of the various modules (a level converter is needed between the output of a gate powered

by a low VDD and the input of a gate powered by a high VDD, i.e., for a step-up change.)

Figure 1 depicts a typical level converter design. Notice that if a gate that is supplied with

VDD,L drives a fanout gate at VDD,H, transistors N1 and N2 receive inputs at reduced

supply and the cross-coupled PMOS transistors do the level conversion. Level converters

are obviously not needed for a step-down change in voltage. Overhead of level converters

can be mitigated by doing conversions at register boundaries and embedding the level

conversion inside the flip flops (see [4] for details.)

A polynomial time algorithm for multiple-voltage scheduling of performance-constrained

non-pipelined designs is presented by Raje and Sarrafzadeh in [5]. The idea is to establish

a supply voltage level for each of the operations in a data flow graph, thereby, fixing the

 4

latency of that operation. The goal is then to minimize the total power dissipation while

satisfying the system timing constraints. Power minimization is in turn accomplished by

ensuring that each operation will be executed using the minimum possible supply

voltage. The proposed algorithm is composed of a loop where, in each iteration, slacks of

nodes in the acyclic data flow graph are calculated. Then, nodes with the maximum slack

are assigned to lower voltages in such a way that timing constraints are not violated. The

algorithm stops when no positive slack exists in the data flow graph. Notice that this

algorithm assumes that the Pareto-optimal voltage versus delay curve is identical for all

computational elements in the data flow graph. Without this assumption, there is no

guarantee that this algorithm will produce an optimal design.

In [6], the problem is addressed for combinational circuits, where only two supply

voltages are allowed. A depth-first search is used to determine those computational

elements, which can be operated at low supply voltage without violating the circuit

timing constraints. A computational element is allowed to operate at VDD,L only is all its

successors are operating at VDD,L. For example, Figure 2(a) demonstrates a clustered

voltage scaling (CVS) solution in which each circuit path starts with VDD,H and switches

to VDD,L when delay slack is available. The timing-critical path is shown with thick line

segments. Here gray-colored cells are running at VDD,L. Level conversion (if necessary) is

done in the flip flops at the end of the circuit paths. An extension to this approach is

proposed in [7], which is based on the observation that by optimizing the insertion points

of level converters, one can increase the number of gates using VDD,L without increasing

the number of level converters. This leads to higher power savings. For example, in the

CVS solution depicted in Figure 2(a), assume that the path delay from flip-flop FF3 to

gate G2 is much longer than that of the path from FF1 to G2. In addition, assume that if

we apply VDD,L to G2, then the path from FF3 to FF5 through G2 will miss its target

combinational delay i.e., G2 must be assigned a supply level of VDD,H. With the CVS

approach, it immediately follows that G3 must be assigned VDD,H although a potentially

large positive slack remains in the path from FF1 to G2. The situation is the same for G4

and G5. Consequently, the CVS approach can miss opportunities for applying VDD,L to

some gates in the circuit. If the insertion point of the level converter LC1 is allowed to

 5

move up to the interface between G3 and G2, the gates G3 through G5 can be assigned a

supply of VDD,L, as depicted in Figure 2(b). The structure shown there is one that can be

obtained by the extended CVS (ECVS) algorithm. Both CVS and ECVS assign the

appropriate power supply to the gates by traversing the circuit from the primary outputs

to the primary inputs in a topological order. ECVS allows a VDD,L-driven gate to feed a

VDD,H driven gate along with the insertion of a dedicated level converter.

In [8], the authors propose an approach for voltage assignment in combinational logic

circuits. First, a lower bound on dynamic power consumption is determined by exploiting

the available slacks and the value of the dual-supply voltages that may be used in solving

the problem of minimizing dynamic power consumption of the circuit. Next, a heuristic

algorithm is proposed for solving the voltage-assignment problem, where the values of

the low and the high supply voltages are either specified by the user or fixed to the

estimated ones.

In [9], Manzak and Chakrabarti present resource and latency constrained scheduling

algorithms to minimize power/energy consumption when the resources operate at

multiple voltages. The proposed algorithms are based on efficient distribution of slack

among the nodes in the data-flow graph. The distribution procedure tries to implement

the minimum energy relation derived using the Lagrange multiplier method in an iterative

fashion.

An important phase in the design flow of multiple-voltage systems is that of assigning the

most convenient supply voltage, selected from a fixed number of values, to each

operation in the control-date flow graph (CDFG). The problem is to assign the supply

voltages and to schedule the tasks so as to minimize the power dissipation under

throughput/resource constraints. An effective solution has been proposed by Chang and

Pedram in [10]. The technique is based on dynamic programming and requires the

availability of accurate timing and power models for the macro-modules in a RTL library.

A preliminary characterization procedure must then be run to determine an energy-delay

curve for each module in the library and for all possible supply-voltage assignments. The

points on the curve represent various voltage assignment solutions with different

 6

tradeoffs between the performance and the energy consumption of the cell. Each set of

curves is stored in the RTL library, ready to be invoked by the cost function that guides

the multiple supply-voltage scheduling algorithm. We provide a brief description of the

method for the simple case of control and data flow graphs (CDFG’s) with a tree

structure. The algorithm consists of two phases: first, a set of possible power-delay

tradeoffs at the root of the tree is calculated; then, a specific macro-module is selected for

each node in such a way that the scheduled CDFG meets the required timing constraints.

To compute the set of possible solutions, a power-delay curve at each node of the tree

(proceeding from the inputs to the output of the CDFG) is computed; such a curve

represents the power-delay tradeoffs that can be obtained by selecting different instances

of the macro-modules, and the necessary level shifters, within the subtree rooted at each

specific node. The computation of the power-delay curves is carried out recursively, until

the root of the CDFG is reached. Given the power-delay curve at the root node, that is,

the set of tradeoffs the user can choose from, a recursive preorder traversal of the tree is

performed, starting from the root node, with the purpose of selecting which module

alternative should be used at each node of the CDFG. Upon completion, all the operations

are fully scheduled; therefore, the CDFG is ready for the resource-allocation step.

More recently, a level-converter free approach is proposed in [11] where the authors try

to eliminate the overhead imposed by level converters by suggesting a voltage scaling

technique without utilizing level converters. The basic initiative is to impose some

constraints on the voltage differences between adjacent gates with different supply

voltages based on the observation that there will be no static current if the supply voltage

of a driver gate is higher than the subtraction of the threshold voltage of a PMOS from

the supply voltage of a driven gate. In [12], Murugavel and Ranganathan propose

behavioral-level power optimization algorithms that use voltage and frequency scaling. In

this work, the operators in a data flow graph are scheduled in the modules of the given

architecture, by applying voltage and frequency scaling techniques to the modules of the

architecture such that the power consumed by the modules is minimized. The global

optimal selection of voltages and frequencies for the modules is determined through the

use of an auction-theoretic model and a game theoretic solution. The authors present a

 7

resource constrained scheduling algorithm, which is based on applying the Nash

equilibrium function to the game theoretic formulation.

3 Dynamic Voltage Scaling and Razor Logic

The dependence of both performance and power dissipation on supply voltage results in a

tradeoff in circuit design. High supply voltage results in high performance while low

supply voltage makes an energy efficient design. Dynamic voltage scaling (DVS) [13] is

a powerful technique to reduce circuit energy dissipation in which, the application or

operating system identifies periods of low processor utilization that can tolerate reduced

frequency which allows reduction in the supply voltage. Since dynamic power scales

quadratically with supply voltage, DVS significantly reduces energy consumption with a

limited impact on system performance [14].

Several factors determine the voltage required to reliably operate a circuit in a given

frequency. The supply voltage must be sufficiently high to fully evaluate the critical path

in a single clock cycle (i.e., critical voltage). To ensure that the circuit operates correctly

even in the worst-case operating environment some voltage margins are added to the

critical voltage (e.g., process margin due to manufacturing variations, ambient margins to

compensate high temperatures and noise margins due to uncertainty in supply and signal

voltage levels.)

To ensure correct operation under all possible variations, a conservative supply voltage is

typically selected using corner analysis. Hence, margins are added to the critical voltage

to account for uncertainty in the circuit models and to account for the worst-case

combination of variations. However, such a worst-case combination of variations may be

highly improbable; hence this approach overly conservative.

In some approaches the delay of an embedded inverter chain is used as a prediction of the

critical path delay of the circuit and the supply voltage is tuned during processor

operation to meet a predetermined delay through the inverter-chain [15]. This approach to

DVS allows dynamic adjustment of the operating voltage to account for global variations

in supply voltage drop, temperature fluctuation, and process variations. However, it

 8

cannot account for local variations, such as local supply voltage drops, intra-die process

variations, and cross-coupled noise, and therefore requires the addition of some margins

to the critical voltage. Also, the delay of an inverter chain does not scale with voltage and

temperature in the same way as the delays of the critical paths of the actual design, which

can contain complex gates and pass-transistor logic, which again requires extra voltage

margins.

In [16] the authors propose a different approach to DVS, referred to as Razor logic,

which is based on dynamic detection and correction of speed path failures in digital

designs. The basic idea is to tune the supply voltage by monitoring the error rate during

operation, which eliminates the need for voltage margins that are necessary for “always-

correct” circuit operation in conventional DVS. In Razor logic, the operation at sub-

critical supply voltages does not constitute a failure, but instead represents a trade-off

between the power dissipation penalties incurred from error correction versus the

additional power savings obtained from operating at a lower supply voltage.

The Razor logic based DVS utilizes a combination of circuit and architectural techniques

for low cost error detection and correction of delay failures. Each flip-flop in the critical

path is augmented with a shadow latch which is controlled using a delayed clock. The

operating voltage is constrained such that the worst-case delay meets the shadow latch

setup time, even though the main flip-flop could fail. By comparing the values latched by

the flip-flop and the shadow latch, a timing error in the main flip-flop can be detected.

The value in the shadow latch, which is guaranteed to be correct, is subsequently utilized

to correct the delay failure.

This concept is illustrated in Figure 3(a) for a pipeline stage. The operation of a Razor

flip-flop is shown in Figure 3(b). In clock cycle 1, the combinational logic L1 meets the

setup time by the rising edge of the clock and both the main flip-flop and the shadow

latch will latch the correct data. In this case, the error signal at the output of the XOR gate

remains low and the operation of the pipeline is unaltered. In cycle 2, the combinational

logic delay exceeds the intended delay due to sub-critical voltage scaling. In this case, the

correct data is not latched by the main flip-flop. However, because the shadow-latch

 9

operates from a delayed clock, it successfully latches the correct data some time in cycle

3. By comparing the valid data of the shadow latch with the data in the main flip-flop, an

error signal is generated in cycle 3. Later, in cycle 4, the valid data in the shadow latch is

restored into the main flip-flop and becomes available to the next pipeline stage L2.

If an error occurs in pipeline stage L1 in a particular clock cycle, the data in L2 in the

following clock cycle is incorrect and must be flushed from the pipeline. However, since

the shadow latch contains the correct output data of pipeline stage L1, the instruction

does not need to be re-executed through this failing stage. In addition to invalidating the

data in the following pipeline stage, an error stalls the preceding pipeline stages

(incurring one cycle penalty) while the shadow latch data is restored into the main flip-

flops. Then data is re-executed through the following pipeline stage. A number of

different methods, such as clock gating or flushing the instruction in the preceding stages,

were presented in [16].

4 RTL Power Management

Digital circuits usually contain portions that are not performing useful computations at

each clock cycle. Power reductions can then be achieved by shutting down the circuitry

when it is idle.

4.1 Precomputation Logic

Precomputation logic, presented in [17], relies on the idea of duplicating part of the logic

with the purpose of precomputing the circuit output values one clock cycle before they

are required, and then uses these values to reduce the total amount of switching in the

circuit during the next clock cycle. In fact, knowing the output values one clock cycle in

advance allows the original logic to be turned off during the next time frame, thus

eliminating any charging and discharging of the internal capacitances. Obviously, the size

of the logic that pre-calculates the output values must be kept under control since its

contribution to the total power balance may offset the savings achieved by blocking the

switching inside the original circuit. Several variants to the basic architecture can then be

devised to address this issue. In particular, sometimes it may be convenient to resort to

 10

partial, rather than global, shutdown, i.e., to select for power management only a

(possibly small) subset of the circuit inputs.

The synthesis algorithm presented in [17] suffers from the limitation that if a logic

function is dependent on the values of several inputs for a large fraction of the applied

input combinations, then no reduction in switching activity can be obtained. In [18], the

authors focus on a particular sequential precomputation architecture where the

precomputation logic is a function of all of the input variables. The authors call this

architecture the “complete input-disabling architecture.” It is shown that the complete

input disabling architecture can reduce power dissipation for a larger class of sequential

circuits compared to the subset input-disabling architecture. The authors present an

algorithm to synthesize precomputation logic for the complete input-disabling

architecture.

4.2 Clock Gating

Another approach to RT and gate-level dynamic power management, known as gated

clocks [19]– [21], provides a way to selectively stop the clock, and thus, force the original

circuit to make no transition, whenever the computation that is to be carried out at the

next clock cycle is redundant. In other words, the clock signal is disabled according to the

idle conditions of the logic network. For reactive circuits, the number of clock cycles in

which the design is idle in some wait states is usually large. Therefore, avoiding the

power waste corresponding to such states may be significant.

The logic for the clock management is automatically synthesized from the Boolean

function that represents the idle conditions of the circuit (cf. Figure 4.) It may well be the

case that considering all such conditions results in additional circuitry that is too large

and too power consuming. It may then be necessary to synthesize a simplified function,

which dissipates the minimum possible power and stops the clock with maximum

efficiency. The use of gated clocks has the drawback that the logic implementing the

clock-gating mechanism is functionally redundant, and this may create major difficulties

in testing and verification. The design of highly testable-gated clock circuits is discussed

in [22].

 11

Another difficulty with clock gating is that one must stop hazards/glitches on EN signal

from corrupting the clock signal to the register sets. This can be accomplished by

introducing a transparent negative latch between EN and the AND gate as shown in

Figure 5.

4.3 Computational Kernels

Sequential circuits may have an extremely large number of reachable states, but during

normal operation, these circuits tend to visit only a relatively small subset of the

reachable states. A similar situation occurs at the primary outputs; while the circuit walks

through the most probable states, only a few distinct patterns are generated at the

combinational outputs of the circuit. Many researchers have proposed approaches for

synthesizing a circuit that is fast and power-efficient under typical input stimuli, but

continues to operate correctly even when uncommon input stimuli are applied to the

circuit.

Reference [23] presents a power optimization technique by exploiting the concept of

computational kernel of a sequential circuit, which is a highly simplified logic block that

imitates the steady-state behavior of the original specification. This block is smaller,

faster, and less power consuming than the circuit from which it is extracted and can

replace the original network for a large fraction of the operation time.

The p-order computational kernel of an FSM is defined with respect to a given

probability threshold p and includes the subset of the states, SP, of the original FSM

whose steady-state occupation probabilities are larger than p. The combinational kernel

also includes the subset of states, RP, where for each state in Rp there is an edge from a

state in Sp to that state. As an example, consider the simple FSM shown in Figure 6(a) in

which the input and output values are omitted for the sake of simplicity and the states are

annotated with the steady-state occupation probabilities calculated through Markovian

analysis of the corresponding state transition graph (STG.) If we specify a probability

threshold of p=0.25, then the computational kernel of the FSM is depicted in Figure 6(b).

States in black represent set Sp, while states in grey represent Rp. The kernel probability

is Prob(Sp) = 0.29 + 0.25 + 0.32 = 0.86.

 12

Given a sequential circuit with the standard topology depicted in Figure 7(a), the

paradigm for improving its quality with respect to a given cost function (e.g., power

dissipation, latency) is based on the architecture shown in Figure 7(b).

The basic elements of the architecture are: the combinational portion of the original

circuit (block CL), the computational kernel (block K), the selector function (block S),

the double state flip-flops (DSFF), and the output multiplexers (MUX.)

The computational kernel can be seen as a “dense" implementation of the circuit from

which it has been extracted. In other terms, K implements the core functions of the

original circuit, and because of its reduced complexity, it usually implements such

functions in a faster and more efficient way. The purpose of selector function S is that of

deciding what logic block, between CL and K, will provide the output value and the next-

state in the following clock cycle. To take a decision, S examines the values of the next-

state outputs at clock cycle n. If the output and next-state values in cycle n+1 can be

computed by the kernel K, then S takes on the value 1. Otherwise, it takes on the value 0.

The value of S is fed to a flip-flop, whose output is connected to the MUXes that select

which block produces the output and the next-state. The optimized implementation is

functionally equivalent to the original one. Computational kernels are a generalization of

the precomputation architecture from combinational and pipelined sequential circuits to

finite state machines. The authors in [23] proposed an algorithm for generating the

computational kernel of a FSM by iterative simplification of the original network by

redundancy removal.

In [24], the authors raise the level of abstraction at which the kernel-based optimization

strategy can be exploited and show how RTL components for which only a functional

specification is available can be optimized using the computational kernels. They present

a technique for computational kernel extraction directly from the functional specification

of a RTL module. Given the state transition graph (STG) specification, the proposed

algorithm calculates the kernel exactly through symbolic procedures similar to those

employed for FSM reachability analysis. The authors also provide approximate methods

to deal with large STG’s. More precisely, they propose two modifications to the basic

 13

procedure. The first one replaces the exact probabilistic analysis of the STG with an

approximate analysis. In the second solution, symbolic state probability computation is

bypassed and the set of states belonging to the kernel is determined directly from RTL

simulation traces of a given (random or user-provided) stream.

4.4 State Machine Decomposition

Decomposition of finite state machines for low power has been proposed in [25]. The

basic idea is to decompose the STG of a finite state machine (FSM) into two STGs that

jointly produce the equivalent input-output behavior as the original machine. Power is

saved because, except for transitions between the two sub-FSMs, only one of the sub-

FSMs needs to be clocked. The technique follows a standard decomposition structure.

The states are partitioned by searching for a small subset of states with high probability

of transitions among these states and a low probability of transitions to and from other

states. This subset of states will then constitute a small sub-FSM that is active most of the

time. When the small sub-FSM is active, the other larger sub-FSM can be disabled.

Consequently, power is saved because most of the time only the smaller, more power-

efficient, sub-FSM is clocked.

In [26], the combinational logic block is partitioned (for example to CL1 and CL2) and

the active part is decided based on the encoding of the present state. The states selected

for one of the sub-FSMs (i.e., M1) are all encoded in such a way that the enable signal is

always on for CL1 while it is off for CL2. Conversely, for all states in the other sub-FSM

(i.e., M2), the enable signal is always off for CL1 while it is on for CL2. Consequently,

for all transitions within M1, only CL1 will be active and vice-versa.

Consider as an example dk27 FSM from the MCNC benchmark set, depicted in Figure 8.

Assume that the input signal values, 0 and 1, occur with equal probabilities. The steady

state probabilities which are shown next to the states in this figure have been computed

accordingly. Suppose we partition the FSM into two sub-machines M1 and M2 along the

dotted line. Then around 40% of the transitions occur in submachine M1, 40% of the

transitions occur in submachine M2, and 20% of the transitions occur between sub-

machines M1 and M2. Now suppose that the FSM is synthesized as two individual

 14

combinational circuits for sub-machines M1 and M2. Then we can turn off the

combinational circuit for submachine M2 when transitions occur within submachine M1.

Similarly, we can turn off the combinational circuit for submachine M1 when transitions

occur within submachine M2. The states are partitioned such that the probability of

transitions within any sub-FSM is maximized and the estimated overhead is minimized.

These methods for FSM decomposition can be considered as extensions of the gated-

clock for FSM self-loops approach proposed in [27]. In FSM decomposition the cluster of

states that are selected for one of the sub-FSMs can be considered as a “super-state” and

then transitions between states in this cluster can be seen as self-loops on this “super-

state”.

4.5 Guarded Evaluation

Guarded evaluation [29] is the last RT and gate-level shutdown technique we review in

this section. The distinctive feature of this solution is that, unlike precomputation and

gated clocks, it does not require one to synthesize additional logic to implement the

shutdown mechanism; instead, it exploits existing signals in the original circuit. The

approach is based on placing some guard logic, consisting of transparent latches with an

enable signal, at the inputs of each block of the circuit that needs to be power managed.

When the block must execute some useful computation in a clock cycle, the enable signal

makes the latches transparent. Otherwise, the latches retain their previous states, thus,

blocking any transition within the logic block.

Guarded evaluation provides a systematic approach to identify where transparent latches

must be placed within the circuit and by which signals they must be controlled. For

Example, Let C be a combinational logic block (cf. Figure 9(a)), X be the set of primary

inputs to C, and z be a signal in C. Furthermore, let F be the portion of logic that drives z

and Y be the set of inputs to F. Finally, let DZ(X) be the observability don’t-care set for z

(that is, the set of primary input assignments for which the value of z does not influence

the outputs of C). Now consider a signal s in C which logically implies DZ(X), that is,

s⇒DZ(X). Then, if s=1, then the value of z is not required to compute the outputs of C. If

we call te(Y) the earliest time at which any input to F can switch when s=1, and tl(s) as the

 15

latest time at which s settles to one, then signal s can be used as the guard signal for F (cf.

Figure 9(b)) if tl(s)< te(Y). This is because z is not required to compute the outputs of C

when s=1, and therefore, block F can be shut down. Notice that the condition tl(s)< te(Y)

guarantees that the transparent latches in the guard logic are shut down before any of the

inputs to F makes a transition.

This technique, referred to as pure guarded evaluation, has the desirable property that

when applied, no changes in the original combinational circuitry are needed. On the other

hand, if some resynthesis and restructuring of the original logic is allowed, a larger

number of logic shutdown opportunities may become available.

5 Sequential Logic Synthesis for Low Power

Power can be minimized by appropriate synthesis of logic. The goal in this case is to

minimize the so-called switched capacitance of the circuit by low power driven logic

minimization techniques.

5.1 State Assignment

State encoding/assignment, as a crucial step in the synthesis of the controller circuitry,

has been extensively studied. Roy et al. was the first to address the problem of reducing

switching activity of input state lines of the next state logic, during the state assignment,

formulating it as a Minimum Weighted Hamming Distance problem [30]. Olson et al.

used a linear combination of switching activity of the next state lines and the number of

literals as the cost function [31]. Tsui et al. [32] used simulated annealing as a search

strategy to find a low power state encoding that accounts for both the switching activity

of the next state lines and switched capacitance of the next state and output logic.

For example, consider the state transition graph for a BCD to Excess-3 Converter

depicted in Figure 10. Assume that the transition probabilities of the thicker edges in this

figure are more than those of the thin edges. The key idea behind all of the low power

state assignment techniques is to assign minimum Hamming distance codes to the states

pairs that have large inter-state transition probabilities. For example the coding, S0=000,

S1=001, S2=011, S3=010, S4=100, S5=101, S6=111, S7=110 fulfills this requirement.

 16

In [33], Wu et al. proposed the idea of realizing a low power FSM by using T flip-flops.

The authors showed that use of T flip flops results in a natural clock gating and may

result in reduced next state logic complexity. However, that work was mostly focused on

BCD counters which have cyclic behavior. The cyclic behavior of counters results in a

significant reduction of combinational logic complexity and, hence, lowers power

consumption. Reference [34] introduces a mathematical framework for cycle

representation of Markov processes and based on that, proposes solutions to the low

power state assignment problem. The authors first identify the most probable cycles in

the FSM and encode the states on these cycles with Gray codes. The objective function is

to minimize the Weighted Hamming Distance. This reference also teaches how a

combination of T and D flip-flops as state registers can be used to achieve a low power

realization of a FSM.

5.2 Retiming

Retiming is to reposition the registers in a design to improve the area and performance of

the circuit without modifying its input-output behavior. The technique was initially

proposed by Leiserson and Saxe [35]. This technique changes the location of registers in

the design in order to achieve one of the following goals: 1) minimize the clock period; 2)

minimizing the number of registers; or 3) minimize the number of registers for a target

clock period.

Minimizing dynamic power for synchronous sequential digital designs is addressed in the

literature. In [36], Monteiro et al. presented heuristics to minimize the switching activity

in a pipelined sequential circuit. Their approach is based on the fact that registers have to

be positioned on the output edges of the computational elements that have high switching

activity. The reason for power savings is that in this case the output of a register switches

only at the arrival of the clock signal as opposed to potentially switching many times in

the clock period. Consider the simple example of a logic gate belonging to a synchronous

circuit and a capacitive load driven by the output gate. In CMOS technology, the power

dissipated by gate is proportional to the product of the switching activity of the output

 17

node of the gate and the output load. At the output of gate some spurious transitions (i.e.,

glitches) may occur, which can result in a significant power waste. Suppose a register is

inserted between the output of the gate and the capacitive load. In the new circuit, the

output of the register can make, at most, one transition per clock cycle. In fact, the gate

output may have many redundant transitions but they are all filtered out by the register;

hence, these logic hazards do not propagate to the output load.

The heuristic retiming technique of [36] applies to a synchronous network with pipeline

structure. The basic idea is to select a set of candidate gates in the circuit such that if

registers are placed at their outputs, the total switching activity of the network gets

minimized. The selection of the gates is driven by two factors: the amount of glitching

that occurs at the output of each gate and the probability that such glitching propagates to

the gates located in the transitive fanout. Registers are initially placed at the primary

inputs of the circuit, and backward retiming (which consists of moving one register from

all gate inputs to the output) is applied until all the candidate gates have received a

register on their outputs. Then, registers that belong to paths not containing any of the

candidate gates are repositioned, with the objective of minimizing both the delay and the

total number of registers in the circuit. This last retiming phase does not affect the

registers that have been already placed at the outputs of the previously selected gates. In

 [37], fixed-phase retiming is proposed to reduce dynamic power consumption. The edge-

triggered circuit is first transformed to a two-phase level-clocked circuit, by replacing

each edge-triggered flip-flop by two latches. Using the resulting level-clocked circuit, the

latches of one phase are kept fixed, while the latches belonging to the other phase are

moved onto wires with high switching activity and loading capacitance.

Fixed-phase retiming is best illustrated by the example shown below. Figure 11(a) shows

a section of a pipelined circuit with edge-triggered flip-flops. The numbers on the edges

represent the potential reduction in power dissipation when an edge-triggered flip-flop is

present on that edge, assuming that the rest of the circuit remains unchanged. Negative

values of power reduction indicate an increase in power dissipation when a flip-flop is

placed on an edge. This reduction in power dissipation can be achieved if the edge has a

high glitching-capacitance product [3]. After replacing each edge-triggered flip-flop by

 18

two back-to-back level-clocked latches, the resulting circuit is fixed-phase retimed to

obtain the circuit in Figure 11(b).

Assuming a non-overlapping two-phase clocking scheme π = 〈φ0 = 4, γ0 = 1, φ1 = 4, γ1 =

1〉 such as the one shown in Figure 11(c), power dissipation can be reduced by 11.8 units.

Specifically, the glitching on edges B→D, E→F and E→H is “masked” for 60% of the

clock cycle which decreases power dissipation by 0.6×(12 + 13 -2) = 13.8 units of power.

At the same time, the glitching on edges G→J and H→K is “exposed” for 40% of the

clock cycle which increases power dissipation by 0.4×(10 – 5) = 2 power units. In order

to simplify the computation of changes in power dissipation for this example, it is

assumed that glitching is uniformly distributed over the entire clock period and that the

relocation of latches does not change glitching significantly.

In [38], Chabini and Wolf propose a hybrid retiming and supply voltage scaling. They

observe that critical paths are related to the position of registers in a design so they try not

only to scale down the supply voltage of computational elements that are off the critical

paths, but also to move registers to maximize the number of computational elements that

are off the critical paths, thereby further minimizing the circuit power consumption.

Registers have to be moved from their positions by the standard retiming technique.

Instead of unifying basic retiming and supply voltages scaling, the authors propose to

apply “guided retiming” followed by the application of voltage scaling on the retimed

design. Polynomial time algorithms based on dynamic programming to realize the guided

retiming as well as the supply voltage scaling on the retimed design are proposed.

6 Leakage Power Reduction Techniques

In many new high performance designs, the leakage component of power consumption is

comparable to the switching component. Reports indicate that 40% or even higher

percentage of the total power consumption is due to the leakage of transistors. This

percentage will increase with technology scaling unless effective techniques are

introduced to bring leakage under control. This section focuses mostly on RTL

optimization and design automation techniques that accomplish this goal.

 19

There are four main sources of leakage current in a CMOS transistor:

1. Reverse-biased junction leakage current (IREV)

2. Gate induced drain leakage (IGIDL)

3. Gate direct-tunneling leakage (IG)

4. Subthreshold (weak inversion) leakage (ISUB)

Let IOFF denote the leakage of an OFF transistor (VGS=0V for an NMOS device which

results in IG=0.)

OFF REV GIDL SUBI I I I= + + .

Components, IREV and IGIDL are maximized when VDB = VDD. Similarly, for short-channel

devices, ISUB increases with VDB because of the DIBL effect. Note the IG is not a

component of the OFF current, since the transistor gate must be at a high potential with

respect to the source and substrate for this current to flow. An effective approach to

overcome the gate leakage currents while maintaining excellent gate control is to replace

the currently-used silicon dioxide gate insulator with high-K dielectric material such as

TiO2 and Ta2O5. Use of the high-k dielectric will allow a less aggressive gate dielectric

thickness reduction while maintaining the required gate overdrive at low supply voltages

 [39]. High-K gate dielectrics are expected to be introduced in 2006 [40]. Therefore, it is

reasonable to ignore the IG component of leakage. Among the three components of IOFF,

ISUB is the dominant component. Hence, most leakage reduction techniques focus on ISUB.

6.1 Power Gating and Multi-Threshold CMOS

The most obvious way of reducing the leakage power dissipation of a VLSI circuit in the

STANDBY state is to turn off its supply voltage. This can be done by using one PMOS

transistor and one NMOS transistor in series with the transistors of each logic block to

create a virtual ground and a virtual power supply as depicted in Figure 12. In practice

only one transistor is necessary. Because of the lower on-resistance, NMOS transistors

are usually used.

 20

In the ACTIVE state, the sleep transistor is on. Therefore, the circuit functions as usual.

In the STANDBY state, the transistor is turned off, which disconnects the gate from the

ground. To lower the leakage, the threshold voltage of the sleep transistor must be large.

Otherwise, the sleep transistor will have a high leakage current, which will make the

power gating less effective. Additional savings may be achieved if the width of the sleep

transistor is smaller than the combined width of the transistors in the pull-down network.

In practice, Dual VT CMOS or Multi-Threshold CMOS (MTCMOS) is used for power

gating [41] [42]. In these technologies there are several types of transistors with different

VT values. Transistors with a low VT are used to implement the logic, while high-VT

devices are used as sleep transistors.

To guarantee the proper functionality of the circuit, the sleep transistor has to be carefully

sized to decrease its voltage drop while it is on. The voltage drop on the sleep transistor

decreases the effective supply voltage of the logic gate. Also, it increases the threshold of

the pull-down transistors due to the body effect. This increases the high-to-low transition

delay of the circuit. This problem can be solved by using a large sleep transistor. On the

other hand, using a large sleep transistor increases the area overhead and the dynamic

power consumed for turning the transistor on and off. Note that because of this dynamic

power consumption, it is not possible to save power for short idle periods. There is a

minimum duration of the idle time below which power saving is impossible. Increasing

the size of the sleep transistors increases this minimum duration.

Since using one transistor for each logic gate results in a large area and power overhead,

one transistor may be used for each group of gates as depicted in Figure 13. Notice that

the size of the sleep transistor in this figure ought to be larger than the one used in Figure

12. To find the optimum size of the sleep transistor, it is necessary to find the vector that

causes the worst case delay in the circuit. This requires simulating the circuit under all

possible input values, a task that is not possible for large circuits.

In [42], Kao and Chandrakasan describe a method to decrease the size of sleep transistors

based on the mutual exclusion principle. In their method, the authors first size the sleep

transistors to achieve delay degradation less than a given percentage for each gate. Notice

 21

that this guarantees that the total delay of the circuit will be degraded by less than the

given percentage. In fact the actual degradation can be as much as 50% smaller. The

reason for this is that NMOS sleep transistors degrade only the high-to-low transitions

and at each cycle only half of the gates switch from high to low. If two gates switch at

different times (i.e., their switching windows are non-overlapping), then their

corresponding sleep transistors can be shared.

Although sleep transistors can be used to disconnect logic gates from ground, using them

to disconnect Flip Flops from ground or supply voltage results in the loss of data. The

authors of [43] solve this problem by using high threshold transistors for the inverters that

hold data and low threshold transistors for other parts of Flip Flops. In the sleep mode,

the low threshold transistors are disconnected from the ground, but the two inverters that

hold data stay connected to the ground. Since high threshold transistors have been used in

the inverters, their leakage is small. Other possibilities for saving data when MTCMOS is

applied to a sequential circuit are to utilize leakage-feedback gates and flip flops [44] or

balloon latches [45].

6.2 Multiple Threshold Cells

Multiple threshold voltages have been available on many CMOS processes for a number

of years. Multiple-Threshold CMOS circuit, which has both high and low threshold

transistors in a single chip, can be used to deal with the leakage problem. The high

threshold transistors can suppress the subthreshold leakage current, while the low

threshold transistors are used to achieve the high performance. Since the standby power is

much larger for low VT transistors compared to the high VT ones, usage is limited to

using low VT transistors on timing-critical paths, with insertion rates on the order of 20%

or less. Since Tox and Lgate are the same for high and low VT transistors, low VT insertion

does not adversely impact the active power component or the design size. Drawbacks are

that variation due to doping is uncorrelated between the high and low threshold

transistors and extra mask steps incur a process cost.

The technology used for fabricating circuits can restrict the manner in which transistors

can be mixed. For example, it may not be possible to use different threshold voltages for

 22

transistors in a stack due to their proximity. Furthermore, to simplify the design process

and Computer-Aided Design (CAD) algorithms, one may wish to restrict the way

transistors are mixed. For example, when transistors of the same type are used in a logic

cell, the size of multi-threshold cell library is only twice that of the original (single

threshold) cell library. This reduces the library development time as well as the

complexity and run time of CAD algorithms and tools that use the library.

In general, one expects that the leakage saving increases as the freedom to mix low and

high VT devices in a logic cell is increased. However, the percentage improvement is

usually minor. Compared to the case of using logic cells with the same type of transistors

(i.e., low threshold or high threshold) everywhere, reference [46] reports an average of

only 5% additional leakage savings by using logic cells with the same type of transistors

in a transistor stack.

Although using two threshold voltages instead of one significantly decreases the leakage

current in a circuit, using more than two threshold voltages marginally improves the

result [47]. This is true even when the threshold values are optimized to minimize the

leakage for a given circuit. Thus, in many designs, only two threshold voltages are used.

6.3 Minimum Leakage Vector Method

The leakage current of a logic gate is a strong function of its input values. The reason is

that the input values affect the number of OFF transistors in the NMOS and PMOS

networks of a logic gate.

Table 1 shows the leakage current of a two-input NAND gate built in a 0.18µm CMOS

technology with a 0.2V threshold voltage and a 1.5V supply voltage. Input A is the one

closer to the output of the gate.

Table 1. The leakage values of a NAND gate.

Inputs Output

A B O

Leakage Current

(nA)

 23

0 0 1 23.06

0 1 0 51.42

1 0 0 47.15

1 1 0 82.94

The minimum leakage current of the gate corresponds to the case when both its inputs are

zero. In this case, both NMOS transistors in the NMOS network are off, while both

PMOS transistors are on. The effective resistance between the supply and the ground is

the resistance of two OFF NMOS transistors in series. This is the maximum possible

resistance. If one of the inputs is zero and the other is one, the effective resistance will be

the same as the resistance of one OFF NMOS transistor. This is clearly smaller than the

previous case. If both inputs are one, both NMOS transistors will be on. On the other

hand, the PMOS transistors will be off. The effective resistance in this case is the

resistance of two OFF PMOS transistors in parallel. Clearly, this resistance is smaller

than the other cases.

In the NAND gate of Table 1 the maximum leakage is about three times higher than the

minimum leakage. Note that there is a small difference between the leakage current of the

A=0, B=1 vector and the A=1, B=0 vector due to the body effect. The phenomenon

whereby the leakage current through a stack of two or more OFF transistors is

significantly smaller than a single device leakage is called the “stack effect”. Other logic

gates exhibit a similar leakage current behavior with respect to the applied input pattern.

As a result, the leakage current of a circuit is a strong function of its input values. It is

possible to achieve a moderate reduction in leakage using this technique, but the

reduction is not as high as the one achieved by the power gating method. On the other

hand, the MLV method does not suffer from many of the shortcomings of the other

methods. In particular,

1. No modification in the process technology is required.

2. No change in the internal logic gates of the circuit is necessary.

3. There is no reduction in voltage swing.

 24

4. Technology scaling does not have a negative effect on its effectiveness or its

overhead. In fact the stack effect becomes stronger with technology scaling as

DIBL worsens.

The first three facts make it very easy to use this method in existing designs. This

technique is also referred to as input vector control (IVC) [48]. The problem of finding

MLV for an arbitrary circuit is NP-complete [49] for which a number of heuristics have

been proposed including a random simulation based approach presented in [48]. In [49],

the authors used a constraint graph to solve the problem for circuits with only a small

number of inputs. An explicit branch and bound enumeration technique is described in

 [50]. For large circuits, bounds on the minimum and maximum leakage values were

obtained by using heuristics. Abdollahi et al. [51] formulated the problem of determining

the MLV using a series of Boolean Satisfiability problems and solved accordingly. The

authors report between 10% to 55% reduction in the leakage by using the MLV

technique. Note that the saving is defined as 100)1(×−
AVG

MLV

Leakage

Leakage
, where LeakageMLV is

the leakage when the minimum leakage vector drives the circuit whereas LeakageAVG is

the expected leakage current under an arbitrary input combination (this is used because

the input value prior to entering the sleep mode is unknown.)

Lee and Blaauw [52] used the combination of MLV and dual-VT assignment for leakage

power reduction. They observe that within the performance constraints, it is more

effective to switch off a high-VT transistor than a low-VT one. Naidu et al. [53] proposed

an integer linear programming (ILP) model for circuits composed of NAND or AOI

gates, which obtains the MLV. Gao and Hayes [54] proposed an ILP model for finding

MLV, called the virtual-gate or VG-ILP model. Virtual gates are cells that are added to

the given circuit to facilitate model formulation, but have no impact on the functionality

of the original circuit. The leakage current is viewed as a pseudo-Boolean function of the

inputs, which is subsequently linearized. The authors resort to ILP to obtain the input

MLV using linearized leakage current functions. They also propose a fast, heuristic

technique for MLV calculation, which selectively relaxes variables of the ILP model,

leading to a mixed-integer linear programming (MLP) model.

 25

6.4 Increasing the Transistor Channel Lengths

Active leakage of CMOS gates can be reduced by increasing their transistor channel

lengths [55]. This is because there is a VT roll-off due to the Short Channel Effect (SCE).

Therefore, different threshold voltages can be achieved by using different channel

lengths. The longer transistor lengths used to achieve high threshold transistors tend to

increase the gate capacitance, which has a negative impact on the performance and

dynamic power dissipation. Compared with multiple threshold voltages, long channel

insertion has similar or lower process cost, taken as the size increase rather than the mask

cost. It results in lower process complexity. In addition, the different channel lengths

track each other over process variation. This technique can be applied in a greedy manner

to an existing design to limit the leakage currents [56]. A potential penalty is that the

dynamic power dissipation of the up-sized gate is increased proportional to the effective

channel length increase. In general, circuit power dissipation may not be saved unless the

activity factor of the affected gates is low. Therefore, the activity factor must be taken

into account when choosing gates whose transistor lengths are to be increased.

6.5 Transistor Sizing with Simultaneous Threshold and Supply Voltage

Assignment

Increasing the threshold voltage of a transistor reduces the leakage current exponentially,

but it has a marginal effect on the dynamic power dissipation. On the other hand,

reducing the width of a transistor reduces both leakage and dynamic power, but at a linear

rate only. Nguyen et al. in [57] report an average 60% and 75% reduction in the total

power dissipation by using sizing alone and sizing combined with VT assignment,

respectively. The combination of the technique with dual Vdd assignment resulted in

only a marginal improvement, probably because of the optimization algorithm used by

the authors. Combining the three optimizations is currently an active area of research and

will enable synthesizing lower power circuits in the near future.

7 Conclusion

Several key elements emerge as enablers for an effective low power design methodology.

The first is the availability of accurate, comprehensive power models. The second is the

 26

existence of fast, easy to use high level estimation and design exploration tools for

analysis and optimization during the design creation process, while the third is the

existence of highly accurate, high capacity verification tools for tape-out power

verification. As befitting a first-order concern, successfully managing the various power-

related design issues will require that power be addressed at all phases and in all aspects

of design, especially during the earliest design and planning activities. Advanced power

tools will play central roles in these efforts.

An RTL design methodology supported by the appropriate design automation tools is one

of the most effective methods of designing complex chips for lower power dissipation.

Moreover, this methodology drastically reduces the risk of not meeting often harsh power

constraints by the early identification of power hogs or hot spots, and enabling the

analysis and selection of alternative solutions. Such methodologies have already been

adopted by designers of complex chips and constitute the state-of-the-art in designing

complex, high-performance, yet low power, designs.

This paper reviewed a number of RTL techniques for low power design of VLSI circuits

targeting both dynamic and leakage components of power dissipation in CMOS VLSI

circuits. A more detailed review of techniques for low power design of VLSI circuits and

systems can be found in many references, including [58].

References

[1] M. Pedram and J. Rabaey (editors), Power Aware Design Methodologies, Kluwer

Academic Publishers, Boston, 2002.

[2] E. Macii (editor), Ultra Low-Power Electronics and Design, Kluwer Academic

Publishers, Boston, 2004.

[3] C. Piguet (editor), Low Power Electronics Design, The CRC Press, 2004.

[4] M. Hamada, M. Takahashi, H. Arakida, A. Chiba, T. Terazawa, T. Ishikawa, M.

Kanazawa, M. Igarashi, K. Usami, and T. Kuroda,"A top-down low power design

technique using clustered voltage scaling with variable supply-voltage scheme," in

Proc. IEEE Custom Integrated Circuits Conference (CICC’98), May 1998, pp. 495-

498.

 27

[5] S . Raje and M. Sarrafzadeh, “Variable voltage scheduling,” in Proc. Int’l.

Workshop Low Power Design, Aug. 1995, pp. 9–14.

[6] K. Usami and M. Horowitz, “Clustered voltage scaling technique for low-power

design,” in Proc. Int’l. Workshop Low Power Design, 1995, pp. 3–8.

[7] Usami, K. Igarashi, M. Minami, F. Ishikawa, T. Kanzawa, M. Ichida, M.

Nogami, K. “Automated low-power technique exploiting multiple supply voltages

applied to a media processor," IEEE Journal of Solid-State Circuits, vol. 33, no. 3,

Mar. 1998, pp 463 – 472.

[8] C. Chen, A. Srivastava, and M. Sarrafzadeh, “On gate level power optimization

using dual supply voltages,” IEEE Trans. on VLSI Systems, vol. 9, Oct. 2001, pp.

616–629.

[9] A. Manzak and C. Chakrabarti, “A Low Power Scheduling Scheme with Resources

Operating at Multiple Voltages,” IEEE Trans. on VLSI Systems, vol. 10, no. 1, Feb.

2002, pp. 6-14.

[10] J. M. Chang and M. Pedram, “Energy minimization using multiple supply voltages,”

IEEE Trans. VLSI Systems, vol. 5, no. 4, 1997, pp. 436–443.

[11] Y.-J. Yeh, S.-Y. Kuo, and J.-Y. Jou, “Converter-free multiple-voltage scaling

techniques for low-power CMOS digital design,” IEEE Trans. Computer-Aided

Design, vol. 20, Jan. 2001, pp. 172–176.

[12] A. K. Murugavel, N. Ranganathan, “Game Theoretic Modeling of Voltage and

Frequency Scaling during Behavioral Synthesis,” in Proc. of VLSI Design, 2004, pp.

670-673.

[13] T. Mudge. “Power: A first class design constraint,” Computer, vol. 34, no. 4, April

2001, pp. 52-57.

[14] T. Pering, T. Burd, and R. Brodersen. “The Simulation and Evaluation of Dynamic

Voltage Scaling Algorithms.” Proceedings of Int’l Symp. on Low Power Electronics

and Design 1998, pp. 76-81, June 1998.

[15] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and Threshold Voltage Scaling

for Low Power CMOS,” IEEE Journal of solid-State Circuits, 32 (8), August 1997.

[16] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Toan Pham, Rajeev Rao,

Conrad Ziesler, David Blaauw, Todd Austin, Trevor Mudge “Razor: A Low-Power

 28

Pipeline Based on Circuit-Level Timing Speculation,” Proc. 36th Ann. Int’l Symp.

Microarchitecture (MICRO-36), IEEE CS Press, 2003, pp. 7-18.

[17] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,

“Precomputation-based sequential logic optimization for low power,” IEEE Trans.

VLSI Systems, vol. 2, no. 4, 1994, pp. 426–436.

[18] J. Monteiro, S. Devadas, A. Ghosh, “Sequential Logic Optimization For Low

Power Using Input-disabling,” IEEE Trans. on Computer-Aided Design, vol. 17, no.

3, 1998, pp. 279–284.

[19] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of gated clocks for

power reduction in sequential circuits,” IEEE Design Test Computer Magazine, vol.

11, no. 4, pp. 32–40, 1994.

[20] L. Benini and G. De Micheli, “Transformation and synthesis of FSM’s for low

power gated clock implementation,” IEEE Trans. on Computer-Aided Design, vol.

15, no. 6, 1996, pp. 630–643.

[21] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi, “Symbolic synthesis

of clock-gating logic for power optimization of control-oriented synchronous

networks,” in Proc. European Design and Test Conf., Paris, France, Mar. 1997, pp.

514–520.

[22] L. Benini, M. Favalli, and G. De Micheli, “Design for testability of gated-clock

FSM’s,” in Proc. European Design and Test Conf., Paris, France, Mar. 1996, pp.

589–596.

[23] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino, “Synthesis

of Power-Managed Sequential Components Based on Computational Kernel

Extraction,” IEEE Trans. on Computer-Aided Design, vol. 20, no. 9, September

2001, pp. 1118-1131.

[24] L Benini, G. De Micheli, E. Macii, G. Odasso, M. Poncino, “Kernel-Based Power

Optimization of RTL Components: Exact and Approximate Extraction Algorithms,”

in Proc. of Design Automation Conf., 1999, pp. 247-252.

[25] J. Monteiro and A. Oliveira. Finite State Machine Decomposition for Low Power. In

Proc. of Design Automation Conference, June 1998, pages 758-763.

 29

[26] S-H. Chow, Y-C. Ho, and T. Hwang. “Low Power Realization of Finite State

Machines A Decomposition Approach,” ACM Trans. on Design Automation of

Electronic Systems, vol. 1 no. 3, July 1996, pp. 315-340.

[27] L. Benini, P. Siegel, and G. De Micheli. Automatic Synthesis of Low-Power Gated-

Clock Finite-State Machines. IEEE Trans. on Computer-Aided Design, 15(6):630-

643, June 1996.

[28] J. C. Monteiro, “Power optimization using dynamic power management,” in Proc.

of the XII Symp. on Integrated Circuits and Systems Design, Sep. 1999, pp. 134-

139.

[29] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: Pushing power

management to logic synthesis/design,” in Proc. ACM/IEEE Int’l. Symp. Low Power

Design, Dana Point, CA, Apr. 1995, pp. 221–226.

[30] K. Roy and S. Prasad, “Syclop: Synthesis of CMOS Logic for Low-Power

Application,” Proc. of Int’l Conf. on Computer design, pp. 464-467, Oct. 1992.

[31] E. Olson and S. M. Kang, “Low-Power State Assignment for Finite State

Machines,” in Proc. of Int’l Workshop on Low Power Design, pp. 63-68, April

1994.

[32] C. Y. Tsui, M. Pedram and A. M. Despain, “Low-Power State Assignment

Targeting Two- and Multilevel Logic Implementation,” IEEE Trans. on Computer-

Aided Design, vol. 17, no. 12, Dec. 1998, pp. 1281-1291.

[33] X. Wu, J. Wei, Q. Wu, and M. Pedram, “Low-Power Design of Sequential Circuits

Using a Quasi-Synchronous Derived Clock,” Int’l Journal of Electronics, Taylor

and Francis Publishing Group, vol. 88, no. 6, Jun. 2001, pp. 635-643.

[34] A. Iranli, P. Rezvani, and M. Pedram, "Low power synthesis of finite state machines

with mixed D and T flip-flops," in Proc. of Asia and South Pacific Design

Automation Conference, Jan. 2003, pp. 803-808.

[35] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” Journal of VLSI

Computer Systems, vol. 1, no. 1, 1983, pp. 41–67.

[36] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits for low

power,” in Proc. Int’l. Conf. Computer-Aided Design, Santa Clara, CA, Nov. 1993,

pp. 398–402.

 30

[37] K. N. Lalgudi and M. Papaefthymiou, “Fixed-phase retiming for low power,” in

Proc. Int’l. Symp Low-Power Electronics and Design, Aug. 1996, pp. 259–264.

[38] N. Chabini and W. Wolf, "Reducing Dynamic Power Consumption in Synchronous

Sequential Digital Designs Using Retiming and Supply Voltage Scaling" IEEE

Trans. on VLSI Systems, vol. 12, no. 6, Jun. 2004, pp.573-589.

[39] S. Borkar, “Design Challenges of Technology Scaling,” IEEE Micro, Vol. 19, Issue

4, Jul.-Aug. 1999.

[40] Semiconductor Industry Association, Int’l Technology Roadmap for

Semiconductors, 2003 edition, http://public.itrs.net/.

[41] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “ 1-V

Power Supply High-Speed Digital Circuit Technology with Multithreshold CMOS,”

IEEE J. Solid-State Circuits 30, No. 8, August 1995, pp. 847–854.

[42] J. T. Kao, A. P. Chandrakasan, ``Dual-threshold voltage techniques for low-power

digital circuits,'' IEEE Journal of Solid-State Circuits, Vol. 35, July 2000, pp. 1009-

1018.

[43] Hyo-Sig Won, et al., “An MTCMOS Design Methodology and Its Application to

Mobile Computing,” Proc. of the Int’l Symp. on Low power electronics and design,

August 2003.

[44] J. Kao and A. Chandrakasan, “MTCMOS sequential circuits,” Proc. ESSCIRC,

2001, pp. 332–339.

[45] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, J. Yamada, “A 1-V high-speed

MTCMOS circuit scheme for power-down application circuits,” IEEE Journal of

Solid State Circuits, Vol. 32, June 1997, pp. 861-870.

[46] L. Wei, K. Roy, Y. Ye, and V. De, “Mixed-Vth (MVT) CMOS Circuit Design

Methodology for Low Power Applications,” Proc. Design Automation Conference,

Jun. 1999, pp. 430-435.

[47] A. Srivastava, “Simultaneous Vt Selection and Assignment for Leakage

Optimization,” Proc. Int’l Symp. on Low Power Electronics and Design, Aug. 2003,

pp. 146-151.

 31

[48] Halter J., Najm, F., “A Gate-level Leakage Power ReductionMethod for Ultra Low

Power CMOS Circuits,” IEEE Custom Integrated Circuits Conference, 1997, pp.

475-478.

[49] S. Bobba and I. N. Hajj, "Maximum leakage power estimation for CMOS circuits,"

Proceedings of IEEE Alessandro Volta Memorial Int’l Workshop on Low Power

Design, Como, Italy, March 4-5, 1999. pp. 116-124.

[50] M. Johnson, D. Somasekhar, K. Roy, "Models and Algorithms for Bounds in

CMOS Circuits," IEEE Trans. on Computer Aided Design of Integrated Circuits

and Systems, Vol. 18, No. 6, June 1999, pp. 714-725.

[51] A. Abdollahi, F. Fallah and M. Pedram, “Leakage current reduction in CMOS VLSI

circuits by input vector control,” IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, Vol. 12 , Issue: 2 , Feb. 2004, pp. 140-154.

[52] D. Lee and D. Blaauw, “Static leakage reduction through simultaneous threshold

voltage and state assignment,” Proc. Design Automation Conference, Jun. 2003,

pp191-194.

[53] S. Naidu and E. Jacobs, “Minimizing Standby Leakage Power in Static CMOS

Circuits,” Proc. Design Automation and Test in Europe, 2001, pp 370 - 376.

[54] F. Gao and J. P. Hayes, “Exact and Heuristic Approaches to Input Vector Control

for Leakage Reduction,” Proc. Intl. Conf. on Computer-Aided Design, Nov. 2004,

pp. 527-532.

[55] L. Wei, K. Roy, and V. De, “Low voltage low power CMOS design techniques for

deep submicron ICs,” Proc. Thirteenth Int’l Conference on VLSI Design, 2000, pp.

24-29.

[56] L.T. Clark, R. Patel, and T.S. Beaty, “Managing standby and active mode leakage

power in deep sub-micron design,” Proc. Int’l Symp. on Low Power Electronics and

Design, Aug. 2004, pp. 274-279.

[57] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson, and K. Keutzer,

“Minimization of Dynamic and Static Power Through Joint Assignment of

Threshold Voltages and Sizing Optimization,” Proc. Int’l Symp. on Low Power

Electronics and Design, Aug. 2003, pp. 158-163.

 32

[58] M. Pedram and J. Rabaey (editors), Power-Aware Design Methodologies, Kluwer

Academic Publishers, Boston, 2002.

 33

Figure 1: A typical level-converter design.

VDDH

Vin

Vout
VDDL

P1 P2

N2 N1

 34

(a)

(b)

Figure 2: Examples of (a) CVS solution, (b) ECVS solution.

FF1

FF2

FF3

FF4

FF5

G4
G3

G2
G1

VDD,L

Cluster

VDD,H Cluster

G5

VDD,L

Cluster
Level

Converter

FF1

FF2

FF3

FF4

FF5

G4
G3

G2
G1

VDD,L

Cluster

VDD,H Cluster

G5

 35

(a)

(b)

Figure 3. Illustration of Razor logic and DVS (a) Pipeline augmented with Razor latches.

(b) Control lines for RAZOR flip-flops.

 36

Figure 4: Clock gating logic for ALU in a typical processor microarchitecture with

negative-edge triggered flip-flops.

Instruction
Register CLK

Clock Gating
Logic

ALU

Registers

A B

CLK

EN

Opcode

GCLK

 37

Figure 5: Clock is disabled when EN = 0; Furthermore, a hazard on EN will be stopped

from reaching GCLK.

(a) (b)

Figure 6: (a) Moore-type FSM and (b) its 0.25-order computational kernel.

D Q

CLK

EN GCLK
Latch

LEN

CLK

EN

LEN

GCL
K

 38

(a) (b)

Figure 7: Illustration of computational kernel utilization (a) Baseline architecture (b)

Kernel-based optimized architecture.

 39

Figure 8: Example of an FSM (dk27) that may be decomposed into two sub-FSMs such

that one sub-FSM can be shut off when the other is active and vice versa.

(a) (b)

Figure 9: Example of guard logic insertion.

 40

Figure 10: Excess-3 Converter state transition graph.

Reset

0/1
0

1/0

1

0/1
1/0

4
0/0,
1/1

2
0/0,
1/1

0/1
5

1/0

0/0,
1/1

3 6
0/1

 41

(a)

(b)

(c)

Figure 11: Illustration of fixed-phase retiming. (a) Initial edge-triggered circuit. (b)

Fixed-phase retimed circuit. (c) A two-phase clocking scheme π = 〈φ0 = 4, γ0 = 1, φ1 = 4,

γ1 = 1〉.

 42

out in

SLEEP

SLEEP

Virtual VDD

Virtual Ground

N

P

Figure 12: Power gating circuit.

Virtual Ground

SLEEP

VDD

Gate1

Gate2

Gate3

Figure 13: Using one sleep transistor for several gates.

