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Abstract

Factored Edge-Valued Binary Decision Diagrams form an extension to Edge-Valued Binary De-

cision Diagrams. By associating both an additive and a multiplicative weight with the edges,

FEVBDDs can be used to represent a wider range of functions concisely. As a result, the com-

putational complexity for certain operations can be significantly reduced compared to EVBDDs.

Additionally, the introduction of multiplicative edge weights allows us to directly represent the

so-called complement edges which are used in OBDDs, thus providing a one to one mapping of

all OBDDs to FEVBDDs. Applications such as integer linear programming and logic verification

that have been proposed for EVBDDs also benefit from the extension. We also present a com-

plete matrix package based on FEVBDDs and apply the package to the problem of solving the

Chapman-Kolmogorov equations.

Keywords: Ordered Binary Decision Diagrams, Pseudo-Boolean Functions, Affine Property,

Logic Verification, Integer Linear Programming, Matrix Operations.



1 Introduction

Over the past decade a drastic increase in the integration of VLSI chips has taken place. Conse-

quently, the complexity of the circuit designs has risen dramatically so that today’s circuit designers

rely more and more on sophisticated computer-aided design (CAD) tools. The goal of CAD tools

is to automatically transform a description in the algorithmic or behavioral domains to one in the

physical domain, i.e. down to a layout mask for chip production. We divide this process into four

different levels: system, behavioral, logic and layout.

At the logic level, the behavior of the circuit is described by boolean functions. The efficiency

of the algorithms applied in this level depends largely on the chosen data structure. Originally,

representations such as the sum of products form or factored form representations were predominant.

Today, the most popular data structure for boolean functions is the Ordered Binary Decision

Diagram (OBDD) which provides a compact and canonical representation. In the wake of the

successful introduction of the concept of function graphs by OBDDs, various other function graphs

have been proposed which are not constrained to boolean functions but can be used to denote

arithmetic functions. These function graphs have been used for state reduction in finite state

machines and logic verification of higher-level specifications. Additionally, they have been applied

to problems outside CAD, such as integer linear programming and matrix representation.

Since the introduction of OBDDs by R. E. Bryant [5], several different forms of function

graphs have been proposed. Functional Decision Diagrams (FDD) have been presented as an

alternative to OBDDs for representing boolean functions [3]. Ordered Kronecker Functional

Decision Diagrams (OKFDD) have been introduced in [10] as a generalization of OBDDs and

FDDs. Multi-Terminal Binary Decision Diagrams (MTBDD) [9] have been proposed to represent

integer valued functions and extended to functions on finite sets [2]. Edge-Valued Binary Decision

Diagrams (EVBDD) [12][13][14] provide a more compact means of representing such functions.

Recently Binary Moment Diagrams (BMD and *BMD) [7] were introduced which permit efficient

word-level verification of arithmetic functions (including multipliers of up to 62-bit word size).

This paper presents Factored Edge-Valued Binary Decision Diagrams (FEVBDD) as an ex-

tension to EVBDDs. By associating both an additive and a multiplicative weight with the edges,

FEVBDDs can be used to represent a wider range of functions concisely. As a result, the com-

putational complexity for certain operations can be significantly reduced compared to EVBDDs.

Additionally, the introduction of multiplicative edge weights allows us to directly represent the

complement edges which are used in OBDDs. This paper also describes uses of FEVBDDs in

applications such as integer linear programming, logic verification and matrix representation and
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manipulation.

2 Review of Edge-Valued Binary Decision Diagrams

Edge-Valued Binary Decision Diagrams, which were proposed by Lai, et al. [12][13][14] offer

a direct extension to the concept of OBDDs. By associating a so-called edge value ev to every

then-edge of the OBDD they are capable of representing pseudo-boolean functions such as integer

valued functions. Their application has proven successful in such areas as formal verification and

integer linear programming, spectral transformation, and function decomposition.

Definition 2.1 An EVBDD is a tuple hc� fi where c is a constant value and f is a rooted, directed

acyclic graph �V � T�E� consisting of two types of vertices.

� A nonterminal vertex f � V is represented by a quadruple

hvariable�f�� childt�f�� childe�f�� evi, where variable�f� � fx0� � � � � xn�1g is a binary vari-

able.

� The single terminal vertex f � T with value 0 is denoted by 0.

There is no nonterminal vertex f such that childt�f� � childe�f� and ev � 0, and there are no

two nonterminal vertices f and g such that f � g. Furthermore, there exists an index function

index�x� � f0� � � � � n� 1g such that the following holds for every nonterminal vertex. If childt�f�

is also nonterminal, then we must have index�variable�f�� � index�variable�childt�f���. If

childe�f� is nonterminal, then we must have index�variable�f��� index�variable�childe�f���.

Definition 2.2 An EVBDD hc� fi denotes the arithmetic function c� f : f0� 1gn � integer where

f is the function f denoted by f � hx� ft� fe� evi. The terminal node 0 represents the constant

function f � 0, and hx� ft� fe� evi denotes the arithmetic function f � x � �ev � ft� � �1 � x� � fe.

Definitions (2.1), (2.2) provide a graphical representation of pseudo-boolean functions. As a

consequence integer variables have to be encoded in binary as in X �
Pn�1

i�0 xi � 2i where X

is a n-bit integer variable. It has been shown that EVBDDs form a canonical representation of

arithmetic functions.

Definition 2.3 Given an EVBDD hc� fi representing f�x0� � � � � xn�1� and a function Φ that for

each variable x assigns a value Φ�x� equal to either 0 or 1, the function EVBDDeval is defined as

EVBDDeval�hc� fi�Φ� �

�����
����

c f is the terminal node 0

EVBDDeval�hc� ev� childt�f�i�Φ� Φ�variable�f�� � 1

EVBDDeval�hc� childe�f�i�Φ� Φ�variable�f�� � 0
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boolean arithmetic

�x 1 � x

x 	 y x� y � xy

x 
 y xy

x� y x� y � 2xy

Table 1: Arithmetic equivalents of boolean functions

Boolean functions can be represented in EVBDDs by using the integers 0 and 1 to denote

the boolean values true and false. Boolean operations are implemented through arithmetic

operations as shown in Table 1. A method has been described by Lai, et al. that converts any

OBDD representation of a boolean function to its corresponding EVBDD representation. It can

be proven that both function graphs OBDD v and EVBDD hc�v�i denoting the same function f

share the same topology except that the terminal node 1 is absent from the EVBDD and the edges

connected to it are redirected to the single terminal node 0. Additionally, it was shown that boolean

operations executed on EVBDDs have the same time complexity O�jf j � jgj� as boolean operations

on OBDDs. The concept of complement edges can not be realized in EVBDDs.

As has been done for OBDDs, a generic operation apply can be defined that implements

arbitrary arithmetic operations on the EVBDD representations hcf � fi, and hcg�gi of two arithmetic

functions f and g. In general, the time complexity of such an operation on two EVBDDs hcf � fi,

and hcg�gi is O�khcf � fik � khcg�gik� � O�jhcf � f �ij � jhcg�g�ij where hcf � f �i, and hcg�g�i denote

the flattened EVBDDs of hcf � fi hcg�gi, respectively. A flattened EVBDD is defined in exactly the

same manner as an MTBDD. For operations such as addition, subtraction, scalar-multiplication, etc.

the time complexity of apply can be drastically reduced by exploiting certain properties. A scalar

multiplication c � �cf � f� can be done with time complexity O�jhcf � fij� by simply multiplying all

edge values by c. All operations op, such as addition, that fulfill the additive property

hcf � fiophcg �gi � hcfopcg� fopgi (1)

have the reduced time complexity O�jhcf � fij � jhcg�gij�.

Based on EVBDDs, the concept of structured EVBDDs (SEVBDDs) has been developed in

[14]. SEVBDDs allow the modeling of conditional expressions and vectors. Their main use lies in

the field of formal verification.
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3 Factored Edge-Valued Binary Decision Diagrams

Factored Edge-Valued Binary Decision Diagrams (FEVBDD) are an extension to EVBDDs. By

associating both an additive and a multiplicative weight with the true-edges1 FEVBDDs offer a

more compact representation of linear functions, since common subfunctions differing only by an

affine transformation can now be expressed by a single subgraph. Additionally, they allow the

notion of complement edges to be transferred from OBDDs to FEVBDDs.

Definition 3.1 An FEVBDD is a tuple hc� w� f� rulei where c and w are constant values, f is a

rooted, directed acyclic graph �V � T�E� consisting of two types of vertices, and rule is the set of

weight normalizing rules applied to the graph.

� A nonterminal vertex f � V is represented by a 6-tuple2

hvariable�f�� childt�f�� childe�f�� ev� wt� wei, where variable�f� � fx0� � � � � xn�1g is a bi-

nary variable.

� The single terminal vertex f � T with value 0 is denoted by 0. By definition all branches

leading to 0 have an associated weight w � 0.

There is no nonterminal vertex f such that childt�f� � childe�f�, ev � 0, and we � wt � 1, and

there are no two nonterminal vertices f and g such that f � g. Furthermore, there exists an index

function index�x� � f0� � � � � n� 1g such that the following holds for every nonterminal vertex. If

childt�f� is also nonterminal, then we must have index�variable�f�� � index�variable�childt�f���.

If childe�f� is nonterminal, then we must have index�variable�f�� � index�variable�childe�f���.

Definition 3.2 A FEVBDD hcf � wf � f� rulefi denotes the arithmetic function cf � wf � f where f

is the function f denoted by f � hx� ft� fe� ev� wt� wei. The terminal node 0 represents the constant

function f � 0, and hx� ft� fe� ev� wt� wei denotes the arithmetic function f � x � �ev � wt � ft� �

�1 � x� �we � fe.

Definition 3.3 Given a FEVBDD hcf � wf � f� rulefi representing f�x0� � � � � xn�1� and a function Φ
that for each variable x assigns a value Φ�x� equal to either 0 or 1, the function FEVBDDeval is

defined as:

FEVBDDeval�hcf � wf � f� rulefi�Φ� �

1The GCD rule requires also a multiplicative weight to be associated with the else-edges.
2If we use the rational rule it holds that we � 1 for all nodes. Thus we can represent a nonterminal vertex by a

5-tuple hvariable�f�� childt�f�� childe�f�� ev� wti.
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�����
����

cf f is the terminal node 0

cf � wf � FEVBDDeval�hev�wt� childt�f�� rulei�Φ� Φ�variable�f�� � 1

cf � wf � FEVBDDeval�h0� we� childe�f�� rulei�Φ� Φ�variable�f�� � 0

Figure 1 goes here.

As an example, we construct the various function graphs based on the different decompositions

of function f given in its tabular form in Figure 1.

f�x� y� z� � 15 �1 � x� �1 � y� �1 � z� � 6 �1� x� �1� y� z �

5 �1 � x� y �1 � z� � 2 �1� x� y z �

13 x �1 � y� �1 � z� � 7 x �1� y� z �

5 x y �1 � z� � 2 x y z

(2)

� 15 � x��2 � y��8 � z��3�� � �1 � y��z��6��� � (3)

�1 � x��y��10 � z��3�� � �1 � y��z��9���

� 15 � 9�x�
2
9
�

2
3
�y�

4
3
�

1
2
z� � �1 � y�z�� � (4)

�1 � x��y�
10
9

�
1
3
z� � �1 � y�z��

Equation (2) is in a form that directly corresponds to the function decomposition for MTBDDs or

ADDs and the tabular form. Equations (3) and (4) reflect the structure of the decomposition rules

for EVBDDs and FEVBDDs, respectively. The different function graphs are shown in Figure 1.

Figure 2 goes here.

Figure 3 goes here.
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Figure 4 goes here.

Representations of signed integers based on FEVBDDs are presented in Figure 2 and represen-

tations of word-level sum and product are given in Figures 3 and 4.

Lemma 3.1 Given two FEVBDDs hcf � wf � f� rulefi and hcg� wg� g� rulegi, which have been gen-

erated using the same weight normalizing rule and with f and g being non-isomorphic, it holds

that there exists an assignment Φ � f0� 1gn such that cf �wf � f �� cg �wg � g for this assignment.

Proof:

Case 1: if cf �� cg then let Φ � �; it follows that FEVBDDeval�hcf � wf � f � rulefi�Φ� � cf ��

FEVBDDeval�hcg� wg�g� rulegi�Φ� � cg.

Case 2: cf � cg and wf � wg; by the definition of non-isomorphism it holds that 
Φ such that

FEVBDDeval�h0� 1� f � rulei�Φ� ��FEVBDDeval�h0� 1�g� rulei�Φ�. Consequently, we have

that cf � wf � f �� cg � wg � g for this assignment Φ.

Case 3: cf � cg and wf �� wg; we assume that it holds that f and g are non-isomorphic and that

cf �wf �f � cg�wg �g for all assignments Φ. This implies thatwf �f � wg �g or f � wg

wf
�g.

Consequently, f and g are isomorphic which contradicts the original assumption. Thus, it

holds that 
Φ such that cf � wf � f �� cg � wg � g. �

Theorem 3.1 Two FEVBDDs hcf � wf � f� rulefi and hcg� wg� g� rulegi that have been generated

using the same weight normalizing rule, i.e. rulef � ruleg, denote the same function, i.e.

�Φ � f0� 1gn�FEVBDDeval�hcf � wf � f� rulefi�Φ� � FEVBDDeval�hcg� wg� g� rulegi�Φ�, if and

only if cf � cg, wf � wg, and f and g are isomorphic.

Proof:

Sufficiency: If cf � cg and wf � wg and f and g are isomorphic, then �Φ,

FEVBDDeval�hcf � wf � f � rulefi�Φ� � FEVBDDeval�hcg� wg�g� rulegi�Φ� follows directly from

the definitions of isomorphism and FEVBDDeval.

Necessity: If cf �� cg then let Φ � �; it holds that FEVBDDeval�hcf � wf � f � rulefi�Φ� � cf ��

cg � FEVBDDeval�hcg� wg�g� rulegi�Φ�. If cf � cg and wf �� wg then let Φ be an arbitrary as-

signment such that FEVBDDeval�h0� 1� f � rulei�Φ� �� 0 and FEVBDDeval�h0� 1�g� rulei�Φ� �� 0;

it holds that FEVBDDeval�hcf � wf � f � rulefi�Φ� � cf � wf � FEVBDDeval�h0� 1� f � rulei�Φ� and
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FEVBDDeval�hcg� wg�g� rulegi�Φ� � cg�wg �FEVBDDeval�h0� 1�g� rulei�Φ�. If f and g are iso-

morphic then it holds by the definition of isomorphism and FEVBDDeval that

FEVBDDeval�h0� 1� f � rulei�Φ� � FEVBDDeval�h0� 1�g� rulei�Φ� � val. It follows that cf�wf �

val �� cg�wg�val. If f and g are non-isomorphic lemma 3.1 holds. Now we have to prove the lemma

for the last condition f being isomorphic to g. We need to show that if f and g are not isomorphic,

then 
Φ � f0� 1gn such that FEVBDDeval�h0� 1� f � rulei�Φ� �� FEVBDDeval�h0� 1�g� rulei�Φ�.

Without loss of generality, we assume index�variable�f�� � index�variable�g��. Let k �

n� index�variable�f��, we will prove the lemma by induction on k.

Base: If k � 0, both f and g are terminal nodes. Furthermore, f � g � �. Thus, f and g are

isomorphic.

Induction hypothesis: Assume the above holds for n� index�variable�f�� � k.

Induction: We show that the hypothesis holds for n � index�variable�f�� � k. Let f �

hxn�k� ft� fe� evf � wtf � wef i.

Case 1: n� index�variable�g�� � k, i.e. g � hxn�k�gt�ge� evg� wtg� weg i.

If evf �� evg then let Φ�xn�k� � 1 and Φ�xi� � 0��i �� n � k. Then it holds that

FEVBDDeval�h0� 1� f � rulei�Φ� � evf �� evg � FEVBDDeval�h0� 1�g� rulei�Φ�. If evf �

evg and wtf �� wtg then let Φ be an arbitrary assignment such that Φ�xn�k� � 1 and

FEVBDDeval�h0� 1� f � rulei�Φ� �� 0 and FEVBDDeval�h0� 1� f � rulei�Φ� �� 0. Then it

holds that FEVBDDeval�h0� 1� f � rulei�Φ� � evf�wtf �FEVBDDeval�h0� 1� ft� rulei�Φ� and

FEVBDDeval�h0� 1�g� rulei�Φ� � evg�wtg �FEVBDDeval�h0� 1�gt� rulei�Φ�. If ft and gt

are isomorphic it holds that FEVBDDeval�h0� 1� f � rulei�Φ� �

FEVBDDeval�h0� 1�g� rulei�Φ� � val. Thus we have that evf �wtf � val �� evg�wtg � val.

If ft and gt are nonisomorphic then lemma 3.1 is applicable. Almost the identical prove can

be given for evf � evg and wef �� weg . If evf � evg, wtf � wtg , and wef � weg either ft and

gt, or fe and ge are nonisomorphic.

Subcase 1: If ft and gt are nonisomorphic, then from n � index�variable�ft�� � k,n �

index�variable�gt�� � k, and the induction hypothesis, we see that there exists some Φ
such that FEVBDDeval�h0� 1� ft� rulei�Φ� �� FEVBDDeval�h0� 1�gt� rulei�Φ�. Now

let Φ� be defined as Φ��xn�k� � 1 and Φ��xi� � Φ�xi���i �� n � k, then

FEVBDDeval�h0� 1� f � rulei�Φ�� � evf � wtf � FEVBDDeval�h0� 1� ft� rulei�Φ�� ��

evg � wtg � FEVBDDeval�h0� 1�gt� rulei�Φ�� � FEVBDDeval�h0� 1�g� rulei�Φ��.
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Subcase 2: Otherwise fe and ge are nonisomorphic, then by similar arguments, letting

Φ��xn�k� � 0 and Φ��xi� � Φ�xi���i �� n � k, will result in

FEVBDDeval�h0� 1� f � rulei�Φ�� �� FEVBDDeval�h0� 1�g� rulei�Φ��.

Case 2 : n� index(variable(g)) � k

By definition of a reduced FEVBDD, we cannot have evf � 0, wtf � wef � 1 and ft

being isomorphic to fe. If evf �� 0, let Φ�xn�k� � 1 and Φ�xi� � 0, �i �� n � k,

then FEVBDDeval�h0� 1� f � rulei�Φ� � evf �� 0 � FEVBDDeval�h0� 1�g� rulei�Φ�, since

g is independent of the first n � k bits. If evf � 0 and wtf �� wef then let Φ be

an assignment such that Φ�xn�k� � 1 and Φ�xi� � 0, ���i �� n � k� 
 �i � n �

index�variable�g����. Furthermore, let Φ be such that FEVBDDeval�h0� 1� f � rulei�Φ� �

valf �� 0 and FEVBDDeval�h0� 1�g� rulei�Φ� � valg �� 0. If the corresponding subgraph of

f with top-variablexn�k and g are isomorphic then it holds that valf � wtf �valg. If the graphs

are non-isomorphic we can apply the same reasoning as we did in the proof of lemma 3.1. Oth-

erwise, ft and fe are non-isomorphic and at least one of them is not isomorphic to g. If ft and

g are non-isomorphic, then by induction hypothesis, there exists an assignment Φ such that

FEVBDDeval�h0� 1� ft� rulei�Φ� �� FEVBDDeval�h0� 1�g� rulei�Φ�. Now, let Φ��xn�k� �

1 and Φ��xi� � Φ�xi���i �� n � k. It holds that FEVBDDeval�h0� 1� ft� rulei�Φ�� ��

FEVBDDeval�h0� 1�g� rulei�Φ��. �

As shown above, FEVBDDs form a canonical representation of a function only for specific

weight normalizing rules that uniquely determine how the node weight of a new node is computed

based on its both descendants. We propose two basic rules that can be used to guarantee canonicity

for FEVBDDs. Given two FEVBDDs hct� wt� t� ruleti and hce� we� e� ruleei with rulet � rulee �

rule the node weight w of hc� w� f � rulei is computed as follows

1. GCD rule:
w � gcd�ct � ce� wt� we�

� gcd�ct � ce� gcd�wt� we��

sign�w� �

�����
����

sign�we� if we �� 0

sign�wt� if wt �� 0 
 we � 0

sign�ct � ce� if wt � we � 0

2. RATIONAL rule:

w �

�����
����

we if we �� 0

wt if wt �� 0 
 we � 0

�ct � ce� if wt � we � 0

8



make new node(xi,hcT � wT �T� ruleTi,hcE� wE�E� ruleEi)

f

iffhcT � wT �T� ruleTi � hcE� wE�E� ruleEig

return(hcT � wT �T� ruleTi);

/* compute the new weights */

c � cE;

ev � cT � cE;

w � norm weight�ev� wT � wE�;

wt � wT�w;

we � wE�w;

/* guarantee uniqueness */

hch� wh�h� rulehi=find or add(xi� c� w� ev� wt� we�T�E);

return hch� wh�h� rulehi ;

g

Table 2: Make New Node

These weight normalizing rules (cf. Table 3) are applied whenever a new node is generated using

the make new node routine. (cf. Table 2). This routine enforces both the canonicity of the function

graph as well as its uniqueness.

The routine find or add preserves the uniqueness of all nodes. Before a new node is actually

created a quick hash table lookup is performed and, if the node is already a member of the table,

the stored node with its unique ID is returned. Otherwise, a new node entry in the hash table is

created and the new node with its unique ID is returned. Thus it is guaranteed that every node is

stored only once in the hash table.

Although the GCD rule requires a multiplicative weight to be associated with both the true- and

the else-edges, there are some cases where it might be the rule of choice. If the function range is

purely integer the GCD rule avoids dealing with fractions. This is particularly valuable, since all

arithmetic operations on fractions are significantly more time consuming than the built in hardware

routines for integers. Furthermore, the restriction to integers by use of the GCD rule brings a clear

advantage in memory efficiency. Even though we need to store an additional weight, the memory

consumption per node is less than when using the rational rule which requires the use of fractions.

This is because every fraction is internally represented as one integer for the numerator and one

9



norm weight(ev� wT � wE)

f

switch(mode) f

case ’GCD’:

if(wE �� 0)

sign = sign�wE�;

else if(wT �� 0)

sign = sign�wT�;

else sign = sign�ev�;

return(sign � gcd�ev� wT � wE�) ;

break ;

case ’RATIONAL’:

if(wE �� 0)

return wE;

else if(wT �� 0)

return wT ;

else return ev;

break;

g

Table 3: Norm Weight
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for the denominator. Of course, as soon as the application requires the use of fractions the rational

rule should be preferred. Nevertheless, the GCD rule is still applicable since we define:

gcd�
u

u�
�
v

v�
� �

gcd�u� v�
gcd�u�� v��

3.1 Operations

As has been done for OBDDs [5] and EVBDDs [14], we provide a generic algorithm apply that

implements arbitrary arithmetic operations on two FEVBDDs (cf. Table 4). Apply takes two

FEVBDDs hcf � wf � f � rulefi and hcg� wg�g� rulegi, as well as an operation op as its arguments.

Both FEVBDDs have to be based on the same weight normalizing rule. The algorithm recursively

branches at the top variable, i.e. the variable with the least index in f or g until it reaches a terminal

case. Terminal cases depend on the operation op; as an example, for op=‘+’ we have the terminal

case hcf � wf � f � rulefi� hc� 0��� rulei.

The computational efficiency of this algorithm can be improved significantly by taking ad-

vantage of a computation cache. Before the recursive process is started, a quick lookup in the

computation cache is performed and if successful, then the result of op is returned immediately

without further computation. The entries of the cache are uniquely identified by a key consisting

of the operands hcf � wf � f � rulefi and hcg� wg�g� rulegi and the operation op. Whenever a new

result is computed it is stored in the computation cache. In general the complexity of operations

performed by apply is O�khcf � wf � f � rulefik � khcg� wg�g� rulegik�.

As mentioned before we can further improve the computational complexity of apply by making

use of properties of specific operations. We adapt the concept of an additive property proposed for

EVBDDs by Lai, et al., [14] and extend it to the so-called affine property for FEVBDDs.

Definition 3.4 An operator op applied to hcf � wf � f� rulefi and hcg� wg� g� rulegi is said to satisfy

the affine property if

�cf � wf � f�op�cg � wg � g� � �cf op cg� � w � ��w�
f � f�op�w�

g � g��

The factor w is defined as w � gcd�wf � wg� and can be of arbitrary value.3

3Similar to the rational rule we can alternatively define the affine property as follows:

�cf �wf � f�op�cg �wg � g� � �cf op cg� � wf � �fop�
wg

wf

� g���

All the benefits of the affine property remain the same.
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apply(hcf � wf � f� rulefi,hcg� wg� g� rulegi,op) f

/* check for a terminal case */

if(terminal case(hcf � wf � f� rulefi,hcg� wg� g� rulegi,op))

return (hcf � wf � f� rulefiophcg� wg� g� rulegi);

/* is the result of op already available in the computation cache */

if(comp table lookup(hcf � wf � f� rulefi,hcg� wg� g� rulegi,op,hcans� wans� ans� ruleansi))

return (hcans� wans� ans� ruleansi);

/* perform the recursive computation of op*/

if(index�f� � index�g�) f

hcgt� wgt� gt� rulegti � hcg � wg � evg � wg � wtg � childt�g�� rulei;

hcge� wge� ge� rulegei � hcg� wg � weg � childe�g�� rulei;

var � variable�g�;

g

else f

hcgt� wgt� gt� rulegti � hcge� wge� ge� rulegei � hcg� wg� g� rulegi;

var � variable�f�;

g

if(index�f� � index�g�) f

hcft � wft� ft� rulefti � hcf � wf � evf � wf � wtf � childt�f�� rulei;

hcfe� wfe� fe� rulefei � hcf � wf � wef � childe�f�� rulei;

g

else f

hcft � wft� ft� rulefti � hcfe� wfe� fe� rulefei � hcf � wf � f� rulefi;

g

hcht � wht� ht� rulehti � apply�hcft� wft� ft� rulefti� hcgt� wgt� gt� rulegti� op�;

hche � whe� he� rulehei � apply�hcfe� wfe� fe� rulefei� hcge� wge� ge� rulegei� op�;

if(hcht � wht� ht� rulehti � hche � whe� he� rulehei )

return(hcht � wht� ht� rulehti);

hch� wh� h� rulehi � make new node�var� hcht� wht� ht� rulehti� hche� whe� he� rulehei�;

/* store the result in the computation cache */

comp table insert(hcf � wf � f� rulefi,hcg� wg� g� rulegi,op,hch� wh� h� rulehi);

return (hch� wh� h� rulehi);

g

Table 4: Apply
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Operations that satisfy the affine property are addition, subtraction, scalar multiplication and logical

bit shifting. The main advantage of the affine property lies in reducing the computational complexity

of apply. Since we can separately compute the parts of the result generated by the constants cf and

cg and by the two subgraphs h0� wf � f � rulei and h0� wg�g� rulei, the hit ratio of the computation

cache can be drastically increased by separating the influence of the constants and always storing

only the results for c � 0. This concept is applied to every recursion step so that the constant

value is never passed down to the next recursion level. Unfortunately, we still have to pass the

multiplicative weights wf and wg since they cannot be separated from the functions f and g. To

achieve a further improvement in the hit ratio, we extract the common divisorw fromwf andwg and

promote onlyw�
f andw�

g. This is an advantage in such cases as reducing the problem of performing

�7� 8 � f�op�4� 6 � g� to the already computed problem �0� 4 � f�op�0� 3 � g�. Since we cannot

quantify the influence of the GCD extraction the worst case computational complexity for operations

satisfying the affine property is given as O�jhcf �� f
�ij � jhcg� �g

�ij� where hcf �� f �i and hcg��g�i denote

the EVBDDs corresponding to the FEVBDDs hcf � wf � f � rulefi and hcg� wg�g� rulegi, respectively.

Scalar multiplication and logical-bit shifting offer a better computational complexity since they

can be computed in time independent of the size of the function graph. Scalar multiplication only

requires the weights of the root node to be multiplied. In the case of EVBDDs we have to multiply

every edge weight with the scalar; a task of complexity O�jf j�.

Since multiplication does not satisfy the affine property we are basically required to use the

original version of apply. For the multiplication of two functions that both have a high percentage

of reconverging branches, the following approach tends to improve the cache efficiency:

hcf � wf � f � rulefi � hcg� wg�g� rulegi � hcf � cg� 0��� rulei� h0� cf � wg�g� rulei�

h0� cg � wf � f � rulei� h0� wf � wg� f � g� rulei

� hch� wh�h� rulehi

We now have onlyO�jhcf � wf � f � rulefij�jhcg� wg�g� rulegij� calls to multiply but every call requires

three calls to apply for adding the separate terms. The first addition is not costly since the first term

is always a constant, however, the second and third addition are potentially costly.

In addition to the additive property, two further properties – the bounding property and the

domain-reducing property – have been introduced by Lai, et al. [14] [12]. As has been done for

the additive property, these properties can be easily adapted to FEVBDDs.
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3.2 Representation of Boolean Functions

Boolean Functions are represented in FEVBDDs by encoding the boolean values true and false

as integers 1 and 0, respectively. All the basic boolean operations can be easily represented using

only arithmetic operations. Thus we can easily represent any boolean function using FEVBDDs.

Although we could implement the boolean operations based on their corresponding arithmetic

functions, it is by far better in terms of computational complexity to directly use apply for boolean

operations. All we need to do is to provide the necessary terminal cases for apply(hcf � wf � f � rulefi,

hcg� wg�g� rulegi, boolean op). In the case of the boolean conjunction operation for example the

terminal cases are:

1. if(hcf � wf � f � rulefi � h0� 0��� ruleior hcg� wg�g� rulegi � h0� 0��� rulei) return h0� 0��� rulei

2. if(hcf � wf � f � rulefi � h1� 0��� rulei) return hcg� wg�g� rulegi

3. if(hcg� wg�g� rulegi � h1� 0��� rulei) return hcf � wf � f � rulefi

To convert a boolean function from its OBDD to its FEVBDD representation we can adapt the

algorithm suggested by Lai in [14]. Additionally, the concept of multiplicative weights allows us

to directly represent the so called complement edges, so that we need to take care of this case in

the algorithm:

1. convert the terminal node 0 to h0� 0��� rulei and 1 to h1� 0��� rulei.

2. for each nonterminal node hxi� t� ei in the OBDD such that t and e have already been converted

to FEVBDDs as hct�� wt�� t
�� rulet�i and hce� � we� � e

�� rulee�i, the following conversion rules

are applied:

3. if the branch leading from node hxi� t� ei to t or e is a complement edge we have to perform the

complementation by computing 1� t or 1� e, respectively. This is achieved by multiplying

both weights ct (ce) andwt (we) by�1 and later adding 1 to ct (ce). The four basic conversion

rules are listed below:

� hxi� h0� 1� t�� rulei� h0� 1� e�� ruleii � h0� 1� hxi� t�� e�� 0� 1� 1ii

� hxi� h0� 1� t�� rulei� h1� 1� e�� ruleii � h1� 1� hxi� t�� e���1� 1� 1ii

� hxi� h1� 1� t�� rulei� h0� 1� e�� ruleii � h0� 1� hxi� t�� e�� 1� 1� 1ii

� hxi� h1� 1� t�� rulei� h1� 1� e�� ruleii � h1� 1� hxi� t�� e�� 0� 1� 1ii
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The above conversion rules are not complete in the case of FEVBDDs since we can now

also have variations in the multiplicative weights which can either be �1 or �1. These cases

however are handled exactly according to the norm weighting rule that has been presented

before, so that we do not explicitly list them here.

As it has been done for EVBDDs [14], it can be shown that the following theorems hold.

Theorem 3.2 Given an OBDD representation v of a boolean function with complement edges

being allowed and an FEVBDD hcv� wv� v� rulevi, then v and v� have the same topology except that

the terminal node 1 is absent from the FEVBDD v� and the edges connected to it are redirected to

the terminal node 0.

Theorem 3.3 Given two OBDDs f and g with complement edges being allowed and the corre-

sponding FEVBDDs hcf �� wf �� f �� rulef �i and hcg� � wg�� g�� ruleg�i, the time complexity of boolean

operations on FEVBDDs (using apply) is O�jfj � jgj� � O�jf�j � jg�j�.

An example of a FEVBDD representing a boolean function with complement edges is given

in Figure 5. This FEVBDD represents the four output functions of a 3-bit adder. It has the same

topology (except for the terminal edges) as the corresponding OBDD depicted in the same figure.

As it is shown in this example, FEVBDDs successfully extend the use of EVBDDs to represent

boolean functions as they inherently offer a way to represent complement edges. Furthermore, the

boolean operation ‘not’ can now be performed in constant time since it only requires manipulation

of the weights of the root node.

Figure 5 goes here.

3.3 Logic Verification

The purpose of logic verification is to formally prove that the actual implementation satisfies the

conditions defined by the specification. This is done by formally showing the equivalence between

the combinational circuit, i.e. the description of the design and the specification of the intended

behaviour.
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In general, the implementation is represented by an array of boolean functions fb and the

specification is given by a word-level function fw. In order to transform the bit-level representation

to the word-level we can use any encoding function to encode the binary input signals to the circuit.

The set of input signals is partitioned into several subsets of binary signals x0� � � � �xn and every

arrayxi is then encoded using an encoding function encodei that provides a word-level interpretation

of the binary input signals. Common encoding functions are signed-integer, one’s-complement and

two’s-complement. The corresponding FEVBDDs are shown in Figure 2. Thus, the implementation

can be described by an array of boolean functions fb�x0� � � � �xn�. The specification is given as a

word-level function fw�X1� � � � �Xn�. Verification is then done by proving the equivalence between

an encoding of the binary output signals of the circuit, i.e. the array of boolean functions, and the

word-level function of the encoded input signals:

encodeout�fb�x
0� � � � �xn�� � fw�encode0�x

0�� � � � � encoden�x
n��

This strategy for logic verification was first proposed by Lai, et al., using EVBDDs [12][14]. Since

FEVBDDs can describe both bit-level and word-level functions, they can be successfully applied

to logic verification.

Although all word-level operations can be represented by FEVBDDs, the space complexity of

certain operations becomes exponential so that their application is limited to small word-length.

Both EVBDD and FEVBDD representations of word-level multiplication are exponential;

FEVBDDs however offer significant savings in memory consumption over EVBDDs. As can

be seen in Figure 4 for word-level multiplication of two three-bit integers, the EVBDD contains

28 internal nodes whereas the FEVBDD representation requires only 10 nodes. In general, the

EVBDD denoting the multiplication of two n-bit integers has �n� 1��2n � 1� internal nodes. The

corresponding FEVBDD contains only n� �2n� 1� internal nodes and the ratio of EVBDD nodes

to FEVBDD nodes is n�1
1� n

2n�1
. As can be seen from this ratio, the savings in the number of nodes in

the FEVBDD representation are of order n. As an example, a 16-bit multiplier requires 1,114,095

EVBDD nodes but only 65,551 FEVBDD nodes. Even if we take into account that a FEVBDD

node requires 20 bytes versus only 12 bytes per EVBDD node, the savings remain significant

(EVBDD:13.3 Mbyte, FEVBDD: 1.3 Mbyte).

As has been done for EVBDDs [14], FEVBDDs can also be extended to structured FEVBDDs

which allow the modeling of conditional expressions and vectors.
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3.4 Integer Linear Programming

An algorithm FGILP for solving Integer Linear Programming (ILP) problems based on EVBDDs

has been proposed by Lai, et al. in [15]. FGILP realizes an ILP solver based on function graphs,

which uses a mixed branch-and-bound/implicit-enumeration strategy. It has been shown that this

approach can successfully compete with other branch-and-bound strategies that require the solution

of the corresponding Linear Programming problems. The latter strategy is the one most widely

applied in commercial programs.

An ILP problem can be formulated as follows:

minimize
nX
i�1

cixi (5)

subject to
nX
i�1

aijxi � bj� 1 � j � m� (6)

with xi integer

Since both EVBDDs and FEVBDDs allow only binary decision variables, the encodings shown

in Figure 2 have to be applied. A 32-bit integer, for example, can be represented by an EVBDD

or FEVBDD with 32 nodes. Since FEVBDDs form an extension of EVBDDs we can also apply

FEVBDDs to solve ILP problems. We expect a reduction in the memory requirement for FGILP

when using FEVBDDs. This is due to the fact that different multiples of the integer variables xi

appear in equations (5) and (6). If we use EVBDDs to represent these multiples of xi, we have

to build an EVBDD for every different coefficient aij since scalar multiplication on EVBDDs is

performed by multiplying all edge weights with the factor. If we use FEVBDDs, however, we

only have to store the FEVBDD representing xi once. Multiples of xi can be easily realized by

associating the corresponding multiplicative edge weights with dangling incoming edges leading

to xi. As an example, storing 6x, 7x and 5x requires 96 nodes if we use EVBDDs but only 32

nodes if we apply FEVBDDs.

3.5 Implementation of Arbitrary Precision Arithmetic

The introduction of multiplicative weights in combination with the RATIONAL rule for weight

normalizing makes it necessary to extend the value range of the edge weights from the integer

domain to the rational domain. This is done in a way such that any future expansion to other

domains such as the complex domain can be easily achieved. All operations on edge weights are

accessed through a standardized interface that invokes the specified function and then executes

the requested operation depending on the current mode. Thus, the FEVBDD code remains fully
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independent of the selected domain. By changing to another mode we can easily switch from the

integer domain to the rational domain, for example. This means we can still use the fast routines

for single precision integers when necessary.

Multiple precision integers are realized as arrays of integers and the arithmetic operations are

implemented based on the algorithms for multiple precision arithmetic given by Knuth in [11].

Multiple precision fractions are implemented as arrays of two multiple precision integers where

one integer represents the numerator and the other one the denominator. It is enforced by the

package that the numerator and denominator remain relative prime and only the numerator can

be signed. This is achieved by computing the greatest common divisor (GCD) of numerator and

denominator and dividing both the numerator and denominator by the GCD. This operation is

performed whenever an input is given. Internally the data is guaranteed to remain in the normalized

form as this form is strictly enforced by all operations. Thus, a rational value is always uniquely

represented by the numerator and denominator.

The GCD can be computed very fast by Euclid’s algorithm or the binary GCD algorithm

[11]. For multi-precision fractions we use the binary GCD algorithm since it works very fast for

integers of multiple word length. It only relies on subtraction and right shifting and does not

require division operations. For single word precision fractions we employ the classical version

of Euclid’s algorithm since division can be executed very efficiently for single word integers. The

basic arithmetic operations for fractions are realized as follows:

� multiplication:

U � V �
u

u�
�
v

v�
�

u

d1
� v

d2

u�

d2
� v

�

d1

where d1 � gcd�u� v�� and d2 � gcd�u�� v�

� division:
U

V
�

u

u�

v
v�

�
u

u�
�
v�

v
�

u
d1
� v

�

d2

u�

d2
� v
d1

where d1 � gcd�u� v� and d2 � gcd�u�� v��

� addition:

U � V �
u

u�
�

v

v�
�

���
��

u�v��v�u�

u��v�
if d1 � 1

t
d2

u�

d1
� v
�

d2

if d1 � 1

where d1 � gcd�u�� v�� and if d1 � 1: t � u � v
�

d1
� v � u

�

d1
, d2 � gcd�t� d1�
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3.5.1 Symbolic Operations and Finite Fields

FEVBDDs are not constrained to integer valued functions. As one can already see in the use of a

rational rule, we can easily represent functions with rational function values. Complex values are

also feasible; additionally, we can use symbolic computation. Even though the value ranges can be

extended by using rational or complex edge weights, the decision variables still have to be binary.

Thus, if we want to represent linear functions containing variables from the above value ranges,

we have to encode them binarily such as it has been done for integers. Generally this approach

leads to a means to represent any function on finite fields by FEVBDDs as it has been proposed for

ADDs [2]. In this case the FEVBDD hcf � wf � f � rulefi more generally represents the function

cf � wf � �ITE�x� �ev� wt � ft�� �we � fe���

where � and � denote operations on the finite field. The ITE operator acts as a switch that either

selects the subfunction denoted by the true- or else-edge. Contrary to the ADD approach we can

exploit relationships between the subgraphs.

4 Matrix Representation and Manipulation

Matrices have been successfully represented using MTBDDs [8] [9] and ADDs [2] and imple-

mentations of the basic matrix operations such as addition and multiplication have been given. A

popular class of matrices that can be efficiently represented by MTBDDs and EVBDDs is the class

of Walsh matrices which can be generated by a recursive rule.

4.1 Representation of Matrices

The basic idea in using function graphs to represent matrices is to encode both the row and

column position of the matrix elements using binary variables. An 8 � 8 matrix, for example,

requires 3 binary variables for the rows and another 3 for the columns. Basically, we can view

the problem of representing a m � n matrix as representing a function from the finite set D �

f0� � � � �m � 1g � f0� � � � � n � 1g of all element positions to the finite set R of its elements.

The binary variables giving the row position are called row designators x � fx0� � � � � xm�1g, the

ones denoting the column position are called column designators y � fy0� � � � � yn�1g. For the

imposed variable ordering row and column designators are mixed together such that the order is

fx0� y0� � � � � xm�1� yn�1g. Because of this chosen variable ordering subtrees in the function graph

directly correspond to submatrices in the given matrix, as can be seen in Figure 6. Based on this
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correspondence the pseudo-boolean function denoting the matrix M can be given easily:

fM � fMxy
�1 � x� �1 � y� � fMxy

�1� x� y �

fMxy
x �1 � y� � fMxy x y

Figure 6 goes here.

Furthermore, this ordering allows matrices to be be represented compactly if they have submatri-

ces that are identical (MTBDDs) or can be transformed into each other by an affine transformation4

(FEVBDDs). Since the concept of square matrices, i.e. vertical size m = horizontal size n, helps

to keep many algorithms efficient and simple we will from now on only consider square matrices

with size � max�m�n�. To make non-square matrices square we can easily pad them with rows

or columns filled with zeros. This does not significantly increase our memory consumption for

storing the matrix since the padded blocks are uniform and can therefore be represented by only a

few nodes.

As it has already been mentioned, MTBDDs only offer a compact and memory efficient

representation of matrices that feature identical subblocks. They require a different terminal node

for each distinct matrix element. FEVBDDs can do far better than that. The concept of FEVBDDs

allows two subblocks to be represented by the same subgraph if they differ only by an affine

transformation of their elements. We will now introduce a special class of matrices that can always

be represented by a FEVBDD of linear size. For this class of matrices the sizes of the corresponding

MTBDD, EVBDD and *BMD are likely to be exponential.

Definition 4.1 A recursively-affine matrix is recursively generated using the following rules:

1. we begin with a 1� 1 matrix M0 � �c0� where c0 is a integer or rational constant value

2. in every recursion step a new matrix Mn�1 is created based on the previous result Mn such

that:

Mn�1 �

�
� k0 � w0 �Mn k1 � w1 �Mn

k2 � w2 �Mn k3 � w3 �Mn

�
	

with k0� � � � � k3 and w0� � � � � w3 being arbitrary integer or rational numbers.

4An affine transformation is a transformation of the form y � a � y � b.
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Figure 7 shows the general structure of the FEVBDD that corresponds to a recursion step in building

up a recursively affine matrix. In every recursion step a structure as shown in Figure 7 is added to

the already constructed FEVBDD.

Figure 7 goes here.

As can be seen from Figure 7 we only need 3 � dlog2�n�e nodes to represent a recursively-affine

matrix of size n x n. As an example of a recursively affine matrix we build in Figure 8 the FEVBDD

for the matrix M given below:

M �

�






�

3 10 14 35

9 5 32 20

12 26 22 64

24 16 58 34

�
������	

Figure 8 goes here.

An important class of matrices that belongs to the family of recursively-affine matrices is the set

of Walsh matrices in the Hadamard ordering [17]. These matrices can be used to compute spectral

transforms of boolean functions. They are recursively defined as follows:

Hh
1 � �1�

Hh
n�1 �

�
� Hh

n Hh
n

Hh
n �Hh

n

�
	

Figure 9 shows both the FEVBDD and EVBDD representations of the Walsh matrix Hh
3 . As can

be seen in Figure 9, the size of the FEVBDD representation is 2 � n where n denotes the order of

the Walsh matrix. The size of the EVBDD representation is 4 � n� 2

Figure 9 goes here.
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Generally speaking, employing function graphs such as MTBDDs or FEVBDDs to represent

sparse matrices offers the following advantages:

1. In comparison with normal sparse data structures, function graphs do provide a uniform

log2�N� access time, where N is the number of real elements being stored in the function

graph (for example, all non-zero elements of a sparse matrix)

2. Function graphs may not be able to beat sparse-matrix data structures in terms of worst space

complexity. However, recombination of isomorphic subgraphs may give a considerable

practical advantage to function graphs over other data structures. This is particularly valid

for FEVBDDs since the same subgraph can represent all the matrices that can be generated

by an affine transformation of the matrix represented by the subgraph.

4.2 Operations

Operations on matrices can be divided into two major groups. The first group comprises termwise

operations such as scalar multiplication, addition, etc. The second group is formed by matrix

multiplication, matrix transpose and matrix inversion. Termwise operations are easily implemented

based on function graphs. We can simply use apply to compute all termwise operations on matrices.

This is obviously possible since apply(op) performs the operation op on every single function value,

i.e. it works in a termwise manner. Matrix specific operations such as transposition require their

own tailored algorithms.

Matrix multiplication is clearly a non-termwise operation since it requires computing the scalar

vector product of a row of the left matrix with a column of the right matrix to get the value of a

single matrix element of the product matrix. Therefore, we will present two different recursive

procedures to perform matrix multiplication on function graphs. The first method was proposed

by McGeer [9]. This algorithm has the most direct link to the common conventional method for

matrix multiplication. In every recursion step the problem is divided into four subproblems until

a terminal case has been reached. In these steps operands are expanded with regard to a pair of

row and column designators. This expansion even takes place if the function graphs are actually

not dependent on the current pair of internal variables. By doing so there is no need for a scaling

step as is necessary in the second method. Let matrix multiplication be denoted by � and matrix
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addition by �. This method can be formally stated as:

h�fx0� y0� � � � � xm�1� yn�1g� � f�fx0� z0� � � � � xm�1� zp�1g� � g�fz0� y0� � � � � zp�1� yn�1g�

or written in terms of matrices:
�
� hxy hxy

hxy hxy

�
	 �

�
� fxz fxz

fxz fxz

�
	 �

�
� gzy gzy

gzy gzy

�
	

The computations performed in every recursion step are:

hxy � fxz � gzy � fxz � gzy

hxy � fxz � gzy � fxz � gzy

hxy � fxz � gzy � fxz � gzy

hxy � fxz � gzy � fxz � gzy

Obviously, this method requires eight calls to matrix multiply and four calls to matrix add in every

recursion step, i.e. for every internal variable pair.

The second method was proposed by Bahar [2]. Unlike the previous method it only expands

the top variable of the two operands ffx0� z0� � � � � xn�1� zn�1g and gfz0� y0� � � � � zn�1� yn�1g. In

the process of matrix multiplication, the following variable order fx0� z0� y0� � � � � xn�1� zn�1� yn�1g

is imposed to decide whether the top variable of f or g has to be selected as the top variable

for expansion. Depending on the character of the expansion variable var one of the following

computations is being made in every recursion step.

� if(var � zi) then

f�x� z� � g�z� y� � �fv�x� z� � gv�z� y�� � �fv�x� z� � gv�z� y��

� if(var � xi or var � yi) then

f�x� z� � g�z� y� � v 
 �fv�x� z� � gv�z� y�� 	 v 
 �fv�x� z� � gv�z� y��

This approach only expands internal variables that are actually encountered in the function graphs

f and g. It requires to keep track of missing z variables in f and g since every z expansion step

corresponds to performing matrix addition. If p gives the number of omitted z expansions between

two recursion steps we have to scale the result by 2p before returning it. When using a cache we

always store the unscaled results and scale the entry accordingly when reading the cache.
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Another method was proposed by Clarke [9]. Its basic idea is to take all the products first and

then compute all the sums.

For our matrix package we have implemented the second method which appears to be superior

to the other two [2]. We implemented two different versions of this method. Version 1 passes the

value of the edge weights down with every recursion step of matrix multiply and is ofO�kfk � kgk�

complexity. As we have done for multiplication of two FEVBDDs we suggest a second version for

function graphs with a high ratio of reconverging branches (e.g. for recursively-affine matrices) as

follows.

hch� wh�h� rulehi � hcf � wf � f � rulefi � hcg� wg�g� rulegi

� ��cf �n�n � wf � �f �n�n� � ��ch�n�n � wh � �h�n�n�

� �2n � cf � cg�n�n � �cf � wg�n�n � �h�n�n �

�f �n�n � �cg � wf �n�n � �f �n�n � �g�n�n

� �2n � cf � cg�n�n � cf � wg � coladd��h�n�n� �

cg � wf � rowadd��f �n�n� � �f �n�n � �g�n�n

The operations rowadd and coladd which generate matrices such that

rowadd�

�



�

a00 � � � a0n
...

...

an0 � � � ann

�
���	� �

�



�

P
i a0i
...

P
i ani

�
���	

coladd�

�



�

a00 � � � a0n
...

...

an0 � � � ann

�
���	� �

h P
i ai0 � � �

P
i ain

i

only have complexityO�jf j�. This second version requires onlyO�jf j � jgj� calls to matrix multiply

but every recursive call to matrix multiply also requires three calls to matrix add. It improves

the cache efficiency of matrix multiplication considerably, if both operands are represented by

FEVBDDs with a high ratio of reconverging branches. This outweighs the added overhead of three

calls to matrix add. If this is not the case, it is better to use the original approach since it does not

require the additional overhead.

Matrix transposition is performed by exchanging the roles of column and row designators

belonging to the same expansion level. To maintain the imposed variable ordering the nodes in

the function graph have to be exchanged and it is not sufficient to just interpret row as column

designators and vice versa. Transposition can be done in O�jf j� time.
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Matrix inversion is done by performing Gaussian elimination on the original matrix and the

identity matrix at the same time. In other words we solve the system of linear equations A�X � 1

with the use of pivoting and row transformations. The steps required by Gaussian elimination

consist of [19]:

� selecting a partial pivot in every step j such that japjj � maxi�jjaijj

� normalizing the selected row by multiplying the row by the inverse of the pivot 1
japjj

� swapping rows j and p according to above pivot selection

� subtracting multiples of the pivot row j from all rows i � j such that aji � 0��i � j

All of the above operations except for row swapping can be implemented efficiently in timeO�jAj�

or O�jAj � jRj� where R denotes the FEVBDD representing the pivot row. Row swapping is

performed by matrix multiplication of matrix A with a permutation matrix P and therefore is of

complexity O�kAk � kPk�. Permutation matrices can be obtained by Pij � I �Mij where Pij

denotes a permutation matrix swapping rows i and j, I represents the identity matrix and Mij

designates a matrix

M �

��
�

mrs � 1 if r � i� j or s � i� j

mrs � 0 otherwise

In general, partial pivoting is done in order to improve the numerical accuracy of Gaussian elimi-

nation. Since our implementation relies on fractions of arbitrary precision we always use the exact

values and numerical stability is not an issue. In order to avoid unnecessary row swapping we only

perform the partial pivoting if it holds in step j that ajj � 0.

In addition to the basic matrix operations, fast search operations for specific matrix elements

have been implemented. Algorithms for searching both the value and position of the minimal,

maximal or absolute maximal element in a given matrix were developed. This approach makes use

of the min and max fields that can be associated with every node. The computational complexity

for finding both the value and position of the minimal or maximal element in a n � n matrix is

O�log2�dne��. We will now explain the basic idea behind the algorithms in the case of searching

for the maximal element. Given a FEVBDD node f and its two successors ft and fe we can easily

determine which edge leads to the maximal element. Based on the values of the max and min

fields of ft and fe we simply recompute the max field of f and select the successor that originally

generated the max field of f. If only the value of the maximal or minimal element is of interest,

it can be computed directly from the min and max field of the top node f without any further

computation.
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value EVBDD FEVBDD

range GCD RATIONAL

integer 12 bytes 20 bytes 24 bytes

fractions 16 bytes NA 24 bytes

Table 5: Memory requirement per node

4.3 Experimental Results

We have applied our FEVBDD based matrix package to the problem of solving the Chapman-

Kolmogorov equations [18] that arise when computing the global state probabilities of FSMs.

Though the memory consumption of our inversion routine is relatively low (8M for inverting a

64x64 matrix), the run time is very high. This is due to several factors. First, the algorithm for Gaus-

sian elimination is purely sequential whereas FEVBDDs are recursively defined. Consequently,

computation caching for matrix inversion does not exist. A recursive algorithm for matrix inversion

will perform much better on FEVBDDs. Secondly, when using fractions of arbitrary length all

arithmetic operations need substantially more time than is necessary for ordinary integers. We

therefore use the obtained inverses primarily as examples of real life non-sparse matrices that can

be represented compactly using FEVBDDs and compare them with their EVBDD representations.

As can be seen from the table below using FEVBDDs gives savings of up to 50% compared to

EVBDDs in the number of nodes required to represent the non-sparse inverse. Of course, one has

to consider that the storage requirement per node is higher for FEVBDDs than for EVBDDs. An

overview of the memory usage per node in the various modes available for EVBDDs and FEVB-

DDs is given in table 5. We assume that every EVBDD node consists of an integer or fractional

edge value and two pointers to the children. Every FEVBDD node consists of two fractional edge

weights and two pointers in the RATIONAL mode or three integer edge weights and two pointers

in the GCD mode.

The total memory consumption for storing the matrices using EVBDDs and FEVBDDs is shown

in tables 6 and 7, respectively. The given memory usage is based on EVBDDs and FEVBDDs using

fractions. The FEVBDDs have been generated using the RATIONAL rule. In the case of CK-

Equations we have to use fractions for the edge weights since the matrix elements are fractions. As

can be seen from the tables, FEVBDDs do better for the inverses but lose for the original matrices

in terms of total memory consumption. This is due to the fact that the original matrices are sparse

whereas the inverses are non-sparse. In the case of sparse matrices the additional properties of
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FEVBDDs are not exploited so that EVBDDs and FEVBDDs perform similarly in the number of

nodes. FEVBDDs, however, lose in terms of memory requirement because of the higher cost per

FEVBDD node. Since EVBDDs do at least as good as MTBDDs this also gives an idea of the

performance of FEVBDDs compared to MTBDDs.

5 Conclusion

We showed that by associating both an additive and a multiplicative weight with the edges of

an Edge-Valued Binary Decision Diagram, EVBDDs could successfully be extended to Factored

Edge-Valued Binary Decision Diagrams. The new data structure preserves the canonical property

of the EVBDD and allows efficient caching of operational results. All properties that have been

defined for EVBDDs could be adapted to FEVBDDs. The additive property was extended to the

affine property. It was shown that FEVBDDs provide a more compact representation of arithmetic

functions than EVBDDs. Additionally, the complexity of certain operations could be reduced

significantly. We showed that FEVBDDs representing boolean functions allow us to incorporate

the concept of complement edges that has originally been proposed for OBDDs. Furthermore,

we showed that the EVBDD based Integer Linear Programming solver FGILP benefits from using

FEVBDDs instead of EVBDDs.

In combination with the FEVBDD package we also implemented an arithmetic package which

supplies arithmetic operations on both integers and fractions of arbitrary precision. A complete

matrix package based on FEVBDDs was introduced. We applied the package to solving the

Chapman-Kolmogorov equations. The experimental results show that in the majority of cases

FEVBDDs win over the corresponding EVBDD representation of the matrices in terms of number

of nodes and memory consumption.
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Figure 2: Representations of signed integers using FEVBDDs
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Figure 6: Correspondence of submatrices and subtrees
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Figure 7: Recursively-affine matrices
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Figure 9: FEVBDD and EVBDD representations of the Walsh matrix Hh
3
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