
1

Abstract  In many applications, it is important to know how
power is consumed while software is being executed on the target
processor. Instruction level power microanalysis, which is a cycle-
accurate simulation technique based on instruction label
generation and propagation, is aimed at answering this question
for a superscalar and pipelined processor. This technique requires
the micro-architectural details of the CPU and provides the power
consumption of every module (or gate) for each active instruction
in each cycle. To validate the approach, a Zilog DSP core was
designed by using a 0.25µ TSMC cell library and the power
consumption per instruction was collected using a Verilog
simulator specially written for the DSP core.

I. INTRODUCTION
Given the micro-architectural description of a target processor and
some application program to be executed, it is usually useful to
know which modules (or gates) consume the most power and
under what input data or internal state conditions. For example, a
common question is how to automatically identify and eliminate
unwanted power consumption during the program execution by
hardware control (e.g., clock gating) and/or software optimization
(e.g., compilation). To fully answer the question, we need to know
the cycle-accurate power consumption of each individual module
(or gate) in the processor due to the execution of each instruction.
We refer to this kind of analysis as power microanalysis, and
present a simulation-based strategy to achieve it. Microprocessor
designers to improve the power efficiency of a proposed
instruction set architecture can use the power microanalysis report.
Similarly, compilers can use power microanalysis to reduce the
energy cost of an application program running on the target
microprocessor by performing high-level transformations or low-
level code generation.
Power microanalysis reports can also be useful in generating an
accurate power macromodel of a processor [1][2]. A power
macromodel is usually trained by running a number of instruction
traces and studying the resulting power dissipation profile in the
target circuit. Without an accurate breakdown of power
consumption of each instruction in the pipeline, the various power
dissipation effects have to be averaged out. These power effects
include, for example, the power consumption caused by pipeline
stalls, pipeline flushes, and cache misses. Furthermore, in some
cases, power may be dissipated due to unwanted operations (this is
mainly because of poor design practices). For example, the input
operands of the multiplier may change even when the executed
instruction is not a multiplication instruction, which in turn causes
extra power consumption. If this kind of effect is not accurately
modeled during the power macromodel construction, it will be
treated as a random statistical variation at best, which will then
increase the error of the power macromodel. The power
microanalysis technique proposed here can be quite valuable in
constructing an accurate instruction-level power macromodel
because it provides information about the power consumption
caused by each instruction in each gate in the circuit, while
accounting for pipeline stalls, pipeline flushes, and cache misses.
The instruction execution in a modern CPU has the following
characteristics:
• Multiple instructions are executed concurrently in the

processor (e.g., VLIW and superscalar).
• Interactions between the instruction and the architecture can

cause significant power consumption (e.g., Branch
Misprediction).

• Interactions among the instructions greatly contribute to the
overall power consumption of the CPU (e.g., Data
dependency and Resource contention).

Because of this complexity, it is very difficult to automatically
generate the equation form of the instruction–level power

macromodel or even perform the calibration process (i.e., calculate
the macromodel equation coefficients) for a given power
macromodel equation form. For example, in [2], the macromodel
equation is manually designed and then automatically calibrated
by measuring the power dissipation of a set of specially designed
instruction traces.1 Running an application program that is simply
a loop with only one or at most two types of instructions typically
generates the trace. The measured instruction power is called base
cost, which is used for instruction-level macromodel training. The
inter-instruction temporal effects can also be calculated and
included in the model equation using these training traces.
However, the model is still too simple to capture the actual CPU
power dissipation. More precisely, because of the lack of detailed
(module-level or gate-level) knowledge about the power
consumption of each individual instruction in each clock cycle, the
following difficulties arise:
• The initial power macromodel equation form (i.e., the

number and meaning of different terms and the way they are
combined) has to be input by the designer based on his
experience and knowledge about the microprocessor
architecture. If the initial form is incomplete or inappropriate,
the accuracy of the power macromodel predictions will be
adversely affected.

• It is very difficult to ensure proportionate coverage of the
various power consumption factors in the processor (e.g.,
instruction mix and order, pipeline effects, and branch
handling policy) by the macromodel equation. This
calibration step requires detailed simulation of a very large
number of complex instruction traces (i.e., with a number of
instruction types and exercising different hardware conditions
in the pipeline) to ensure correct calibration of the
macromodel coefficients to cover instruction correlations,
data dependencies, various architectural effects and
scenarios. In contrast, with the aid of microanalysis power
report, the macromodel calibration process will be a lot
simpler since the required information is available.

Notice that our work is not intended to replace the work of [2] or
other similar work, but to facilitate them by providing a detailed
power report. Our technique handles both super-scalar and
pipelined processors.
An instruction is active if it is being executed in the instruction
pipeline of a given microprocessor. The power microanalysis for
the microprocessor can be defined as identifying what active
instructions cause the power consumption for each gate in an RT-
level description of the processor. A naïve approach simply
assumes that the power consumption of every gate is caused by all
of the active instructions. In this paper, we present a more
sophisticated and significantly more accurate simulation-based
technique called “Labelled Simulation” for evaluating the power
consumption of the microprocessor. Note that although a detailed
RT-level description of the microarchitecture is assumed in this
paper, power microanalysis can be performed even when some
parts of the processor are behaviorally specified as long as the
complete model can be simulated.
This paper is organized as follows. Section II gives a detailed
microanalysis model. Section III gives a DSP RTL design as an
example. Section IV describes how to construct the experiment.
Section V presents the result. Conclusions are given in Section VI.

II. MICROANALYSIS MODELING
A. Problem Formulation
Assume that there are n gates, g1…gn, in the circuit description of
the target processor, and k instructions, I1…Ik, are active in the

1 Please refer to [3][4] for detailed reviews of high-level
(including software-level) power estimation and optimization.

Microprocessor Power Analysis by Labeled Simulation

2

processor in a certain clock cycle. We find a labeling Li={I’1, I’2,
I’3…} for each gate gi, i=1…n, such that the energy consumption
of gi in the current clock cycle is caused by instructions in Li. If Li

is empty, the energy consumption of gi is not caused by any
particular instruction and is considered as the intrinsic energy
consumption of the processor (e.g., the energy consumption of the
instruction cache is not caused by an individual instruction). If Li

contains multiple instructions, the energy consumption of gi is
equally caused by all of the instruction in Li.
Define G(I) as a set of gate indices such that instruction I belongs
to the label of each gate according to the indices in G(I).

() { | }iG I i I L≡ ∈

The energy consumed by instruction I in the current clock cycle is:

2

()

1 1
()

2
j dd j

j
j G I

E I C V sw
L∈

= ∑

where swj=1 if wire j switches, otherwise swj=0; and Cj is the
effective capacitance of gate j. The total energy dissipation of an
instruction I for the program being evaluated is calculated by the
summation of E(I) over clock cycles when I is active (non-empty
G(I)). Note that the labels need to be updated every clock cycle
while the instruction is propagating through the pipeline.
Consider a simple MIPS-like instruction pipeline with five stages,
and assume that there is no feedback path between any two
pipelines. In this case the labeling problem is solved by
propagating the labels from one pipeline stage to next through the
labeling network, which is equivalent to RT or gate level logic
network of the processor. The on-chip memory is treated in the
same way as the flip-flops because its functionality is the same as
that of the flip-flops (registers). The labeling can be derived by
labeling the wires connected to the instruction memory (IM) as
newly fetched instruction Ii and propagating the labels in the
network according to these rules:
Combinational gate: If we assume that the instruction pipeline has
no feedback, the input labels of a gate will not contain different
instructions. We simply pass the input label to the output.
Flip-flop: At the positive or negative clock edge, we label the flip-
flop itself with its input instruction label.

B. Labeling Network
To initialize the labeling propagation, the first task is to identify
the label sources and sinks for label propagation.

- Source and Sink
Definition: The source refers to the set of gates (or wires) from

which the labels are originated.
Definition: The sink refers to the set of gates (or flip-flops) where

the instruction label is dropped.

Figure 1 Instruction memory as the label source.
When a processor fetches an instruction I from the external
memory, cache, or on-chip memory, the set of wires connected to
the read port are labeled as L={I}. In , for example, the instruction
addressed by the program counter, whose content is 44, is fetched
and the instruction bus is labeled as {I2}. Sometimes, the
instruction fetch unit is designed to fetch k instructions in one

clock cycle (e.g. VLIW machine), then the read port of instruction
memory (or cache) is labeled by those instructions, {I1,…,Ik }.
Note that for some advanced processors, there may be multiple
instruction memories in the system. Therefore, the label source
may not be unique. The new instruction labels continuously flow
into the system from the label sources in every clock cycle.
The next question is when we should stop propagating an
instruction label or drop an instruction from a label in the network.
The instruction label is only removed when an instruction label,
which is stored in a flip-flop, is not transferred to any other flip-
flop in the processor (including the flip-flop where it is stored).
For example, if an instruction label is propagated to the last stage
of the pipeline and if this label is not transferred to data paths in
the processor, it will be overwritten by another label in the next
clock cycle. When an instruction label is transferred into the on-
chip memory or register file, the question arises whether we
should label the memory elements inside the memory or the
register file. Note that if the labels are not removed in these
memory elements (flip-flops or memory cells), the number of
distinct instructions in all of the labels in a given clock cycle may
be larger than the number of pipeline stages. As an example, in
Figure 2, a ‘mov’ instruction (denoted as Imov) finishes its job after
writing immediate value 100 to a register. Then instead of
propagating {Imov} after we write to the register file, the label
should be dropped because the ‘mov’ instruction never uses the
written data again. After a number of clock cycles, the register
content may be used by another instruction ‘add $3, $1, $n’.
However, the energy consumption induced by the newly fetched
register content ($1) should be attributed to the instruction that
fetched the register (i.e., add $3, $1, $n), not to the instruction that
wrote it (i.e., mov $1,100). Similarly, when a ‘store’ instruction
writes some data into the data memory, it never uses the memory
content again and the label should be dropped in the memory.

Figure 2 A 2-read, 1-write register file.

Figure 3 Instruction label flow chart for MIPS.
In MIPS architecture, the register file, data memory, status
register, and program counter are marked as the label sinks. Note
that the contents of the flip-flops or memory elements that are
marked as label sinks may affect the power consumption of other
modules in the system. In general, labels are dropped one clock

write data

write reg
number

read data 1

read data 2

add $3, $1, $n

register 0
D

Q

1-to-n
decoder

D

Q
register n

D

Q.....

register 1
D

Q

M
U
X

M
U
X

read reg
num 1

read reg
num 2

write

Label Sink

Write Back Instruction Decode

mov $1, 100

(imm value : 100)

label propagation

ALU

PC
Write

Reg.
Write

Source

Sink

Sink

Sink

Reg.
Read

Program
Memory

Status Reg.
Write

Mem.
Write

Mem.
Read

Sink

Program
Counter RegDMReg

Instruction Memory
or Cache

Label Source

I1: add $1,$2,$3
I2: sub $4,$5,$6
I3: sti $8,$17,0
I4: muli $15,$17,4
I5: lw $24, 0($16)
......

addr
40
44
48
52
56

addr : 44

{I2}

Instruction Pipeline

3

cycle after when they reach a sink. This is required, for example,
when the outputs of the X, Y, P, and Accumulator registers in the
DSP chip shown in Figure 12 connect to other modules (i.e.,
multiplier, shifter, or buses) directly and cause extra power
consumption even though the labeled instruction has finished its
task. It is also possible that instructions require different
definitions for label sink locations that may conflict with each
other. If such a conflict occurs, instruction I is dropped from the
label if it reaches a node where the node is defined as a sink for I.
Figure 3 shows the journey of an instruction in the pipeline of
MIPS architecture. The lifetime of an instruction starts from the
source and ends at the sink (if it is not discarded in the middle,
e.g., due to a pipeline flush). At each clock cycle, the instruction
label moves toward the label sink and activates some control
signals or simply stays in the same place in the case of
encountering a control or a data hazard.
- Propagation Rule
After synthesizing and mapping a RTL design to a standard cell
net-list, the instruction label starts from instruction memory and
propagates through nets and cells under a specific propagation
rule. Each distinct type of standard cell should have an associated
propagation rule. For a simple inverter, we propagate its input
label to its output. For a 2-input gate, the notation is shown in
Figure 4, where in1 and in2 denote the logic values of the inputs.
The rule is that if only one of L1 or L2 is empty, than the non-
empty label will be propagated. That means Lout=L1 if L2={} and
Lout=L2 if L1={}.

Figure 4 Labeling for 2-input gates.
The following table lists the label propagation rules for the case
that both L1 and L2 are non-empty. The rule is then as follows: L1

will be propagated if in2 has a non-controlling value, and L2 will
be propagated if in1 has a non-controlling value. For OR gate:

in1 in2 Lout

0 0 L1+L2

1 0 L1

0 1 L2

1 1 L1+L2

The Lout can be statically decided if L1 ={}, L2={} or L1=L2.
A similar propagation rule tables for primitive gates like AND
gate, XOR gate, or NOR gate etc. could be easily built. However,
for a combinational circuit cell like multiplexer, the propagation
rule table derived from its equivalent Boolean implementation in
terms of AND and OR gates should be consistent with the one
from explicit derivation. We derive the propagation rule table
from the explicit method. The logic values of multiplexed inputs
are not important in this case, compared with OR gate. Instead, the
select signal would play a major role. Consider a 1-bit 2-to-1
MUX with select logical value zero for label zero (L0) input and
one for label one (L1) input. The following table shows the
propagation rules.

select Ls==φ L0==φ L1==φ Lout

0 X T X Ls

0 T F X L0

0 F F X (Ls+L0)
1 X X T Ls

1 T X F L1

1 F X F (Ls+L1)

where “L==φ” is ‘T’ if L is empty, ‘F’ if not empty. ‘X’ denotes
don’t care condition. By observation, Lout can be statically decided
if exactly one of the {L0,L1,Ls} is not empty or L0 equals L1.
For ‘+’ operation between labels, we define two types of rules.
Definition: Priority Rule (Time-Stamp Rule)
If L1={Ii}, L2={Ij}, then L1+L2={Imax(i,j)}. Only the instruction that
is fetched later (i.e. it has a larger time stamp) is kept in the
merged label. Therefore, the labels after merge contain at most
one instruction. In this rule, the instruction that is fetched later
always assumes the responsibility for the power consumption
when multiple instructions are propagated to the same wire.

Definition: Union Rule
L1+L2=L1∪ L2. In this rule, instructions that run into each other
assume equal responsibility for the power consumption.

As mentioned in problem formulation, the input labels of a gate
will not contain different instructions because of the assumption
that there is no pipeline feedback. However, for a modern
microprocessor, resource hazard is resolved automatically with a
hazard detection unit, the pipeline-stall and flush mechanism or a
data-forwarding unit etc. Those abilities require feedback
information between different pipeline stages. Hence, the input
labels could be annotated with different instructions. Several
architectural patterns must be defined and analyzed for a specific
microprocessor in order to make sure the propagation rules of the
cells satisfy all the architectural patterns.

C. Architecture Patterns
We define an architecture pattern to have three fields as follows:

1. Name is a handle that we can use to describe the intended
architecture effect (e.g., control hazard).
2. Description explains how the pattern is caused and how the
processor reacts to the pattern.
3. Required Rule specifies how the propagation rule should
work in response to the pattern.

The most common architecture patterns, pipeline-stall, data
forwarding, and pipeline-flush, will be given as examples. Each
pattern is caused by a certain architectural effect, and the related
control circuitry will be explained. The required rule is given
based on the specific control circuitry. The example is, however,
representative, and other causes of an architecture pattern will give
rise similar rules. Furthermore, the circuit implementation may
vary for different processors, but the underlying structure for the
instruction dispatch and routing will be similar.

- Pipeline-stall Pattern
Name: Pipeline-stall
Description: A data hazard usually occurs when an operation
needs operands that are not computed or have been computed but
are not yet available to the instruction. This is also called the
“read-after-write” hazard. There are many other types of data
hazards, depending on the target architecture. In particular, the
super-scalar processors that perform speculative execution have
complex control logic or architecture to make sure that the
program works the same as when it is run on a scalar machine.
Such complex architectures usually generate a lot of data hazards.
Figure 5 shows hoe the pipeline stall architecture injects bubbles
into the instruction pipeline. If no hazard is detected, the
MUX1/MUX2 select line is ‘0’ and the instruction pipeline works
as a streamlined pipe. If a hazard is detected, the MUX1/MUX2
select line equals ‘1’ and I4 is retained in flip-flops FF1, and a
bubble is injected to flip-flops FF2. The hazard detection logic can
be implemented as in Figure 6, where ‘==’ gate compares the
inputs and produces ‘1’ if the two inputs are equal. Figure 6 shows
only part of the circuit; a complete hazard detection unit should

L2

L1

Lout

in1 2-input
gatein2

4

compare both source operands of I4 with the destination operands
in the pipeline.

Figure 5 Pipeline-stall architecture.

Figure 6 Hazard detection logic.
Required Rule (c.f. Figure 6):

L= ‘1’ denotes the labeled wire with logic value ‘1’.

• La={I4,I3}. Lb and Lc follow similar rules.
• Ld should be the minimal set while satisfying the

following rules:
o Ld ⊇ La if La= ‘1’.
o Ld ⊇ Lb if Lb= ‘1’.
o Ld ⊇ Lc if Lc= ‘1’.

• Le={I4}+Ld and Lf=Ld if Ld=’1’. Otherwise Le={I5}+Ld

and Lf={I4}+Ld.

- Data-forwarding Pattern
Name: Data-forwarding
Description: Instead of stalling the pipeline to avoid data hazards,
a data-forwarding architecture can be used to reduce the “read-
after-write” hazard. In Figure 7, such architecture for the MIPS
pipeline is shown. When there is read-after-write dependency
between I3 and I2 or I3 and I1, then the operands required by I3 can
be directly forwarded from the computed result of I2 or I1. A
forwarding unit can be implemented as shown in Figure 8.

Figure 7 Data-forwarding architecture.

Figure 8 Data-forwarding control circuitry.

Required Rule: (c.f. Figure 8):
• La={I3,I1}
• Lb={I3,I2}
• Lc={I1}+{I3}+L1, if Lc= ‘1’, otherwise Lc={I3}+{I1}
• Ld={I3}+{I2}+{I1}, if La= ‘0’ and Lb= ‘0’

Ld={I3}+{I2}+{I1}+L1, if La= ‘1’ and Lb= ‘0’
Ld={I3}+{I2}+L2, if Lb= ‘1’

Please note that the feedback path will not cause an infinite Ld

length because of the priority rule or union rule applied to the ‘+’
operation.

- Pipeline-flush Pattern
Name: Pipeline-flush
Description: A control hazard is usually caused by branch
instructions. A branch instruction may change the target
instruction address to be fetched next. The target address may not
be known at the time that the next instruction is fetched.
Therefore, the control logic needs to monitor these situations to
make sure that the processor works correctly with or without the
branch hazards.
Figure 9 shows an example of the branch hazard. The instruction
at address 40 compares the register content of $1 and $3 and
jumps to address 72 (40+28) if $1=$3. There are two ways to
handle the control hazard: Always Stall and Assume Branch Not
Taken.
Always Stall: This is the simplest way to handle the branch hazard.
Each time a branch instruction is encountered, the control unit
simply stalls the instruction pipeline by injecting a bubble. The
control circuit can be implemented similarly to the one shown for
data hazard detection. Note that the “Always Stall” strategy does
not cause pipeline flush.
Assume Branch Not Taken: Instead of stalling the pipeline
immediately, we continue the execution by assuming that the
branch will not be taken. If the branch is untaken, the instruction
pipeline keeps running without any interruption. If the branch is
taken, the instructions that are being fetched and decoded must be
discarded. To discard the instructions, we need to change the
control code of the instruction in IF, ID, and EX stages (as shown
in Figure 10) in such a way that the instruction will not write back
any result to the register file or the memory. The control circuit can
be implemented as shown in Figure 11. Note that the status
register, which decides whether the branch is taken or not, can be
set by earlier instruction and is marked by an empty label, or it is
set by the branch instruction and is labeled as L1={Ibranch} where
Ibranch is the branch instruction in MEM stage.

IM

{I2} {I1}

hazard
detected

0

1

bubble
(nop)

MUX2

MUX1

RegDMRegF
F

1

F
F

2

Hazard
Detection

0

1

{I3}{I4}
{I5}

{ I 4 }

s r c (I 4)

d s t (I 3) d s t (I 2) d s t (I 1)

= = = = = =

L d

{ I 3 }

L a

L b

L c

{ I 4 }

{ }
b u b b l e

M U X 2

0

1

L f

{ I 4 }

{ I 5 }

M U X 1

0

1

L e

{ I 2 } { I 1 }

ALU
Data

Memory
(DM)

M
U
X

M
U
XRegister

File

ID EX MEM WB

Forwarding
Unit

{I3} {I2} {I1}

s rc (I3)

= = = =

{I3} {I1}

0

1

{I3}o p e ra n d
fro m ID /E X

o p e ra n d
fro m M E M /W B

o p e ra n d
fro m E X /M E M

A L U
L d

M U X 1

M U X 2

0

1

L a L b

L c

s rc (I1) s rc (I2)

{I2}

L 1

L 2

5

Figure 9 Branch hazard example [11].

Figure 10 Branch hazard control circuit.

Figure 11 Control circuit for pipeline flush.

Required Rule: (c.f. Figure 11)
• Lout=L1 if pipeline is flushed due to the branch

misprediction.
• Lout=L2 if both “hazard detected” and “Flush” are de-

asserted.
• Lout=Lhazard if “hazard detected” is asserted.

III. DESIGN OF THE ZILOG DSP CORE
The instruction-flow driven power analysis is also useful for
power analysis in digital signal processors. Usually the
computational resources in a digital signal processor are
distributed, and multiple on-chip buses are used to maximize the
throughput. Consequently, it is even more difficult to manually
perform the labeling. In this section, we use a Zilog voice
processor [5] (c.f. Figure 12) as the DSP example for
microanalysis. In this processor, there are two on-chip RAM
banks: RAM0 and RAM1, a stack, and several distributed
registers: X, Y, P and an Accumulator. The lower 64 words of the
on-chip RAM can also function as registers. To perform a
multiplication, two operands are simultaneously loaded from
RAM0 and RAM1 and then stored in X and Y registers within one
clock cycle. In the instruction set, X and Y can also function as
general-purpose registers to move data around. Note that the data
outputs of X and Y registers are directly tied to the inputs of the
multiplier. Therefore, if a ‘mov’ instruction moves the data from
Accumulator to X without the need to perform a multiplication,
then the multiplier will still dissipate (waste) power because its
inputs change. Our labeling scheme could simply propagate non-
multiple instruction to X and Y and capture the wasted power. A
similar problem can be automatically detected for the ALU inputs.
For example, if we want to perform the multiplication instruction
and the result is written into register P, then the value change in P

may be passed on to the ALU and subsequently cause unnecessary
power consumption in the ALU. This can also be detected by label
propagation.
Another potential problem is that the select line of the MUX may
change value even when no ALU instruction is being executed.
This problem may be caused by, for example, poorly designed
decoder logic. By labeling, we can easily identify the specific part
of the instruction decoder that causes this problem. This last case
also shows that the instruction-labeling scheme can help debug
and verify the hardware early in the design process.

Figure 12 Zilog DSP processor core [5].
We have designed a DSP core, which is compatible with Z89C00
instruction set [6], with Verilog HDL. The Z89C00 DSP
instruction set, consisting of 30 basic instructions, is optimized for
high code density and reduced execution time. Single-cycle
instruction execution is possible on most instructions, including
multiplication and I/O operations. There are 9 different addressing
modes, which enables high code density.

IV. EXPERIMENTAL SETUP
- DSP core mapping
The DSP core is mapped to TSMC Process-Perfect Library [7]
with Synopsys Design Compiler v. 1999.05 [8]. The RAM0,
RAM1, and instruction memory are not mapped and remain in
behavioral model for the purpose of fast RTL simulation. The
power consumption inside memory may be captured or estimated
separately if a more accurate modeling is needed. We construct the
propagation rules with Union Rules for all of the TSMC library
cells and verify them with several architectural patterns.
- RTL simulator and label propagation engine
Verilog simulator [9] is used for RTL simulation. A label
propagation engine is built with the Verilog Procedural Interface
[10], which provides a mechanism to access the internal
simulation data of the Verilog simulator. The engine performs
label propagation and generates an instruction power consumption
profile (cf. Figure 13). We first simulate one clock cycle and
record switching activity of each wire in the mapped net list. We
do label propagation at the end of the clock cycle. Note that the

IM RegReg DM

IM RegReg DM

IM RegReg DM

IM RegReg DM

IM RegReg DM

40 beq $1,$3,28

44 and $12,$2,$5

48 or $13,$6,$2

52 add $14,$2,$2

72 lw $4, 50($7)

Program
Execution

Order

PC+4+28

IM RegReg DM

controlcontrol control

IF ID EX

Flush

MEM WB

Flush

hazard
detected

0

1bubble

Lflush=L1

Lout

L2

to next
stage

from prev.
stage

predicted condition
actual condition

L1 or { }

L1

Lhazard

6

logic value of each net, which is utilized to perform label
propagation, should therefore remain unchanged until the end of
the current clock cycle.
The energy consumption is then calculated in the third step.
Energy dissipation is dependent on the power-supply voltage, the
switching activities, and the internal and output load capacitances.
The energy dissipated in each cell in each cycle is calculated by
the following equation:

where EInternal denotes the energy dissipation in the internal
capacitances of the cell due to input transitions and EExternal

denotes the energy dissipation due to transitions at the output of
the cell (includes the effects of both input pin capacitances of the
fanout gates and the routing capacitance of the net connecting the
cell and its fanout gates). Obviously the power dissipation is the
product of the energy consumption and the clock frequency.

Figure 13 Simulation workflow.
The TSMC data book provides EInternal and input capacitance
values for all cells. For the wire capacitance, we simply assume
that it is proportional to the fanout count of the driver. Note that
the first part of the equation is the power consumption of the
library cell, which is contributed from all instruction labels of its
output pins (nets). The second part is the total power consumption
of the output nets of the cell in current clock cycle. Iterating the
cell instances and summing up their power dissipation P, we
calculate the total circuit power consumption.
- Target application on Zilog DSP processor
Currently, we do not have a C/C++ compiler and assembler for
Z89C00 DSP instruction set. Because of the lack of high-level
language utilities, it is impossible for us to build complex DSP
applications for our testing purpose. Instead, five simple programs
were written in assembly language and directly translated into the
binary code. This process was cumbersome, but served our goal.

V. EXPERIMENTAL RESULTS
The Zilog Z89C00 Instruction Set is categorized into 5 instruction
classes, NON, SL, MAC, CTRL, CAS and ALF. NON is for
background power consumption, which cannot be attributed to any
instruction class. SL is for load and store instructions including
different addressing modes. MAC is for simultaneous
multiplication and addition instructions. CTRL is for control
related instructions. CAS is for comparison and integer arithmetic
instructions. ALF is for logical operation instructions.
Five simple programs are used as target applications on the Zilog
DSP core. The energy consumption of instruction classes for each
program is shown in Figure 14 to Figure 18. Notice that the
energy consumption does not include the dissipation in the
instruction memory and data memory. The average energy for
‘NON’ class is the total background energy divided by the total
instruction number.

Instruction
Class

Average
Energy(10-8J)

Instruction
Count

NON 0.0053 -
SL 0.0262 83

MAC 0.0513 132
CTRL 0.0101 30

CAS 0.0147 7
ALF 0.0198 14

Figure 14 Instruction class energy for program 1.

Instruction
Class

Average
Energy(10-8J)

Instruction
Count

NON 0.0046 -
SL 0.0128 70

MAC 0.0649 35
CTRL 0.0155 125
CAS 0.0111 8
ALF 0.0124 27

Figure 15 Instruction class energy for program 2.

Instruction
Class

Average
Energy(10-8J)

Instruction
Count

NON 0.0071 -
SL 0.0193 20

MAC 0.0674 98
CTRL 0.0138 58
CAS 0.0265 142
ALF 0.0136 33

Figure 16 Instruction class energy for program 3.

Instruction
Class

Average
Energy(10-8J)

Instruction
Count

NON 0.0054 -
SL 0.0210 61

MAC 0.0477 10
CTRL 0.0144 78

CAS 0.0120 17
ALF 0.0188 104

Figure 17 Instruction class energy for program 4.

Instruction
Class

Average
Energy(10-8J)

Instruction
Count

NON 0.0058 -
SL 0.0190 56

MAC 0.0520 42
CTRL 0.0171 70
CAS 0.0201 33
ALF 0.0179 42

Figure 18 Instruction class energy for program 5.

VI. CONCLUSIONS
An instruction-flow-based power analysis technique was proposed
to accurately calculate power dissipation induced by a certain
instruction running on a target processor. The proposed algorithm
automatically attributes the power consumption of each gate
within the processor to the instructions that are being executed in
the instruction pipeline or instruction execution pool. As a result,
the power microanalysis enables the processor architect or
designer to identify the instructions in the instruction set that

Internal ExternalE E E= +

Simulate and record switching
activities

(for one clock cycle)

Perform label propagation in the
circuit net-list

(at the end of the clock cycle)

Calculate energy consumption

Next clock

7

consume a lot of power or, more importantly, waste power. When
some component does not work as expected from a power,
performance, or functionality perspective, the instruction-labeling
scheme can help designers trace the problem back to the
instructions that caused the problem. The proposed technique also
helps in synthesizing an instruction-level power macromodel,
which can later be used by a compiler to generate power-efficient
executables.

REFERENCES
[1] C-L. Su, C-Y. Tsui and A.M. Despain, “Low Power Architecture

Design and Compilation Techniques for High Performance
Processors,” Proc. of IEEE COMPCON, 1994, pages 489-498.

[2] V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, “Instruction Level
Power Analysis and Optimization of Software,” J. of VLSI Signal
Processing, Vol. 13, No. 2/3, August 1996, pages 223-238.

[3] E. Macii, M. Pedram and F. Somenzi, “High level power modeling,
estimation and optimization," IEEE Trans. on Computer Aided
Design, Vol. 17. No. 11, November 1998, pages 1061-1079.

[4] K. Roy and S. C. Prasad, Low Power CMOS VLSI Circuit Design,
John Wiley and Sons, 2000.

[5] “Z89223/273/323/373 16-Bit Digital Signal Processors with A/D
Converter: Production Specification,” URL: http://www.zilog.com.

[6] “Zilog Z89C00 Instruction Set,” URL: http://www.zilog.com.
[7] TSMC Process-Perfect Library Data Book 2.5-Volt Standard Cell

TSMC 0.25µm Process, January 1999.
[8] Synopsys Design Compiler Reference Manual, v. 1999.05, Synopsys,

1999.
[9] Verilog-XL Reference Manual, Cadence, 1998.
[10] VPI User Guide and Reference, Cadence, 1998.
[11] D. A. Patterson, J. L. Hennessy, “Computer Organization & Design,

The Hardware/Software Interface,” Morgan Kaufmann, 1994.

