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ABSTRACT - This paper presents a solution to the problem of
performance-driven buffered routing tree generation in elec-
tronic circuits. Using a novel bottom-up construction algorithm
and a local neighborhood search strategy, this method finds the
best solution of the problem in an exponential size solution sub-
space in polynomial time. The output is a hierarchical buffered
rectilinear Steiner routing tree that connects the driver of a net
to its sink nodes. The two variants of the problem, i.e. maximiz-
ing the driver required time subject to a total buffer area con-
straint and minimizing the total buffer area subject to a
minimum driver required time constraint, are handled by
propagating three-dimensional solution curves during the con-
struction phase. Experimental results prove the effectiveness of
this technique compared to the other solutions for this problem.

|. INTRODUCTION
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the three-dimensional solution curves, the existence of the load and
the required time dimensions ensure the validity of the principle of
dynamic programming [Be57] for solving the problem. The third
dimension (total buffer area) allows the user to solve the problem
for either one of the following variants: 1) minimizing the required
time subject to an area constraint, II) minimizing the area subject to
a required time constraint. The *P_Tree structure is used in a
certain hierarchy, calle@a_Tree which is formally defined in this
paper.

The remainder of the paper is organized as follows. In section II,
prior work is given. Section Il introduces the proposed algorithm
and its constituting building blocks. In sections IV and V, our
experimental results and concluding remarks are presented.

Il. PRIOR WORK
Fanout optimization, an operation performed in the logic domain,

This paper presents a solution for simultaneously solving fanoutiddresses the problem of distributing an electrical signal to a set of
optimization and routing tree generation problems. Both of thesginks with known loads and required times so as to maximize the
design tasks are difficult optimization problems which have arequired time at the signal driver (root of the net). Interconnect
considerable —effect on reducing the circuit delay. Fanoutdelay is not incorporated in this operation because the locations of
optimization is effectual by boosting the transmitted signal viasinks are not known at this stage. The general form of this problem
insertion of sized buffers whereas performance-driven routings NP-hard [To90], however its restriction to some special families
generation is effective by generating suitable wire structures. Irof topologies is known to have polynomial complexity.
conventional design flows, these two tasks are often performed in a

sequential manner. Consequently, a solution made by one of the
optimizations becomes a constraint for the other. This flow reduce
the flexibility and impact of these operations. Solving the unified
problem, i.e. generating a buffered routing tree for a set of sinks an
combined design steps and produces
space. This type of solution technique is referred to asification-

based approacfSLP98].

The core optimization engine proposed in this paper, nhame
BUBBLE_CONSTRUGToptimally solves the aforementioned
problem for a local neighborhood of an initial sink order. It exploits
all the similar sub-solutions among the members of the
neighborhood in order to reduce the time complexity of the
algorithm. Although a complete buffered routing structure is not
generated for every member of the neighborhood, the sink ord
which results in the best buffered routing structure is automaticall
chosen from among the members of the neighborh®&eRLIN,
an iterative optimization method based on the idea of loca
neighborhood search, takes this new sink order and uses it as t
input for the next call toBUBBLE_CONSTRUCTExperimental
results reported in this paper prove that this method converges ve
quickly for most practical exampleBUBBLE_CONSTRUCTises
an enhanced version of P_Tree [LCLH96], call&d®l Treg and
generates and propagates three-dimensional required time and o

¢

a driver, helps capture the intrinsic interactions between thg
higher-quality|
implementations by systematically searching a much larger solution

Among the fanout optimization algorithms, the one proposed by
¥090] introduced a special class of tree topologies, calledree

r which the fanout problem is solved using dynamic
rogramming with polynomial complexity. AT-Tree of type-[see
igure 4) is a tree that permits at most one internal node among the
mmediate children of its internal nodes and also does not allow any
eft sibling for the internal nodes.

Performance-driven interconnect design, an operation performed
in the physical domain, addresses the problem of connecting a
ignal driver to a set of sinks with known loads, required times and
ositions so as to maximize the required time at the driver.
[CHKMO96] gives a thorough overview of the algorithms for solving

this problem.

The inherent complexity of this problem has forced researchers to
either solve it heuristically or to impose constraints on the structure
Qﬁ‘the resulting interconnect. Among the recent works in this area,

e algorithm presented by Lillis et al. in [LCLH96] should be
mentioned. They proposed the Permutation-Constrained Routing

|Tree orP-Treestructure and solved the above problem with respect

the P-Tree structure, see Figure 1. Their approach consists of two
ajor phases: finding a proper order for the sinks heuristically, and
en generating the routing structure based on the order. The second
hase of the algorithm is referred to BIREEthroughout this
paper. Given an order for the sink nodes, PTREE finds the optimal

ambedding of the net into thélanan gridJr using a dynamic

versus total buffer area solution curves in a bottom-up fashion. Iprogramming approach. In PTREE, the routing solutions are stored

* This work was funded in part by SRC under contract no. 98-DJ-606 and
by NSF contract no. MIP-9628999.

in the form of two dimensional, non-inferior solution curves of total
area versus required time for evetanan point(the vertices of the
Hanan grid).
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Figure 1: An output of PTREE for “dcba” order

t.The Hanan grid of a net is defined as the grid formed by the intersection of
H_c')rlfzsgftal and vertical lines running through the terminals of the net
a66].



Lemma 1 If the individual capacitive values are polynomially immediate children, _
bounded integers or can be mapped to such with sufficient prece  at every internal node, the branching edges are ordered, so as to
sion, PTREE hasO(rPq) pseudo-polynomial complexitysee preserve the order of sink nodes under the internal node,

[GJ79]) wheren is the number of sink nodes ands the maximum ¢ the maximum branching factords . .
number of distinct load values [LCLH96]. Note that in any @_Tree, a reverse depth-first search (respecting

Local neighborhood search as a member of iterative solutioere immediate children order at every internal node) visits the sinks

methods is a widely used, general approach to solving har t.he(sl,sz,__,.,%) order. o
optimization problems. To obtain a local search framework for an Figure 2 illustrates an example for C4_Trees. In this figure the
optimization problem, one superimposes a neighborhood structur@aximum branching factor is four and every internal node (shown
on the solutions, i.e. for each solution a set of neighboring solution®y white circles) is connected to at most one other internal node
is specified. This method starts from some initial solution that iswhile preserving the given order.

constructed by some other algorithm, or generated randomly, and
from then on it keeps moving to a better neighboring solution as
long as there is one, until finally it terminates at a locally optimal
solution for which there is no better neighbor. This method has
been applied both in the context of continuous and discrete
optimization [Ya92]. In generalimulated annealings a special
case of local neighborhood search that sometimes allows uphill
moves.

Definition 1: A function N:F —, 2%, which associates a subd¢x)

with eachxOF, is a neighborhood functiorover F, if CN(X)O is The Gi 1 I 1 1
larger thanl and OXOF, XON(Y) — YON(X). grdé\fe @éé@ééé@ (=]

In our method, the optimization engine induces a well-defined Figure 2: A valid C4_Tree for (s,5,....S) _
neighborhood function (see Definition 4) in which the optimization Lemma 2 In a Co_Tree, the internal nodes construct a unique
algorithm optimally finds the best solution. That definition of path (chain).

neighborhood is used by MERLIN to conduct a local search. In our application, every internal node is a buffer and in the
I1l. MERLIN resulting buffer chain (c.f Lemma 2), a less critical sink
. (considering both timing and physical information) tends to be
Il.1 Problem Formulation connected to the farthest (in terms of the number of intermediate
For a given net, the problem is to drive a set of sink no8egs, , stages) buffers from the root in the chain.
S, ..., S}, by the driver of the nets, via a buffered routing The parametea represents the maximum number of fanouts for

structure. The objective is to generate a buffered routing structur@very buffer. Our experience shows that for structures with no
that satisfies a combination of the maximum required time at théestriction on the maximum number of fanouts for each buffer, the
root and the minimum total buffer area constraints. Moremaximum fanout count is usually bounded by a certain value which
specifically, the problem may be stated in two ways: ) minimizeis dependent on the library parameters and not the problem size
the required time subject to an area constraint, Il) minimize the arefnumber of sinks). By eliminating the parameter from the
subject to a required time constraint. definition, the main structure and properties af_Jrees do not

The following information is required and used by the proposed2réakdown. In that case, the only disadvantage would be larger
algorithm: (still polynomial) runtime needed for optimally constructing such a

structure.
1. The position of the source=(s",9), wheres* and¢’ are the ; ;
horizontal and the vertical coordinatessof Although there is a large number ofaCTrees for every sink

. . . order, the optimal @_Tree can be found in a polynomial time
2. The properties of each sink noge(s*s%s'.§") for 1<isn,  (sing' dynamic programming. Briefly, the optimakiClree for an
wheres* andsY are the horizontal and vertical coordinatgs, ordered set of sinks is generated by starting from sidalland

is the capacitive load, ars is the required time at node combining evenyL neighboring sinks, untiL=n. At every step, the
best solutions for the sub-groups with lengiti(smaller tharl) are

3. Alibrary of buffersB={b; , b,, ..., by}, containingmbuffers 5 5iiaple - due to the bottom up flow of the method - and are used to
4 V,X\Itshe?gﬁ‘?(rggacsj}&%rt‘gtlgscétionmr lacing buffersp= generate the solution for the lengthsub-problem, see Figure 3.
. o) placing =(P1,P2:  Note that the final € Tree structure satisfies the given sink order.
e : . . L'= L=6
5. Alinear ordering of the sinkés;, S, ... , ). -
6. Two parametery and a, to be described in the next sub- e e e @ e é e @ @

sections. Figure 3: Optimal Cd_Tree Construction

There are many choices fé. it can be the set of Hanan points ! . . .
[Ha66] (similar to what has been proposed in [LCLHO6]), a set of L€MmMa 3 LT_Tree Type-| (see Figure 4) [To90] is a special case

reserved buffer locations (generated by the placement phase), or tf# Co_Tree wherea = +o0 and no internal node has a left sibling
center of masses of some subsets of sinks. Our experiments, {see Figure 4).
agreement with a conclusion made in [LCLH96], demonstrate

neither one of the above choices would alter the final result

significantly as long akis large enough with respectipe.g.kis a

linear function ofn.

Brancheg
[1l.2 Basic Elements NS

Ordered (Y

1 1

3.2.1 @_Trees (|
In this sub-section, we introduce a new class of trees, called P :
Co_Trees(read assi-alpha tree$ which is used to capture the hoe ' ' 1! :

hierarchy in the buffered routing construction algorithm presented ' Py YLl
later in this paper. . . . Th8r8é¥ert:>@@ @éééééé
Definition 2: A tree is adegree-restricted alphabetic buffer chain Figure 4: An LT_Tree Type-I for (s,S,,....Sg)

tree (Ca_Tree)for a given order of sinks - s¢gy,5,,....,) - iff: Note Qx_Trees can be relaxed with respect to the first property
¢ every internal node has at most one internal node among itgiven in Definition 2, i.e. each internal node may have more than



one internal node (but bounded by a certain parameter) among if3 andll’ is at most one.

immediate children. Although the optimal structure can still be — . ;

achieved using dynamic programming, the complexity of theEfX?ITple 2 T1'=(51,%3:%:%%,%%S:%) Is in the neighborhood
corresponding optimal construction algorithm grows significantly. ©f N1=(51:52:%,5:55.%:57:%.S9)-

3.2.2 Local Order-Perturbation (Bubbling) Definition 5: If n>1, swapping the elemerit(1<i<n-1) of I is

Some NP-Complete problems become solvable by dynamiglefined as swapping the value B{M-%(G)) with NM(N-%(i+1)). In
programming when an order (see Definition 3) is imposed on theipther words, it means the location o) is swapped with the
elements. In that case, the final solution is optimal only with respectocation ofs.y1)-
to that specific order. The works presented in [LCLH96] and [To90] Example 3 Swapping the 4th element in

are two examples for this case. M'=(s ) results in
Definition 3: An order M on n sinks is a one-to-one function ﬂ:(sllsésézsézsgssggzsgg)

defined a$1:{1, 2, ...,n} > {1, 2, ..., n}. Also, MM1istheinverse . . )
function off andj= (i) is called theposition of sin . Lemma 4: Every [M'ON(M) can be built from using a series of

. non-overlapping swap operations.
I(Eesx?g;ple l(7n:8j{ & _’%;%_’S) ’(53:92))} ’ (cjqul%ciug\?agr)]tlg/ Theorem 1 For n>1, the number of distinct orders in the

(50,53, 5,51,5, 56,5, 57,) IS an order oSy, Sy.....S) neighborhood of a given orderll is equal to:

+2 +
In this paper, the idea dbcal order-perturbation (Bubbling)s ABE-H—IS%P _Eil‘_ﬁg 2%
introduced and discussed in the context af Tree and *P_Tree J/5 2 2

(to be introduced in sub-section 3.2.3) construction. However, its The above formula involves square root of 5 (an irrational
extension to other applications is possible and rathemumber) yet it always gives an integer for all (integer) values of

straightforward. ) ) Theorem 1 proves the size bi{IT) is an exponential function of
Although an algorithm which constructs an optimal structure forthe number of sinks. Consequently, finding the best order in that
any given order is a useful tool, the main difficulty of the problem sub-space of orders is an exponential complexity task, if a simple
remains in how to come up with a “good” sink order such that theenumeration-based technique is used. However, all the common
resulting structure demonstrates superior properties. In the problegub-solutions of different orders can be shared in a dynamic
of buffered routing generation, required times, input loads, anchrogramming algorithm that utilizes the aforementioned idea of
physical locations of sink nodes should be all considered forbubbling. This in turn allows us to investigate the whole
generating an appropriate order. How we incorporate thosgeighborhood in a polynomial time.
independent and sometimes opposing parameters in an order is g, figure 5, we noticed that if we allow bubbles on the sides of
question that does not have an easy solution. The exponential,,_qroups we can alter the resulting sink order. Figure 6 presents a

number of possible orders forces us to use either a heuristic whic : :
combines the effect of those parameters in an ad-hoc fashion or ane;]t cl)fabgtrﬁct:)t g;ouzln% st:jucture;x{), X1 B(Zb%(f’} Wh'.ih c.c()jver a d
iterative method which tries a subset of orders. In either case, th¥/N0'€ neighbornood or ordergy Nas no bubble on Its sides an

limitation imposed by working with one order at a time is very X1, X2 andxz have bubbles on the right-side, left-side, and both
restrictive. sides, respectively. For instance, the grougingf Figure 5 is gx4-

The local order-perturbation is a technique that works in atype structure. A full neighborhood would not be covered, unless at
neighborhood of sink orders. No matter how we come up with areach level of dynamic programming and for each sub-group of
order (heuristically or by iteration), our semi-order-independentsinks all the grouping structures are generated from all the grouping
dynamic programming formulation performs a systematic search irsstructures of their internal sub-groups; Figure 7 illustrates one
the neighborhood of that order. If the initial order is not a local/ example.
global optimal structure but is close to it, this method generates the
local/global optimal structure automatically. The main advantage of - -‘ " m
such technique is its efficiency while preserving the optimality Xo X1 X2 X3
which is considerably better than that of an exhaustive search Figure 6: Grouping Structures
method. Its superiority primarily originates from its enhanced
dynamic programming nature that enables the method to tak&xample 4 The example in Figure 7 illustrates the usexaf
advantage of all similar sub-problems among all the neighboringstructure to generate g-type solution forL. In this case, the
orders and avoid recomputing the sub-solutions. resulting order i€ss,5,,54,5,57,5, o). This new sub-solution will be

By allowing the bottom-up technique to make perturbations, the,sed to generate larger sub-solutions that contain it.
sink order in the resulting solution can deviate from the initial

order. A simple case is shown in Figure 5, where the right-side L
border of a sub-groupL() has been perturbed (c.f. Figure 3). 9 @@ @ @

Consequently, the order in the resulting sub-group (s

(52,%3,54.%:55,S7) as opposed to the initig$,,s3,54.S5,5,S7) order; in : - : T :
the new ordesss has been swapped witlg. The hole in the right- Figure 7: Construction with Perturbation
side ofL' is called abubble(see Figure 5) and whdr is used in a
larger sub-group, the bubble is moved to the other side of th
corresponding border af (this operation is calleBubble OuL

A Bubble
L \ Bubble Out

The algorithm proposed in sub-section 111.3 (Figure 9) contains
the pseudo-code for the construction of perturbed Gees (lines
% to 13). Lemma 5 and Lemma 6 prove that for any given sink order
every member of the neighborhood can be made by the above
grouping structures and also every combination of the grouping
structures results in a valid order in the neighborhood.

The local order-perturbation technique can be extended to
structures with more than one bubble on each side. Those structures
in turn result in covering larger neighborhoods. However in that
) - - ) case, the number of grouping structures grows exponentially that
Figure 5: Construction with Perturbation consequently results in a significant slow down in the

. ) . . corresponding construction algorithm.
(I;)fenfl?;tgc;r:i :e.dF;);.a set of sinkgsy, . ..., s}, theneighborhood " "0 o = P Tree (*P_Tree)

—In ' ; o PTREE [LCLH96] finds the best rectilinear routing embedded in
NM={N'0 Os ,(71() - (=1 }. the Hanan grid of all sinks for a given sink order. In this sub-

In other words, the difference between the position of egeiy



section, we will present an enhanced version of PTREE, callegparagraphs the details of this algorithm, called

*PTREE which has the following properties: BUBBLE_CONSTRUCT, are given.

* generating rectilinear buffered routing tree structures with buff- BUBBLE_CONSTRUCT (see Figure 9) is called by MERLIN
ers located on the routing Steiner points, (see Figure 14) along with a set of parametsr®, B, andll. The

« generating and propagating three-dimensional curves to alloyparameters andl=(s;,s,...,S,) represent the root and an ordered
trade-off between required time and total buffer area set of sinks of a subject net. The paraméte{ p; , o, ... , Py }

* working on a neighborhood of orders using the idea of local,enresents a set of candidate locations for the placement of buffers

order-perturbation. : Al : : .
The buffered routing structures generated by *PTREE which ar%r;?b?tegz]erfma:f i?;rﬁ%rg?}?lo?gﬁ%erg_ routing structure. Finally,

basically P_Trees with the possibility of having buffers at the . . )
Steiner points are referred to as *P_Tree in this paper. BUBBl_LE_C(r?NSTRU?L op_ﬁl]'ates Og_éhrteebdlf?ﬂeTSI%r’;m ngtlon

* i ; curves,, each associated with a candidate buffer locafi@nd a

*PTREE s%tartsc;/.véth arll ordgred_set of sifRs(sy,,, %‘r)] arkl)d a sub-problem identified by the variablgse, andr (to be described
given set of candidate locatiolB={p1, pz,...,P}. As the base  pejow). At each step of this method, the already generated solution
case, it generates curves are combined and manipulated in order to generate solution

S(e,p,i,i)0pdP, O<i<a, and0<e<3 curves for new sub-problems. This step is repeated until the

solution curvegsee Figure 8) which are a collection of minimum solution curve for the main problem is found. From among the
Manhattan distance routings fropito s, driven with or without a  solutions of the final, the solution with the best trade-off between
buffer. All buffers of the given librarylL are tried to drive the required-time and total buffer area is chosen. At the end, the
routing structure and for each of them, the required time and th€orresponding structure is generated by tracing back the pointers of
load at the root as well as the total buffer ar@éf the structure uses the constituting sub-problems. The detailed description of the
no buffer) are measured. These solutions and their correspondirgjgorithm is given below.

attributes are compared against each other and in 8gehp,i,i) algorithm BUBBLE_CONSTRUCT(s, P, Bl ) {
only the non-inferior (see Definition 6) solutions are stored. INITIALIZATION
Variablee encodes the grouping structures that is being considered. 1 fore =0 to3
Note that for the base case, g}, X1, X2, andxs structures result 2. forr'=ntol
in the same structure. 3. foreach pOP
4. setlF(1,¢e,r',p)={ The set of all non-inferior paths
extended fronp' tos; -, driven with or without a buffe};
CONSTRICTION
5. forL=1 ton{
6. forE=0 to3{
7. setL' = L + STRETCH(E); /kee Figure 10
. . ). . . 8. for R=nto L' {
. -Flgure 8: A Three-dimensional Solution Curve 9 setG = SINK_SUBSETN , R, L', E ):// see Figure 13
Definition 6: Supposes; and o, are two buffered routing struc- 10. for |=max(1, La+l)to L-1
tures that connect a candidate location to the same subset of sinks. 11. for e =0to 3{ _
0, is said to be inferior too,, iff load(o;)<load(o,), reg- 12. setl'= | + STRETCH(e); /kee Figure 10
Time@,)<reqTime(;), andarea(o;)<area@,). 13. forr=RtoR-+1 { _
. . 14. setg = SINK_SUBSETQl, r, ', e);// see Figure 13
Consequently, *PTREE generates three dimensional curves for ;g if g-Gz@then continue
sub-groups consi_sting of sin@to §in I'I._These s_olution curves 16. foreachp 1 P
are calculated using the followmlg recursive equations. 17. foreachyO (1, e,r,p)
Sy(e,p.i,j)=min{S(e, p,i,u)+S(e', p, u+l, j)} 18. *PTREE({y ,G-9,l(L,E,R,.)P,B);
where the minimum is taken over<i<j<n , i<u<j , and e, ¢, }}
e’'0{0,1, 2, 3}. 19. foreachp P
S, denotes the solution curves for the sub-solutions that contain  20. prunel (L, E,R,p)
direct connections from p to smaller sub-solutions. However, 11
*P_Tree (similar to P_Tree) allows one other possibility where p is EXTRACTION _ _ o
connected to another candidate location @nd then p is 21. find the solutionp, inT(n, 0, 1, s Jvhich best satisfies the
connected to smaller sub-solutions. In other words: constraints; )
S(e,p,i,j)=min{d(p,p)+S(e, p,i,j)} 22. retrlev_e the buff(_ered routing tree_structu@, ofp t_>y
The minimum is taken over LP. following the pointers stored during the generation of the
The construction o8 andS§, three-dimensional solution curves in - SOt|Uti0nDCUFVES;
. return O;

a dynamic programming fashion results in generating a final
solution curve. The sink order of each solution in that curve is ,
within the neighborhood of the initial sink order. Figure 9: BUBBLE_CONSTRUCT

Theorem 2 If the individual capacitive values are polynomially ~Before performing any operation, a set of solution curves are
bounded integers or can be mapped to such with sufficieninitialized in lines 1 through 4. In this part of the algorithm, sub-
precision, *PTREE ha©(ka%q) pseudo-polynomial complexity 9groups of length 1 are considered and the corresponding solution
wherek is the total number of buffer candidate locationsis the ~ curves for every candidate buffer location, sink, and grouping

number of sinks, and, is the maximum number of distinct load structure are initialized. These initial solutions consist of the
values. ' minimum Manhattan distance paths from the candidate locgtion

) T to the target sinks.. At the root of these paths, both options of
IIl.3 BUBBLE_CONSTRUCT: The Inner Optimization inserting or not inserting a buffer are examined. Note that for sub-
Engine groups with length 1, all four grouping structuregg, X1, X2, and
The proposed tools and techniques presented in sub-section I3, ) are the same, however for the sake of simplicity in the rest of
are employed in the following algorithm that generates hierarchicaly, pseudo-code we generate separate (although similar) solution

buffered routing trees in a neighborhood of orders. The resulting. ;1 es for each case: a similar situation occurscoandy, where
hierarchies are consistent with theo CTree structure and the “~ AN - . 2 :
L=2. In these initialized solution curves, like any other ones in the

routing inside each layer of hierarchy is a *P_Tree. In the following



rest of this algorithm, only the non-inferior solutions (see Definition combined with which sink node(s) to generate the new sub-group,
6) are stored. Q. Also, it is guaranteed thab is compatible withQ. However as
BUBBLE_CONSTRUCT starts fronh=1 (goes up td_=n) and mentioned earlier, there are many solutions associated withueach
groups every. neighboring sinks. For each new sub-group of sinks in fact for every buffer candidate location, there is a solution curve
all possible” grouping structures (coded by numb@m® 3) are  for w which has to be considered in the merge operation. Line 16
enumerated in line 6. For the case)gf (E=0), the length of the ~enumerates all the candidate locations by varighland line 17

sub-group is equal th, but for the other cases the actual length of retrieves tGe non-inferior solutions in the solution curvepahat
the sub-group is larger by one or two units, to capture the effect ofI"esponds to
inserting one or two bubbles on the sides. This new length is 2algorithm SINK_SET(1, R, L', E){
calculated and stored il (refer to line 7 and Figure 10). In line 8, S""”CQOE_{ (G = _
all possible sub-strings of length are considered from right to left case0: SetG ={ g w1, Rz RL43- + R2: R1 R Y
of IN. In fact, the variable points to the right-most element of the ~ 3. casel:setG ={Sg(11.SrL'+2: SR-L'+3 + SR2: SR}
sub-strings of.' elements. 4.  case2:setG ={ Sz 41,SR-L+3+ > SR2:SR1 R}
algorithm STRETCH( E § 5. case3:setG ={Sg. 141, SR-L'+3+ - SR2: SR} S
switch E {
case0: return 0; casel , 2 return 1; case3: return 2,
}o} }
Figure 10: STRETCH Figure 13: SINK_SET

Every sub-group of sinks can potentially constitute an internal |n line 18, *PTREE is called to generate a new set of solutions for
node in the final @_Tree structure, therefore according to all the candidate locations (i.e. members R)f Every solution
Definition 2, it can contain at most one immediate internal nodecreated by *PTREE shows the combinationwfwith the rest of
(smaller sub-group). Consequently, during the process of groupingink nodes of2 . They are combined by a buffered routing structure
a set ofL sinks, we should consider cases in which a sub-set otooted at a candidate location. For every routing structure generated
them have already been grouped. That way the Tee structure by *PTREE, all the buffers in the library are tried to drive that
which captures the hierarchy of design is generated and maintainesfructure and the solutions are stored in the corresponding solution
In this context, the hierarchy implies that during the generation of a&urves. Along with every solution, a set of pointers are stored that
buffered routing structure, we do not process all the sinks at oncdater during the extraction phase are used to reconstruct the best
instead at any time we work on a subset of sinks and combine themolution. Pruning operation (based on Definition 6) is performed in
together in agreement with theaCTree structure. Later, each lines 19 and 20.
combination is treated as one node in the next level of hierarchy.  1his process continues until the solution curve for the whole

Lines 10 through 13, similar to lines 5 through 8, investigate allproblem, i.e.L=n, is generated. From among all the final non-
the possible sub-group lengths with different grouping structuresnferior solutions, the one which best satisfies the input constraint is
and positions for which the solution curves have already beerzhosen. The buffered routing structure corresponding to that
generated and they fit inside the sub-group being constructedolution is retrieved in lines 21 and 22 by following the stored
Figure 11 illustrates an example where a sub-group of 5 sidks, pointers. Finally, in line 23 the constructed solution is returned to
is being generated using a combination of an already generated SUREERLIN. Note that the order of sinks in this final solution may be
group of 3 sinksw , and two other sinks, i.8; ands;. different from the initial given order, and this new order is used by

In line 10, the termmax(1,L-0-1) ensures tha® does not drive  MERLIN to perform its local neighborhood search, as will be
more thana other internal and sink nodes, following the third described in sub-section Iil.4.
property of @_Tree’s given in Definition 2. In line 13, the terf In the following statements that formally describe the properties
to R-I'+1 ensures thab remains withinQ . of BUBBLE_CONSTRUCT, it is assumed that in the solution
curves the individual capacitive values are polynomially bounded
integers or can be mapped to such with sufficient precision. Also, in

these statementgis the maximum number of distinct load values.
Lemma 5: Any order generated by BUBBLE_CONSTRUCT is in

N

o

}
return G;

the neighborhood of the initial ordar

Lemma 6. Any TION(), is considered by
BUBBLE_CONSTRUCT.

A grouping situation The corresponding Lemma 7. Any identical sub-problem among the members of
) . ~ Ca_Tree N(M) is shared and processed only once.
Figure 11: An lllustration for the Grouping Steps Theorem 3 The solution space of BUBBLE_CONSTRUCT is

It can be seen that in some caseaindw are not compatible. As  the Cartesian product of the space of *P_Tree and the space of
an example, see the situation shown in Figure 12 where th&o_Tree for the neighborhood of the initial given order.
difference between the values ondR is such that the grouping Lemma 8 BUBBLE_CONSTRUCT is monotone with respect to
structure ofw does not fit in the grouping structure & . These  required time, load, and buffer size.
cases are detected and skipped in line 15 of the pseudo-code. In “]_aémma 9 In BUBBLE_CONSTRUCT, the use of the pruning

gg‘teéc(éggeasn:jns\l/(viglggdél\lscl)rt]g tﬂg?gégh%”g?%%ﬁaqgg tl(r)1 ﬁ?ngrseg operation does not result in the loss of any non-inferior solution.
and 14 - represent the sets of sinks included ®yand w, Theorem 4 Subject to restriction imposed by the *P_Tree and

respectively; also refer to Figure 13. Ca_Tree structures, BUBBLE_CONSTRUCT finds all the non-
=3 inferior solutions with respect to required time and total buffer area
L=5 e=l (=7 R=8 in the neighborhood of a given order.
I'=4 Lemma 10 The number of non-inferior solutions in any solution
curve is bounded byp(nmq) where n and m are the number of
@ @ @ e sinks and the number of library buffers, respectively.
Theorem 5 BUBBLE_CONSTRUCT hasO(n®mkq) pseudo-

polynomial memory complexity, where, m,andk are the numbers
of sinks, library buffers, and candidate locations, respectively.

Theorem 6 BUBBLE_CONSTRUCT ha®(r*a®¢?k2m) pseudo-

Figure 12: An lllegal Grouping Case
After line 15, it is determined which sub-group is to be



polynomial runtime complexity, wher@ is the number of sinksx * Setup lll: MERLIN is used for hierarchical buffered routing

is the maximum immediate fanout for buffeksis the number of generation. The initial order is the TSP order although our
candidate locations, amdis the number of library buffers. experimental results show that initial orders have very small
Corollory 1: Considering thatn is a constant determined by the effect on the final quality of results. The last columns reports
number of library buffers, and assumingis a number determined the number of loops that MERLIN takes for convergence to a

: ; : local minimum. In this setup, the candidate locations for buffer
by the library and can be thus considered constant, the effective ;
complexity of BUBBLE_CONSTRUCT for a fixed library is . Ft’)'f‘cgme“t ";“eﬂt]he COTlp'ete {'a”ff‘“ F(’jo't”tﬁaquat'.s 15 q
k). able 2 reports the post-layout (after detailed routing) area an
O(n'q . delay of a set of benchmark circuits to evaluate the overall effect of
1.4 MERLIN: The Outer Search Engine the existing buffered routing generation algorithms over a full
The behavior and the structure of BUBBLE_CONSTRUCT design flow. The runtimes are the total runtimes (from mapping to
makes it an appropriate tool for performing local neighborhooddetailed routing). For each circuit every one of the aforementioned

search in the space of sink orders. In this sub-section, our loc#XPerimental setups have been used to generate the buffered routing
search algorithmVIERLIN, is presented. structures for every net. For the MERLIN setup, the number of

. . . A . iterations for each net is bounded by 3, the candidate locations are
\%/ﬁlq]tw:‘p];g-pzvgegrggﬁg;gﬁt:g(rqhucl)roegigyDI?a?ifr:ﬂlitcl)%n4l are consistentyya requced Hanan points (generated by a simple heuristicyand

) ) o equals 10.
There exists at least two sink orders , eand[l’, in common All of the above experimental setups have been implemented in
between the neighborhood of two consecutive iterations ofhe s|S [SSLM92] environment and have been run on Sun Sparc
MERLIN's local _search. In fact, often this overlap, \yorkstations. In these experiments, we have used an industrial
OVERLAP(NII),N(T7), is relatively large. Obviously, the giandard cell library (0.35u CMOS process) that contains 34
overlapping sub-space is considered twice which is clearlyyyffers. Gate and wire delays are calculated using a 4-parameter

wasteful. However, this can be prevented by keeping the solutiogje|ay equation [LSP98] and the Eimore delay [EI48], respectively.
curves of the very last iteration. For similar sub-problems, between

the two iterations simply copy the corresponding solution .curve.V- CONCLUSIONS

Obviously, this speed up is achieved at the cost of doubling the |n this paper, the problem of distributing a sighal among a set of
memory usage. sinks with different placements, loads, and required times has been
Theorem 7 The best cost associated with ordgr(see line 7) addressed. The proposed algorithm generates a set of non-inferior
strictly decreases during the operation of MERLIN, except in thebuffered routing structures which provides different trade-offs

last time that the loop (lines 4 thorough 8) is visited. between the total required-time and the buffer area. The introduced
algorithm MERLIN{ solution consists of an iterative optimization block which uses a
" reads, P, andB where local neighborhood search strategy and an optimization engine

based on dynamic programming which generates all the non-

sis the source, inferior structures in the neighborhood of a given sink order. This

P={p1, P2, ... P} isasetof candidate locations for buffers,  gptimization engine generates and propagates 3-dimensional

B={by, b, ..., by}is the library of buffers; solution curves and employs a novel local order-perturbation
2. readN=(s,%,-..,%),an ordered list of sinks; method to cover an exponential size solution space in a polynomial
3. setl'=n: time. The experimental results show a major delay improvement
4. dof with little area penalty compared to the conventional buffer and
5. setl=n" routing tree generation techniques.
6. setd=BUBBLE_CONSTRUCT(s, P, Bl); VI. REFERENCES
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Ratios over Flow |

Flow I: Flow II: Flow TII:
LTTREE + PTREE PTREE+Buffer Insertion MERLIN
Taken Net  [Numof [“Area | Delay |Runtime | Area |Delay |Runtime |Area Ppelay Runtime LGops
from name | sinks |y 00002 (ns) (s)
circuit
C432 netl 16 o8 38.94 22 0.33 0.87 0.36 0.28 0.39 25.09 2
net2 16 83 35.49 41] 0.27] 071 1.66] 0.69] 0.48 5.24 1
net3 10 51 32.19 44 1.31 0.88 4.27 0.56 0.70 15.27 7
C1355 net4 9 35 26.69 16 0.64 0.88 1.88 0.82 0.57 3.00 4
nets 9 16 23.42 15] 0.80] 0.95 0.86] 3.80] 0.47 2.33 5
neté 13 29 25.42 14 0.33 0.95 3.43 0.56 0.30 78.00 6
C3540 net7 12 58 41.03 29] 0.50] 0.88 1.79] 144] 055 23.59 12
net8 35 93 47.05 99 0.17 0.83 4.42 0.17 0.49 7.92 1
net9 73 214 60.73 229 1.55 0.69 1.83 0.12 0.42 1.98 1
C5315 net10 49 70 40.29 302] 0.64] 0.78 2.34] 0.36] 0.33 6.09 2
netll 21 80 38.20 111 1.12 0.66 1.02 0.40 0.26 4.32 4
netl2 50 128 58.79 829] 0.65] 0.53 0.64] 0.20] 0.27 13.20 9
C6288 netl3 16 58 44.65 52] 0.83] 0.73 1.12] 2.11] 0.49 9.33 5
netl4 20 58 45.67 28 0.67 0.91 1.71 1.00 0.73 3.54 1
netls 60 90 90.29 197] 0.25] 0.74 1.42] 0.29] 0.55 16.20 4
C7552 netl6 12 54 32.20 26 1.35 0.90 3.00 1.18 0.54 12.38 2
netl/ 16 58 31.35 54 0.94 0.86 1.11 1.56 0.39 9.72 5
netis 23 54 38.38 431 0.35] 0.91 2.16] 0.29] 0.39 5.70 1]
Average. | 0.71] _ 0.81 T.05] 0.88] 0.46] 13.29
Table 1: Total Buffer Area, Delay, and Runtime for a Set of Nets
Ratios over Flow |
Flow [: Flow II: Flow I
o LTTREE + PTREE PTREE+Buffer Insertion MERLIN
Circuits Area Delay Runtime Area Delay [Runtime [ Area Delay Runtime
X1000A? (ns) (s)
Cl355 3630 .16 1276 0.9/ 0.9/ 0.99 0.95 0.72 2.23
C1908 7768 14.47 2560 1.03 1.10 0.95 1.02 0.80 2.55
C2670 9428 12.40 1699 0.99 0.99 1.09 1.06 0.96 2.05
C3540 15762 22.17 5436 1.21 1.57 0.79 1.27 0.88 0.98
C432 3574 10.13 1382 1.16 1.06 0.79 1.57 1.00 1.17
C6288 28497 52.94 13547 0.96 1.03 0.88 1.00 0.90 1.00
C7552 35189 19.80 9250 0.78 1.06 0.95 0.85 0.74 1.36
Alu4 8191 15.69 2842 1.22 0.99 0.86 1.02 0.96 1.62
B9 1210 2.81 271 0.98 1.25 0.82 1.36 0.99 4.18
Dalu 10344 18.59 3465 0.73 0.88 0.66 0.88 0.67 1.74
Desa 32388 27.00 19427 1.12 1.12 0.75 1.19 0.82 0.83
Duke2 5499 9.00 2554 1.15 0.91 0.74 1.04 0.83 0.80
K2 22823 26.66 5831 0.85 0.75 1.73 0.93 0.63 2.56
Rot 8315 7.80 1572 0.91 1.02 0.83 1.00 0.81 3.40
T481 8917 10.12 5239] 1.22 1.01 0.78 0.92 1.08 1.26
Average. |___1.02] 1.0 0,01 107 _0.85 T.85]

Table 2: Post-layout Area, Delay, and Runtime for a Set of Benchmarks
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