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Abstract — This paper analyses the propagation operations of signal’s multiple-valued behavior

while passing through the basic gates. Based on it the propagation algorithm of behavior

probability is proposed. In comparison with the propagation algorithm of signal probability this

algorithm have advantages that the calculation is direct one and the glitches resulted from race

hazard can be taken into account, whereby the estimation accuracy of power dissipation can be

improved.

I. INTRODUCTION

According to the development of CMOS VLSI technology, the continuing increase in chip

density and operating frequency have made power consumption a major concern in VLSI design.

For example, the PC chip from Motorola consumes 8.5W, the Pentium chip from Intel consumes

16W, and DEC’s Alpha chip 21164 consumes 50W. The excessive power dissipation in integrated

circuits not only discourages their use in a portable environment, but also causes overheating,

which degrades performance and reduces chip life-time.[1] All of these factors drive designers to

devote significant resources to reduce the circuit power dissipation. Indeed, the Semiconductor

Industry Association has identified low-power design techniques as a critical technological need.[2]

The design for low power cannot be achieved without accurate power prediction tools. Therefore,

there is a critical need for a technique to estimate power dissipation during the design process to

meet the power budget without having to go through a costly redesign effort.[3] From the power

analysis of CMOS circuit, it is necessary to develop a comparatively precise and efficient power

estimation algorithm.

The dominant power consumption of CMOS circuit is dynamic power dissipation. The

energy required to charge or discharge the load capacitance of each device’s output node i is

2
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1
ViC ⋅ .[4] If the number of total nodes in the circuit is M and the input sequence length is L,

we can use the following formula to calculate the average power dissipation:
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where T = L/ fCLK is the period of the sequence, )( jxi∆ represents the switching activity of

signal ix at node i from cycle j to cycle j+1:
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From Eq.(1), we can obtain the corresponding flow chart as shown in Fig.1. When the input

sequence is provided, we can calculate the switching activity of each node gradually, then the total

power dissipation can be obtained in the end. However, this flow has the following two problems

in application.

1) The large number of nodes M and the demand of the input sequence’s length will lead to the

huge calculation, which will go beyond the actual memory and exerting time of computer.

2) If the signal delay is taken into account, because of the race between input signals there may

exist glitches at output, which will increase the transition number at the output node and

introduce additional power dissipation. It has been observed that this additional power

dissipation is typically 20% of the total power, but can be as high as 200% of the total power

in some cases such as in a multiplier.[2] But the calculation of )( jxi∆ in Eq.(1) will omit

this power dissipation and lower the precision.

As to the first problem, the conventional solution is to exert the average step first in the flow, that

is to average the L cycle’s input signal in the beginning so as to decrease the calculation to 1/L of

the original calculation. But we still do not have a simple and efficient method to solve the last

problem.
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Figure 1 Basic algorithm flow for power estimation

This paper mainly presents a probability algorithm of power estimation based on

multi-valued logic. It is because that the power consumption of CMOS circuit is related to the

signal behavior, which is a multi-valued variable. In the next section, we introduce the concept of

signal probability, further we describe the propagation algorithm and power estimation based on

signal’s probability by providing some examples. Section � discusses the multi-valued

description and the transition algorithm of signal’s behavioral. Section � develops a transition

algorithm based on behavioral probability. Conclusion are given in Section �.

II. PROPAGATION ALGORITHM OF SIGNAL PROBABILITY AND POWER ESTIMATION

In Eq.(1), )(
1

cycle

jx
T i

L

j

∆∑ represents the average of measuring result of )( jxi∆ during the

period of T = L/fCLK. So a concept of average switching activity )( jxi∆ can be introduced, thus

Eq.(1) changes to:
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Obviously, )( jxi∆ in Eq.(2) can be considered as the probability of )( jxi∆ =1 in a cycle. In

fact, Ref.[5] had already introduced the signal probability. The signal’s probability is defined as:

Definition In a long period, the ratio of the time of x = 1 to the total time is the signal

probability of x = 1.

The propagation operations of the basic gates shown in Fig.2 have been introduced by

Ref.[5]. For the inverter shown in Fig.2(a), since the probability of 1=x and the probability of

x = 0 are the same we have

)(1)()( xPxPfP −== .

If we denote )(1 xP− as P x( ) , the propagation operation of the inverter is:

)()()( xPxPfP == . (3)

For the AND gate shown in Fig.2(b), if x and y are independent with each other the

probability of x = y = 1 should be the product of two signal probabilities:
P g P x P y( ) ( ) ( )= ⋅ . (4)

As to the OR gate shown in Fig.2(c) we can transform it into the form of AND gate by using

De Morgan Law, as shown in Fig.2(d). Thus, if x and y are independent with each other we have

p h P x P y( ) ( ) ( )= ⋅ . (5)

Substituting P h P h( ) ( )= −1 and so on we obtain

P h P x P y P x P y( ) ( ) ( ) ( ) ( )= + − ⋅ . (6)

Since a circuit is composed of the above three basic gates, based on Eqs.(3)-(6) we can

calculate the signal probabilities from input to output, node by node. If there exists re-convergence

of signal in the circuit the revision for calculation is necessary. We will explain it by an example

later.

x yxh +=yxg ⋅=

y

xx yxh +=

(a) (b) (c) (d)

Figure 2. Basic gates

We should notice that )( jxi∆ in Eq.(2) is signal probability other than transition

probability. The remained question is how to transform the signal probabilities at nodes into the

corresponding transition probabilities. Now we discuss the relation between signal probabilities

)(xP , )(xP and transition probability )( ixP ∆ in the successive cycles. Since the signals in

the former and the latter cycles are thought of independent, the rising probability is )(xP ⋅ )(xP ,

and the falling probability is )(xP ⋅ )(xP . So they are equal, and we have
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)](1)[(2)()(2)( xPxPxPxPxP −=⋅=∆ . (7)
As a basic formula for transforming signal probability into transition probability the above

equation has been widespread adopted for calculating the transition probability.[6-9]

Example 1. In the circuit shown in Fig.3 three inputs, a, b, c, are independent with each other.

Their signal probabilities are 9.0)( =aP , 5.0)()( == cPbP , respectively. Other three nodes

in the circuit are x, y, f. The probability for all nodes are required.

Figure 3. Circuit of Example 1

First we can obtain the signal probabilities for the nodes x, y, and f:

P x P a P b( ) ( ) ( )= ⋅ ,

P y P b P c( ) ( ) ( )= ⋅ ,

p f P x P y( ) ( ) ( )= ⋅ .

The last equation can be rewritten as

P f P x P y P x P y P a P b P b P c P a P b P c( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ( )] ( )= + − ⋅ = ⋅ + ⋅ − ⋅ ⋅2 ,

where the term with a higher power reflects the re-convergence of signal b at the OR gate. The

term 2)]([ bP represents the “probability of b = 1 during b = 1”. It should be the pure probability

of b = 1 rather than its square, therefore the above equation should be revised as
P f P x P y P x P y P a P b P b P c P a P b P c( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − ⋅ = ⋅ + ⋅ − ⋅ ⋅ .

Substituting 5.0)()(9.0)( === cPbPaP � into the above equation we have

45.0)( =xP , 25.0)( =yP and 475.0)( =fP . By using Eq.(7) the corresponding transition

probabilities can be obtained from all of the calculated signal probabilities:

18.0)( =∆aP , 5.0)()( =∆=∆ cPbP , 495.0)( =∆xP , 375.0)( =∆yP , 4988.0)( =∆fP .

If considering average switching activities for all nodes in the circuit we have

05.3)()()()()(2)(sw =∆+∆+∆+∆+∆+∆=∑ fPyPxPcPbPaPE ,

where the factor 2 is taken into account for the doubled load capacitance at the node b.

The above introduced propagation algorithm based on signal probability simplifies the flow

chart in Fig.1 into the counterpart in Fig.4, where averaging is taken to the input sequence at the

first so as to save the calculation. However, we should point out the following two problems with

the use of Eq.(13):

1. Equation (7) shows a stationary relationship between the signal probability and the transition

probability. It means that as long as the signal probability is given the corresponding transition

probability can be derived. However, for a certain signal sequence the relationship given in

Eq.(7) usually is not met accurately. Therefore, the calculation accuracy is weakened if we

calculate the signal probability from a given sequence.[10]

y

xa

c

b
f
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2. Equation (7) is on the basis of signal probability, which is a quiescent description for the

circuit. It cannot reflect the signal race hazard due to delay. However the possible glitches at

various nodes will significantly increase transition number, which is neglected by Eq.(7).

Equation (7) is accurate only for the “clean” input signal sequences.

According to the above points, we hope that we can find a direct algorithm for transition

probability instead the above bypass way. At the same time we should take into account the

glitches, i.e. extra transition behaviors due to signal delay.
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Figure 4 Algorithm flow for power estimation based on signal probability

III. TERNARY DESCRIPTION OF SIGNAL BEHAVIOR AND OPERATION RULES

Because the power dissipation of CMOS circuit is mainly decided by the signal transition at

each node other than the signal itself, so we should introduce the signal’s behavior to describe the

working of the circuit. For any signal x in the circuit, we denote its logic values in successive

cycles as )( jx and )1( +jx respectively. Correspondingly, four combinations can be used to

express all behaviors of the signal, as shown in Table 1, where a special quaternary variable
!
x

denotes the signal behavior. Its four values are (0, α, β, 1), where α, β represent the two kinds of

transition behavior and 0,1 represent the two kinds of holding behavior. (Note that while the latter

have the same forms as signals 0 and 1, their meanings are different.)

Table 1 Quaternary representation for behaviors of a signal
!
x )1()( +→ jxjx Behavior
0 0 0 0-holding
α 0 1 α-transition
β 1 0 β-transition
1 1 1 1-holding

In fact, if we consider only power dissipation, we don’t have to distinguish between an

α−transition and a β−transition since the power dissipation for rising and falling transitions are the

same. [4] Therefore we use 1
2 to express both α and β, and represent the behavior

!
x by using a

ternary variable which takes three values (0, ½, 1), as shown in Table 2.

Table 2 Ternary representation for behavior of a signal
!
x x t x t( ) '( )→ Behavior
0 0 0 0-holding
1

2 x t x t( ) '( )≠ transition
1 1 1 1-holding
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We consider the operation of three basic gates on signal behavior. If we don’t take delay into

account, the AND operation of α transition (0→1) and β transition (1→0) is 0-holding behavior, the
OR operation is 1-holding behavior. However, if two transitions don’t happen at the same time due

to delay, then a glitch may be created. Since a glitch consists of two transitions, if we consider the

probabilities for α being earlier or later than β to be equal, we could count the average number of
transitions for α β⋅  and βα +  as 1. Here we have taken the signal delay into account, three

basic gates’ operation on signal behavior are shown in Fig.5. Note that
!
x =½ and

!
y =½ in Fig.5

has considered the various transitions between x and y.

0

1/2

1

"
x

" "
x y+

" "
x y⋅
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"
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0
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(b) (c)
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1/2

1

1

1

1

0 1/2 1

Figure 5. Operations of three basic gates for ternary behaviors

(a) xf = , (b) yxg ⋅= , (c) yxh +=

We find that the relationship between inputs and outputs in Fig.5 happen to conform to

the definitions of NOT, AND, and OR operations for ternary signals in ternary logic. Therefore,

we can unite the representations of both signals and behaviors by a simple variable. That is, we no

longer use an arrow to mark the behavior. Correspondingly, the operations on signal and behavior

will have unified definitions in form as follows.

NOT operation

x x= −
∆

1 , (8)

AND operation

x y x y⋅ =
∆

min( , ) , (9)

OR operation

x y x y+ =
∆

max( , ) . (10)

In the above equations, if x, y are binary signals, i.e. x y, ∈ {0, 1}, the operations are only for

signals; If x, y are behaviors, i.e. x y, ∈ {0, ½ , 1}, the operations are only for behaviors. Thus,

for a logic circuit, the output signal of each gate in the circuit can be obtained by the traditional

logic operation rules if the input signals are given. Meanwhile, if the input behaviors are given, the

output behavior of each gate in the circuit can be derived by using the corresponding ternary

operation rule.

In addition, we also can define the Literal operation as follows:

Literal operation
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≠
=

kx

kx
xk

if0

=if1
(11)

where ∈kx, {0, ½, 1}. Thus, the transition behavior of signal xi at node i can be expressed

as 2
1

ix . Obviously, 2
1

ix is the ix∆ in Eq.(2).

In fact, if the input signal sequence is “clean”, i.e. without any glitches, its corresponding

input behavior sequence will be transformed easily. For example, for the following signal

sequence:

x = 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 �

we obtain the corresponding behavior sequence by averaging the adjacent two entries:

x = 0 ½ ½ 0 ½ 1 1 ½ 0 ½ 1 1 ½ 0 ½ ½ �

Notice that in the above sequence symbols 0 and 1 represent the 0-holding and 1-holding

behaviors rather than signal values, and symbol ½ represents the transition behavior.

As long as the input behaviors are given, it will be easy to derive the output behaviors for

each output node from the circuit. The race hazards resulting from delay have been taken into

account. As an example, all input behaviors of the circuit shown in Fig.4 are given and the signal

values in the successive cycles have been given in the brackets. If we don’t consider the possible

glitches resulting from delay, the output behaviors for each gate in Fig.6 will be A:(0→ 1),

B:(1→ 0), C:(0 → 0), D:(1 → 0), E:(1→ 1), F:(1→ 0), G:(1→ 0). The total number of transitions

is 5. However, if delay is taken into account, the operation rules in Eqs.(9) and (10) can be used to

get A = ½ , B = ½, C = 0, D = ½ , E = ½ , F = ½ , G = ½ . The consideration of glitches associated
with operation βα + results in an additional transition: E = ½ .

0 (0→0)

1/2(1→0)
1/2(1→0)

1 (1→1)

1/2(0→1)

1/2(0→1)

1 (1→1)

1/2(1→0)

Figure 6. Transition calculation of logic circuit

IV. PROPAGATION ALGORITHM OF BEHAVIOR PROBABILITY AND POWER

ESTIMATION

In section II, transforming the signal probabilities into transition probabilities is necessary

to estimate power dissipation. The discussion in the last section also pointed out that the

propagation algorithm of behavior can take into account the race-hazard due to signal delay so as

to get an accurate result. All of those imply that in the flow chat of Fig.4 we can directly average

the behavior of input signals and develop a propagation algorithm based on behavioral

probabilities to estimate the power consumption, as shown in Fig.7.
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Figure 7 Algorithm flow for power estimation based on behavior probability

According to the above discussion the operations of three basic gates to the ternary behavior

can be obtained while the signal delay is taken into account. Based on the operations of three basic

gates shown in Fig.5, we can derive their corresponding propagation operations of the behavior

probabilities. For the inverter shown in Fig.5(a) , we have

)()( 10 xPfP = ,

)()( 01 xPfP = , (12)

)()( 2
1

2
1

xPfP = .
As to the output of the AND gate shown in Fig.5(b) we can obtain its 1-holding probability P(g1)

and 0-holding probability P(g0):

P g P x P y( ) ( ) ( )1 1 1= ⋅ , (13)

P g P x P y P x P y( ) ( ) ( ) ( ) ( )0 0 0 0 0= + − ⋅ .

The above equation can be expressed as

p g P x P y( ) ( ) ( )0 0 0= ⋅ . (14)

Note that the forms of Eqs.(13), (14) are similar to ones of Eqs.(4), (5) for signal probability.

Besides, we can get the transition probability through the corresponding holding probabilities:

P g P g P g( ) ( ) ( )
1

2 1 0 1= − − . (15)

With a similar discussion for the OR gate shown in Fig.5(c) we can derive the corresponding

propagation relationships:

P h P x P y( ) ( ) ( )0 0 0= ⋅ (16)

p h P x P y( ) ( ) ( )1 1 1= ⋅ (17)

P h P h P h( ) ( ) ( )
1

2 1 0 1= − − (18)

By using Eqs.(12)-(18), we can calculate all behavior probabilities for each node based on

the circuit structure from the given input behavioral probabilities.

Example 2. We calculate the circuit in Fig.3 again by the propagation algorithm proposed above.

First, we derive the holding probabilities for outputs of two AND gates:

p x P a P b( ) ( ) ( )0 0 0= ⋅ , P x P a P b( ) ( ) ( )1 1 1= ⋅ ,

p y P b P c( ) ( ) ( )0 0 0= ⋅ , P y P b P c( ) ( ) ( )1 1 1= ⋅ .
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As to the output of the OR gate in the circuit we can calculate its holding probabilities by Eqs.(16),

(17) and revise its term with higher power due to re-convergence:

P f P b P a P c P a P b P c( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0= + ⋅ − ⋅ ⋅ ,

P f P a P b P b P c P a P b P c( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1= ⋅ + ⋅ − ⋅ ⋅ .

If we use the same signal probabilities of inputs in Example 1, i.e. P(a) = 0.9, P(b) = P(c) = 0.5.

Similar to the discussion for deriving Eq.(7), the following holding probabilities can be derived

from the corresponding signal probabilities:
20 )]([)()()( xPxPxPxP =⋅= , (19)

21 )]([)()()( xPxPxPxP =⋅= , (20)

thus we can get the following holding probabilities of inputs:

25.0)()(25.0)()(81.0)(01.0)( 101010 ====== cPcPbPbPaPaP ��� .
Substituting them into the above equations for x, y and f, we have P(x0) = 0.2575, P(x1) = 0.2025,

P(y0) = o.4375, P(y1) = 0.0625, P(f0) = 0.2519, P(f1) = 0.2144, respectively. Further we obtain all

transition probabilities for each node in the circuit:

P a( )
1

2 = 0.18, P b( )
1

2 = P c( )
1

2 = 0.5, P x( )
1

2 = 0.54, P y( )
1

2 = 0.5, P f( )
1

2 = 0.5338.

Finally, the average switching activities for the circuit will be

ESW∑ = P a( )
1

2 +2 P b( )
1

2 + P c( )
1

2 + P x( )
1

2 + P y( )
1

2 = + P f( )
1

2 = 3.2538.

By comparing the calculation with one in Example 1, we find that except for the input nodes all

other three nodes (x, y, f) have higher transition probabilities since we have taken into account the

possible glitches due to signal race. In contrast with the original signal propagation algorithm, we

list both of them in Table 3, where )1( =xP is )(xP and )0( =xP is )(xP . We can find

that the propagation algorithm of behavior probability proposed in this section well correspond to

the traditional propagation algorithm of signal probability.

Table 3 Signal probability algorithm vs. behavior probability algorithm
Signal probability algorithm Behavior probability algorithm

Normalization P x P x( ) ( )= + = =0 1 1 P(x0) + P x( )
1

2 + P(x1) = 1

Inverter
xf =

P f P x( ) ( )= = =0 1
P f P x( ) ( )= = =1 0

)()( 10 xPfP =
)()( 01 xPfP =
)()( 2

1
2

1

xPfP =
AND gate
g x y= ⋅

P g P x P y( ) ( ) ( )= = = ⋅ =1 1 1

p g P x P y( ) ( ) ( )= = = ⋅ =0 0 0
P g P x P y( ) ( ) ( )1 1 1= ⋅

p g P x P y( ) ( ) ( )0 0 0= ⋅
OR gate

h x y= +
P h P x P y( ) ( ) ( )= = = ⋅ =0 0 0

p h P x P y( ) ( ) ( )= = = ⋅ =1 1 1

P h P x P y( ) ( ) ( )0 0 0= ⋅

p h P x P y( ) ( ) ( )1 1 1= ⋅
Transition
probability

P x P x P x( ) ( ) ( )
1

2 2 0 1= = ⋅ = P g P g P g( ) ( ) ( )
1

2 1 0 1= − −
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V. CONCLUSIONS

A comparative precise and efficient power estimation technique is important for design of

low power VLSI. However, the very large scale of the integrated circuits and the needed very long

input sequence lead to the huge calculation, which will go beyond the actual memory and exerting

time of computer. Thus, the probability algorithm is paid attention in power estimation since it can

be released from the affection of long sequence. The previous researches focused on the algorithm

based on signal probability. Although it avoids the huge calculation due to long sequence, it still

suffers from the following two problems: (1) it is an algorithm based on signal values. However,

the power dissipation depends on the transition behavior of signal rather than its value. Therefore

the transforming procedure from the signal probability into the transition probability is necessary.

(2) This transforming procedure from the signal probability into the transition probability does not

take the glitches resulted from race hazard into account, thus the estimation accuracy is weakened.

Since the main power dissipation of CMOS circuits depends on signal’s transition behavior

we can discuss the issue directly from signal’s behaviors. According to various signal values taken

in the successive clock periods the signal behavior should be a quaternary variable: 0-holding,

1-holding, rising transition, and falling transition. If don’t care the transition direction it can be

simplified as a ternary one. Therefore, we believe that the method of multiple-valued logic may be

useful to guide the related research about power analysis. In our previous work we have

investigated the behavior propagation in CMOS circuits. [11] This paper focuses on the propagation

algorithm of behavior probability. The presented research shows that power affection of glitches

resulted from race-hazard has been taken into account in the power estimation based on

propagation algorithm of behavior probability. Besides, the propagation algorithm of behavior

probability well corresponds to the traditional propagation algorithm of signal probability. It offers

a new probability algorithm for power estimation of VLSI. The further research in on the way.
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