
 

 

Technology Mapping and Packing for Coarse-Grained, Anti-Fuse Based FPGAs*  
Chang Woo Kang, Ali Iranli, and Massoud Pedram 

Department of Electrical Engineering – Systems 
University of Southern California, Los Angeles, CA 90089 

{ckang, iranli, pedram}@usc.edu 
 

 
* This research was supported in part by NSF under grant no. 9988441. 

Abstract - We present a new synthesis flow for anti-fuse based 
FPGAs with multiple-output logic cells. The flow consists of two 
steps: mapping and packing. The mapper finds mapping solutions 
using a dynamic programming-based approach that finds the best 
match at each node of the decomposed target circuit. After this 
mapping step is completed, the resulting netlist of cells is optimally 
packed into net list of logic cells by using a multi-dimensional coin 
change problem formulation which is again solved by a dynamic 
programming based approach.  Experimental results for Quicklogic’s 
pASIC3 logic family are provided to assess the effectiveness of the 
proposed mapping and packing techniques. 

I. Introduction 

Fast time-to-market is the pivotal success factor in today’s ever-
changing electronics market. Field programmable gate arrays 
(FPGAs) can create unique advantages over application specific 
integrated circuits (ASIC) because of quick and cost-effective 
validation of products. An extensive survey of existing SRAM 
based FPGA mapping techniques is given by Cong and Ding [1]. 

In this paper, we present a synthesis technique for anti-fuse 
FPGAs and its basic logic cell has multiple outputs as shown in 
Figure 1, which has been introduced by QuickLogic [2]. The 
proposed algorithm consists of the following steps. First, we 
extract three single-output base gates from the Quicklogic 
multiple-output logic cell. These base gates can be implemented 
(individually or concurrently) in the logic cell by setting the 
correct bit values for the input multiplexers in Figure 1. We 
generate a standard gate library where each primitive cell in the 
library is a personalization of one these base gates by using stuck-
at (constant assignment) and bridging (shorting fault). Next, we 
map the target circuit to this gate library by employing a dynamic 
programming paradigm such as the one employed in well-known 
tree covering algorithms [3][4]. Finally, we assign these single-
output functions to multiple-output logic cells using an efficient 
packing algorithm. We used a dynamic programming technique to 
find an optimal packing solution so that the minimum number of 
logic cells is used to realize the circuit. This packing problem is a 
multi-dimensional extension of the coin-change problem.  

This paper is organized as follows. The library generation 
process is explained in section II. Technology mapping and the 
algorithm for packing the primitive cells into the target logic cells 
are presented in section III, while experimental results and 
conclusion are given in section IV. 

II. Cell Library Construction 

The complete pASIC3 logic cell consists of two 6-input AND 
gates, four 2-input AND gates, six 2:1 multiplexers and one D 
flip-flop with asynchronous set and reset controls. Since all 
connections within the cell are hard-wired, the various functions 
are available in parallel. Thus, very wide, complex functions are 

implemented with the same cell speed (about 2ns) as the much 
smaller "fragment" functions. Related and unrelated functions can 
be packed into the same logic cell, increasing effective density 
and gate utilization. 

1

1

1

1

1

1

A 1

A 2

A 3
A 4

A 5

A 6

O S

O P

B 1

B 2

C 1
C 2

M P

M S

D 1

D 2

E 1

E 2

N P

N S

F 1

F 2

F 3
F 4

F 5

F 6

G 1

G 2

G 3

G 4

m u x1

m u x2

m u x3

m u x4

 

Figure 1: QuickLogic anti-fuse configurable logic cell. 

1

1

1

1

(a) base-gate A

(b) base-gate B (c) base-gate C  

Figure 2: pASIC3 Base gates derived from the reconfigurable 
logic cell. 

 The number of gates that may be generated from the 
pASIC3 logic cell by using assigning 0 or 1 to inputs (i.e., inputs 
connected to either VDD or GND levels) is quite large. Therefore, 
we break the pASIC3 logic cell into manageable sub-blocks at the 
expense of not exploiting the full flexibility/programmability of 
the larger block. By appropriately connecting the control inputs of 
the four multiplexers (cf. mux1 through mux4 in Figure 1) to zero 
or one logic levels, three base logic gates (A, B, and C) can be 
obtained as shown in Figure 2. Through experimentation with a 
large number of test bench circuits, we were able to identify 205 
cells as the most useful primitive cells. Note that some library 
cells may be generated from different base gates. Figure 3 shows 



 

 

the set relationship (Venn’s diagram) for the three different sets of 
primitive cells. Notice that some of the primitive cells in the 
library can be generated from two or more single-output base 
gates, while others can only be derived from one of the base gates. 
Furthermore, there is a fixed number of ways to embed (pack) a 
maximal number of these cells in the pASIC3 logic cell. In fact, 
there are 37 different cases of completely utilizing the logic cell 
except for the multiplexers of course. A number of these cases 
(but not all) are shown in Table 1. In this table, LCi refers to the ith 
combination of completely utilizing the pASIC3 logic cell with 
the primitive cell types. Let Ci,Sj denote the number of primitive 
cells from set Sj in the ith combination.  

A
B

C

s1
s5

s4
s7

s2

s6

s3

 

Figure 3: Venn’s diagram for the set of logic cells that can be 
personalized from the base gates. 

Table 1: Full packing solutions of pASIC3 logic cell (for 
definitions of sets S1 to S7 see Figure 3). 

LCi Combinations of primitive cells 

1 2S5 + 2S7 

2 2S4 + 2S5 

3 2S5 + 2S6 

… … 

i 
7

,
1

ii S i
i

C S
=

×∑  

… … 

35 S3 + 2S7 

36 S3 + 2S4 
37 S3 + S4 + S7 

The cost of a library cell must be assigned carefully. There 
are three factors that determine the cost of a library cell: freedom 
(f), coverage (c), and space usage (s). The freedom parameter 
captures the total number of places in the base gates that the 
library cell can fit. The coverage parameter accounts for the 
complexity of the logic that the library cell realizes. It is measured 
in terms of the number of literals in the minimal factored form 
representation of the logic function. The space usage parameter 
represents the amount of space inside a pASIC3 logic cell that is 
used up by the library cell. The cost of each library cell is 
calculated by the following equation:  

s
COST

f c
=

⋅
 

A simple inverter does not have the lowest cost because it 
consumes one out of four slots. However, it only operates as an 
inverter. In other words, library cells with higher freedom, larger 
coverage, and lower space usage are much more preferable. 

III. Technology Mapping and Cell Packing 

A. Technology mapping 

We perform minimum-area technology mapping for a network 
with the cell library generated as described in section II. We use 
the SIS mapper [6] to generate the mapped netlist. Next, we need 

to minimize the number of logic cells required to implement the 
netlist in pASIC3 FPGAs. This problem is formulated as a cell 
packing problem and solved by a dynamic programming 
approach, as explained next. 

 

Gates set from
mapped results

Requirement
for a full logic

cell

S1

C1,S1

Ci,S1

C37,S1

S2

C1,S2

Ci,S2

C37,S2

S3

C1,S3

Ci,S3

C37,S3

S4

C1,S4

Ci,S4

C37,S4

S5

C1,S5

Ci,S5

C37,S5

S6

C1,S6

Ci,S6

C37,S6

S7

C1,S7

Ci,S7

C37,S7

37

1

7 37

,
11

. . 1
j

i
i

i i S j
ij

Minimize n

s t n C S

=

==

 × ≥ = 
 

∑

∑∩
 

Figure 4: Multi-dimensional coin change problem. 

B. Determining the minimum number of pASIC3 logic cells 

The packing problem can be stated as the following: given 37 
cases of filling a pASIC3 logic cell by cells derived from the base 
gate types and the netlist of cells generated by the mapper, find 
the minimum number of logic cells to cover all cells in the netlist. 
This is the same problem as the well-known coin change problem 
as defined next.   

To solve the cell-packing problem, we must extend the coin 
change problem. Figure 4 presents the general problem 
formulation. ni is the number of pASIC3 logic cells, which use the 
ith combination of primitive cell types to fill a pASIC3 logic cell. 
There are 37 cases of legal combinations of primitive cells to fill a 
pASIC3 logic cell. Let Ci,Sj denote the number of primitive cells 
from set Sj in the ith legal combination (cf. Table 1).  

The recurrence equation for this problem can be as follows: 

( ) ( )( )
1 7

1 7

1 7, ,

0 0
,...,

min ,..., 1

j

i S i Si

if S
count S S

count S C S C otherwise
∀

 ∀ ≤=
− − +

 

where |Si| is the number of remaining gates in the set Si. The 
algorithm can be implemented by table lookup as shown in Figure 
5. It can fill up two, seven-dimensional tables from bottom to the 
top. The count array is used to store the minimum number of 
pASIC3 logic cells for each sub-problem, whereas the comp array 
is used to store the selected combination out of the 37 choices for 
the optimal selection for the sub-problem. In lines 16 and 17, the 
minimum number of logic cells for a sub-problem and the selected 
combination will be stored, respectively. To construct the exact 
solution, the algorithm steps back from top to bottom depending 
on values in those tables. The complexity is polynomial in 

( )7
1i iO SM =∏  where M is the number of combinations of 

primitive cell types needed to fill a pASIC3 logic cell.  
To reduce the space complexity, the circuit is partitioned 

beforehand. More precisely, a linear ordering of cells is 
constructed by using a level-first search of the target circuit (this 
is a topological ordering starting from the leaf nodes of the 



 

 

underlying circuit graph). Next, the list is divided into several sub-
lists.  Each sub-list is then processed separately.  
Algorithm PackAlgorithm PackAlgorithm PackAlgorithm Pack----cells(cells(cells(cells(||||SSSS1111|,…,||,…,||,…,||,…,|SSSS7777|, C|, C|, C|, C1,S11,S11,S11,S1,…, C,…, C,…, C,…, C37,S737,S737,S737,S7))))    
1. begin 
2.   count[0,…,0] = 0 
3.   for s1 = 1,…, |S1| 
4.    for s2 = 1,…, |S2| 
5.     for s3 = 1,…, |S3| 
6.      for s4 = 1,…, |S4| 
7.       for s5 = 1,…, |S5| 
8.        for s6 = 1,…, |S6| 
9.          for s7 = 1,…, |S7| 
10.            min = ∞ 
11.            for i = 1,…,37 
12.             if count[s1-Ci,S1,…,s7-Ci,S7] +1 < min  
13.             then 
14.               min = count[s1-Ci,S1,…,  s7-Ci,S7] +1 
15.               which = i 
16.             count[s1,…,s7] = min 
17.             comp[s1,…,s7] = which 
18. end  

Figure 5: Pseudo code for packing cells. 

By running the dynamic programming-based cell packing, 
the required pASIC3 logic cells are generated. Each pASIC3 logic 
cell has been assigned types of primitive cells for each of its base 
gates from the count and comp tables.  Then, we collect these 
primitive cells into a netlist of pASIC3 logic cells that represents 
the same original circuit.    

IV. Implementation and Experimental Results 

For the simulation, we developed a cell packer based on dynamic 
programming, and integrated it into the SIS environment [6]. We 
compared our packing results with those obtained by a greedy 
algorithm. The greedy algorithm packs mapped primitive cells 
into pASIC3 logic cells as follows. First, the mapped cells are 

ordered by the level-first search strategy. For each full packing 
solution of pASIC3 logic cell (there are 37 such logic cell 
compositions as reported in Table 1), the greedy algorithm tries to 
fill it as much as possible starting from the top of the list. Next, it 
selects the logic cell combination that has the best space 
utilization where utilization is defined as the ratio of filled space 
to the total space of the pASIC3 logic cell. The selected 
combination is added to the final pASIC3 netlist, and the 
corresponding mapped cells are removed from the list. This 
procedure is repeated until the list becomes empty at which point 
the final pASIC3 mapping solution has been generated. Table 2 
shows the simulation results with various circuits from 91 MCNC 
IWLS benchmarks. The average improvement by using the 
dynamic programming-based technique over the greedy algorithm 
is 26.9%. Note that both algorithms use the results of the SIS 
mapper as the initial solution. Our dynamic programming 
algorithm outperformed the greedy algorithm. For example, it 
achieved 100% cell utilization for alu2 and C432, while the 
greedy algorithm resulted in less than 70% cell utilization. 

V. Conclusions 

In this paper, we presented a logic synthesis technique to generate 
a mapping solution for anti-fuse FPGAs with multiple-output 
logic cells. We first generated library gates from base gates, and 
then BMX mapped gates for a target circuit. A dynamic 
programming technique, an extension of a coin-changing problem, 
was used to find the minimum number of logic cells to map the 
circuit into logic cells. Simulation results show that the packing 
algorithm provides 27% improvement over a greedy algorithm.   

                   Table 2: Performance comparison between optimal packing and greedy packing 

Greedy packing Dynamic programming based packing Packing improvement Circuits Primitive 
cell count Number 

of logic 
cells 

Cell 
utilization 
(%) 

CPU 
time 
(sec) 

Number of 
logic cells 

Cell 
utilization 
(%) 

CPU 
time 
(sec) 

Number of 
logic cells 
(%) 

Cell 
utilization 
(%) 

alu2 193 76 65.87 0.08 51 100 50.27 32.9 34.1 
alu4 377 150 65.11 0.34 101 98.43 960.59 32.7 33.9 
apex6 349 154 59.86 0.37 117 80.23 306.24 24.0 25.4 
dalu 471 194 63.39 0.56 138 90.75 143.81 28.9 30.1 
C1355 210 83 64.81 0.11 58 93.75 1.37 30.1 30.9 
C1908 213 96 58.84 0.13 74 77.74 20.54 22.9 24.3 
C432 108 45 65.85 0.03 31 100 13.36 31.1 34.2 
C499 210 83 64.81 0.11 58 93.75 1.37 30.1 30.9 
C3540* 657 268 64.22 1.2 191 91.89 56.21 28.7 30.1 
C880 214 92 62.76 0.12 64 93.45 45.95 30.4 32.8 
C5315* 764 333 59.97 1.94 256 79.09 42.97 23.1 24.2 
C6288* 1457 664 55.19 13.11 593 61.84 19.14 10.7 10.8 
C7552* 1052 413 64.94 3.70 312 86.51 86.06 24.5 24.9 
Average  26.9 28.2 

*Packing algorithm based on dynamic programming used segmented lists not to exceed available memory.
References 
[1] J. Cong and Y. Ding, “Combinational logic synthesis for LUT-based 

field-programmable gate arrays,” ACM Transactions on Des. Automat. 
Electron. System, April, pp. 145 – 204, 1996. 

[2] pASIC3 FPGA Family Datasheet, QuickLogic Corporation 
(http://www.quicklogic.com). 

[3] A. Aho and S. Johnson, “Optimal code generation for expression trees,” 
Journal of ACM, vol. 23, no. 3, pp. 488 – 501, June 1976. 

[4] K. Keutzer, “Dagon: technology binding and local optimization by dag 
matching, “in Proc. Design Automation Conference, 1987, pp. 341 – 
347. 

[5] J. Cong, M. Romesis, “Performance-driven multi-level clustering 
application to hierarchical FPGA mapping,” in Proc. Design 
Automation Conference, June 2001, pp. 389 – 394. 

[6]  E.M. Sentovich, et al., SIS: A system for sequential circuit synthesis, 
1992, Electronics Research Laboratory, College of Engineering, 
University of California, Berkeley 


