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4. Conclusions



3. Experimental results and discussions
All experiments were performed in the SIS environment

[14] on a SPARC Il workstation with 64Mbytes of memory.
The experimenta setup is shown below:

(e )

Input sequence analysis
(input correlations)

Binary logic simulation

Y

Switching activity .
Response analysis
estimation = 4
( Comparison D

Fig.4

To generate pseudorandom (PR) inputs we have used as
input generator a maximal-length linear feed-back shift
register (LFSR) modified to include the all-zero pattern
[13]. The average power consumption of a gate in a
synchronous CMOS circuit, one can use the well-known
formula P,y = 0.5 (Vgq* / Tevge) Cioad SW(X) where Vg is
the supply voltage, Teygle is the clock cycle period, Cgqq IS
the load capacitance, X isthe output of the gate and sw(X) is
computed as in (9). In our experiments, we were mainly
interested to measure the accuracy of the model in
estimating the switching activity locally (at each internal
node of interest) and globally (for the entire circuit), given
aset of inputs with spatiotemporal correlations.

To bound the error during the propagation procedure, we
used two mechanisms:

- One based on the paradigm in fig.2, that iswe calculate
the signal probabilities independently and use these values
as a more reliable measure for correcting the values of
transition probabilities that fall out of range [0, 1]; more
precisely, we normalize conditional probabilities such that
relations (4) hold at each step;

- The other based on limiting the TC values, that is we
normalize the values of coefficients using the set of
equations (15).

To assess the impact of spatiotemporal correlations on
switching activity estimations, we considered the f51m
benchmark circuit and performed the following set of
experiments:

- a PR experiment where the inputs were generated with
the polynomial p(x) =1 0 x 0 x? 0 x’ 08,

- a biased experiment where the switching activities of
theinputswere sw(i) = 0.25,i =1, 2..., 7 and sw(8) = 0.375.

In addition to the difference in switching activities of the
circuit inputs, the biased input stream shows a higher
amount of spatial and temporal correlations.

To compare our model with different other approaches
reported in the literature, we analyzed exhaustively this
circuit for the switching activity at primary outputs and all
internal nodes. Comparing our estimations with the exact
logic simulation results, we report in Tables 1 & 2, the
usua measuresfor accuracy: maximum error (MAX), mean
error (MEAN), root-mean square (RMS) and standard
deviation (STD).

Table 1:f51m -PR inputs
Global approach
W/ spatid correlations | Wr/o spatid correlations
Error [W/ tempora | W/o tempo- [ W/ tempora | W/o tempo-

correlations| ral correla- | correlations| ral correla-

tions tions
MAX 0.0078 0.1949 0.1949 0.1949
MEAN 0.0003 0.0464 0.0463 0.0464
RMS 0.0014 0.0699 0.0699 0.0699
STD 0.0013 0.0526 0.0527 0.0526
TIME | 254.16s 164s 731s 0.42s

Incremental approach
W/ spatid correlations | Wr/o spatid correlations
Error [W/ tempora | W/o tempo- [ W/ tempora | W/o tempo-
correlations| ral correla- | correlations| ral correla

tions tions
MAX 0.1615 0.2062 0.2265 0.2264
MEAN 0.0131 0.0464 0.0473 0.0474
RMS 0.0289 0.0701 0.0714 0.0714
STD 0.0258 0.0528 0.0538 0.0537
TIME 4457 s 416s 0.64s 0.43s

Table 2:f51m - biased inputs
Global approach
W/ spatid correlations | Wr/o spatid correlations
Error [W/ tempord | W/o tempo- [ W/ tempora | W/o tempo-
correlations| ral correla- | correlations| ral correla

tions tions
MAX 0.0767 0.2893 0.1714 0.3110
MEAN 0.0111 0.0939 0.0380 0.1049
RMS 0.0205 0.1164 0.0511 0.1239
STD 0.0174 0.0692 0.0344 0.0663
TIME 266.23 s 1.73s 6.81s 0.44s

Incremental approach
W/ spatia correlations | W/o spatia correlations
Error |W/ tempord | W/o tempo- | W/ temporal | W/o tempo-
correlations| ral correla- | correlations| ral correla-

tions tions
MAX 0.1517 0.2885 0.1714 0.3110
MEAN 0.0158 0.0930 0.0344 0.0972
RMS 0.0296 0.1162 0.0480 0.1166
STD 0.0252 0.0702 0.0337 0.0648
TIME 48.86 s 422s 0.69s 041s

For PR inputs, global approaches with spatiotemporal
correlations are amost 50 times more accurate than the
approaches that do not account for any of these
dependencies. Incremental approaches that consider both
types of correlations are on average 3 times more accurate
than the ones that neglect any of these. The price we haveto
pay in terms of accuracy is justified by a significant
computational speed-up of incremental method vs. the
global one. It isworthwhile to note that taking into account
any of the spatial or temporal correlations by itself does not
really improve the accuracy of the estimations.

For biased inputs, the global approach using both spatial
and temporal correlationsis 6 times more accurate than the
one that ignores both dependencies; on the other hand, the
incremental approach provides a gain in accuracy of 4



only the OBDD off and by using a dynamic programming
approach,
efficiently.
Based on the above representation, the eéfentitching
from valuei to valuegj’ (i, j = 0, 1) may be written as:
n

BRI
n Tt k=1

wherei, j are the values of variablg on pathstandrt
respectively i, j, = 0, 1, 2, where 2 stands for don’t care
values) for eaclk = 1, 2,...,n. Thus the probability thét
switches from toj may be expressed as:

n

SRLRL RPN L

17)

(18)

n
X, X X X, C
;7 ;‘1 |_| Ercikkp,jkqp(xkikﬂk) I_l TCikkllv‘jkjll:
_n i k=1 1<k<lsn
0

Since the transition probabilities férand x are already

compute the transition probabilities more computed at this point, the only problem is to compute the

probability of bothf andx switching fromi toj and fromp
to q, respectively. We get the following important result:

Proposition 10 The TC between signals f and x, for any
valuesi, j, p, 9= 0, 1 may be expressed as:

fx

TCip jq =

(23)

p(fi_ )
c) Complexity issues

In order to assess the complexity claimed above, let us

Applying the property of disjoint events (that is satisfied by define the following notation:

the collection of paths in the OBDD representation), the

above formula becomes:

(i) = n;'l.ﬂgh-p(klfll)(kik”kz

However, since the variableg, may not be spatially

(19)

independent of one another, the probability of a path toa(f,,

‘switch’ from (iq, is,..., 1) 10 (1, j--.» J») May not be

expressed as the product of transition probabilities for

individual variables. If relation (16) is true for any three
signals from the setq, %,..., %}, then:

A |_| inkﬂk) - I_l %J(Xk' ) I_l
k=1 k=1

iy~
k7 1<k<lgn

XX 0

20
I hehiO (20)

TC

We therefore obtain the following result:

Proposition 9 The transition probability of a signafrom
statei to statg (i,j =0, 1) is:

£y = - TCXx. L1
Py n;ﬂiﬂ;ﬂjkljlgp()(kik”k)lsﬂ|Sn i 2

O

Although this expression seems to be very complicated, it
complexity is within reasonable bounds; it is not necessar

to enumerate apairs of paths in the OBDD (which would

OBDD), but for a fixed path inl; the computation may be
done in linear time in the number of OBDD nodes.

n

falj = ;_I |_| inkw
s ]k:l

wherertis a fixed path ifil;. Thus, using the disjointedness
property, the corresponding probability is:
n

)= PCT] %
. T['gh] k|:|1 klkﬂ]k

Since patht is fixed, the above probability may be

computed on the OBDD in the same way as a signal
probability. The idea is that, using Shannon decomposition,
the signal probability (and hence the above probability)
may be computed in linear time in the number of the
OBDD-nodes [6]. Thus,frhj may be decomposed as

follows: _

X
Xk- fni i

(24)

f X
o1 T

_— + Xy (25)

i -0

wheref ., f.*%  are the cofactors with respectxpand
Xies respectlveTy. Based on this recursive decomposition, we
may also write a similar relation for the corresponding

probabilities, taking also into account the possible existing

correlations:

3(fnaj)=p(xkikﬂo)p(fnxsj) [T TCi¥o,+

provide a quadratic complexity in the number of paths in the

1<k<lsn
lskEllsn

Having computed this probability for each pathwe

SR P(F ) e

(PUN

(26)

For the incremental approach, we need a mechanism ndimmediately get the corresponding transition probabilities
only for computing the transition probabilities, but also for and hence the switching activity.Thus, for a fixed path

propagating thdC's through the boolean network. For a

given node in the circuit, it is only necessary to propagateandN is the number of nodes in the OBDD. Ti

the complexity is O(ZN) wheren is the number of variables
fifefactor

the TC of the output with respect to the signals on which thecomes from the necessity of taking into account the

inputs depend.
b) Propagation of the transition correlation coefficients

Letf be a node with immediate inpwg X,,..., %, andx a
signal on which at least one of the inputs X%,..., %
depends. According to the definition of th€, for everyi,
J» P, 9= 0, 1 possible values bandx respectively, we have:

fx _ p(fiﬂjxpﬁq)

e = 1=)p-d
P19 p(f|_,J)p(Xp_,q]

(22)

correlations: in addition to the transition probabilities, we
have to keep track of tleC's involved on each path. There
is a number ofC,~ factors in the product, thus the
complexity is quadratic in the number of variables.

Hence, overall, the time complexity isf®KP) whereP
is the number of paths in the OBDD. In the incremental
approach, this is within reasonable limits simcgoes not
exceed 5 or 6 variables in the immediate fanin of the node.



Definition 3: Conditional probability, y, is defined as: Proposition 8: The set of 8 equations and 16 unknowns
TCij ¥, i, ), k, 1 = 0, 1 is indeterminate; the matrix of the
Pap = POX(t) = kOy(t) =1|x(t=0) =i Oy(t-3) =j) (9) system has the rank 7 in the non-trivial cases (the trivial
' case is when any three of the transition probabilities are

wherea, b=0, 1, 2, 3ais encoded a$ andb askl. zero).

Ercolani et al. consider in [5] structural dependencies(]

between any two signals in a circuit by using the signalThe last two propositions are very important from a

correlation coefficients C); these coefficients can be practical point of view. The set of equations involviijs

expressed as: may be solved knowing onl§C,,”, for example, and that
(x=iOy=j) was the approach taken by Ercolani et al. in [5] (although,
scv = Bl (10) no similar analysis appeared in the original paper). In the
p(x =1)ply = J) more complex case involvinEC's, we need to know 9 out

wherei, k= 0,1. Assuming that higher order correlations of of 16 coefficients in order to deduce all values.
two signals to a third one can be neglected, they
a_pprolximated the correlation coefficient among three 2.3. Propagation mechanisms
signals as:
In what follows we ignore higher order correlations, that is,
SCXY? = SCHYSCesCHe (11) the correlation between any number of signals is expressed
only in terms of pairwise correlation coefficients; the same
Our approach is more general in that we capture theassumption was used in [5], but only for signal correlation
spatial correlations between signals, for each pair of signal€oefficients.
(x,y) and for all possible transitions between them asDefinition 5: We define th&'C among three signals as:
described next: PO 1Y P )

T i =
Definition 4: Transition correlation coefficientsTC) for U PO L ) POYG L ) Pz )
two signalsk, y is defined as: Neglecting higher order correlations, we therefore assume
that the following holds for any signails y, z and any
TCWy = valuesi, j, k, I, m,n=0, 1:
t—0) =i 0x(t) =kOy(t-98) = jOy(t) =1
= PX( )= 10X() X O L) (12) TCi?IZImn = Tci?,llmTC}/Ii mnTCiXkZ,In (16)

©p(x(t-3) =i Ox(t) = k)p(y(t—-3) = j Oy(t) = 1)
wherei,j, k, 1 =0, 1. Definition 5 and relation (16) may be easily extended to any
number of signals. Based on the above assumption, we use
Proposition 4: For every pair of signalsxf) and all an OBDD-based procedure for computing the transition

possible values j, k, | = 0, 1, the following holds: probabilities and for propagating tHEC's through the
PO _ WP ) network. The main reason for using the OBDD

SCy = z TCW Lo o (13) representation [8] for a signal is that it is a compact and

0 k1501 p(x =1)ply = J) canonical representation of a Boolean function and that it

Proposition 5: For every pair of signalsxf) and all offers a disjoint cover which is essential for our purposes.

possible valueg j = 0, 1, the following equations hold: Depending on the set of signals with respect to which we
represent a node of the boolean network, two approaches

% SC¥ply=1j) =1 di=o0,1; may be used:
j£0,1 (14) - The global approach - for each node, we build the
SCHp(x=i) = 1 0j=0,1 OBDD in terms of the primary inputs of the circuit;

i; ;! T - The incremental approach - for each node, we build
the OBDD in terms of its immediate fanin and propagate the

O . i i transition probabilities and tHEC’s through the circuit.

Proposition 6: For every pair of signalsx§) and all The first approach is more accurate, but requires much

possible values j, k, | = 0, 1 the following equations hold:  more memory and running time; indeed, for many large
, circuits, it is nearly impractical. The second one, offers
zo TCWYply; ) =1 Oi, k=0,1; accurate enough results whilst being more efficient as far as
i1=0,1 (15) memory requirement and running time are concerned.
i,k=0,1

O
We provide in the following other two useful results:

a) Computation of thetransition probabilities

Letf be a node in the boolean network represented in terms
of n (immediate or primary input) variables, X,,..., X,. f

Progosition 7: The set of 4 equations and 4 unknowns Bq;’%skz)e defined through the following two sets of OBDD

i, i, ] = 0, 1 in Proposition 5 is indeterminate. " ) ; )
Mc;reover, the matrix of the system has the rank 3 in the _ Hé ) mg EEE 8; g” Bgmg :2 mg 8’;';_’:?&

non-trivial cases (the trivial case is when any one of the 'Syme of the approaches reported in the literature (e.g.

séignal probabilities is either O or 1). [9]), use the XOR-OBDD dffat two consecutive time steps
to compute the transition probabilities. We consider instead



During the application of the input vectoxsnay be O or 1,  Proposition 3: Conditional probabilities may be expressed

so that if we define its state at tim&y random variablg,, in terms of transition probabilities as:
then the behavior of ling can be described as a lag-one X . o) pXo 1)
Markov Chain §,} n~1 Over the state set S = {0,1} through p% , = L Py 1 = -
the transition matrix) [12]: PP TP Plo L o+ P(o 1) gy
X = p(X; . o) X, = p(X; 9
Po.1 S I R ) I - R R~ Co)

X 0

Relying on Propositions 1-3, the relationship between all

Po,0 v P11 kinds of probabilities can be illustrated as below:

P10

Fig.1 Poo POy T e ((PX=0),p(x=1)
PT o) PI 1
doifx=0 0% o p
x =0 Q=|"00 P10 \
O1lifx=1;

X X

Po,1 P11

. . (1) P(Xy . o) P(Xg _ 1
Every entryp;; in the Q matrix represents a conditional Xy _ o) PO 1)

probability and may be viewed as the one-step transition
probability to state at stepn from state at stepn-1. The

expressions for these conditional probabilities are: Fig.2 .
Py o = P((X(t) = 0)|(x(t—3) = 0)) As we can see, we need less information to compute the
0.0 signal probabilities, but the ability to derive anything else is
« Jal s . >
= t)=1 t—=8)=0 severely limited; on the other side, once we get either
Po.1 = PX(H) = 1)I(x(t-8) = 0)) (2) conditional or transition probabilities we have all we need
p>l" o = P((X(t) = 0)[(x(t—3) = 1)) for that particular signal.
p)1<, 1 = p((x(t) = 1)|(x(t-8) = 1)) Definition 2: For any given line x,X thexswitching activity is:
In theQ matrix, every column adds to unity, i.e: SW(X) = P(Xy_ 1)+ P(Xy _ o) = 2%— (8)
Poo*tP1 =1 Plo+Pi; =1 ) PLo* Po1

A lag-one Markov Chain has the property that one-step2.2. Spatial correlations
transition probabilities do not depend on the ‘history’, i.e _ _
they are the same irrespective of the number of previousThis type of correlations has two important sources:

steps. If the processx{}.»; is homogenous, then the - Structural dependencies due to reconvergent fan-out
probability distribution of the chain # = (Q)"P, where  (RFO); _ _ _
is the initial distribution vector. If we assume the - Pattern dependencies, that is, normally independent

stationarity of the processx{,-1, then the previous signal lines that become correlated due to a particular

relation becomed? = QP. Based on this, we get the Sequence of inputs. S _
following (all the proofs can be found in [11]): To take into account the exact correlations is practically
impossible even for small circuits. To make this problem

Proposition 1: The signal probabilities may be expressed in more tractable, we allow only pairwise correlated signals,

terms of conditional probabilities as follows: which is undoubtedly an approximation but provides good
X X results in practice. Consequently, we consider the
p(x=0) = _Pio p(x=1) = _Po1 (4) correlations for all 16 possible transitions of a pair of
PYo* P51 PYo* P51 signals k,y) and model it as a lag-one Markov Chain with 4
O states (states 0, 1, 2, 3 which stand for encodings 00, 01, 10,
Definition 1: Transition probabilities are defined as: 11 of &y)):

P(Xo . o) = P((x(t) = 0) O(x(t-3) = 0))
P(Xo - 1) = p((x(t) = 1) O(x(t-3) = 0))
p(x1 o) = p((x(t) = 0) O (x(t-3) = 1)) ®)
p(x1 1) = p((x(t) = 1) O(x(t-3) = 1))

Proposition 2: Transition probabilities may be expressed in
terms of conditional probabilities as:

P oPg o P 0Py 1
p(x ~ = = e p(x - ) = D e
0-0 PLo* Py 1 01 PIo* Py 1

_ PioR3a _ Pfipg s (6)
POy o) = = P L) T e
O P107* P2 P107* P2
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Abstract probabilities can be computed during a single post-order

traversal of the network [2]. Alternatively, one may use a

Thiswork presents techniques for computing the switching graph-based algorithm to compute the exact values of
activities of all circuit nodes under pseudorandom or signal probabilities using Shannon’s expansion [3]. The
biased input sequences and assuming a zero delay mode of cutting algorithm, which computes lower and upper bounds
operation. Complex spatiotemporal correlations among on the signal probability of reconvergent nodes was

the circuit inputs and internal nodes are considered by developed and presented in [4]. Also, the Ordered Binary
using a lag-one Markov Chain model. Evaluations of the Decision Diagram representation (OBDD) was used for
model and a comparative analysis presented for computing the signal probability in [6] and [7].
benchmark circuits demonstrates the accuracy and the The spatial correlations among different signals are
practicality of the method. The results presented in this modelled in [5] where a procedure is described for
paper are useful in power estimation and low power propagating signal probabilities from the circuit inputs
design. toward the circuit outputs using only pairwise correlations
between signals and ignoring higher order correlation
1. Introduction terms.

None of the above mentioned methods adequately
In estimating the power consumption in a digital circuit, capture patiotemporal correlations, that is correlations
knowledge about the average switching activity in the among logic transitions on two or more circuit lines. The
circuit plays a significant part because most of the power inapproach proposed in this paper improves the state-of-the-
CMOS circuits is consumed during charging and art by a new analytical model which accounts for this kind
discharging of the load capacitance. To estimate the poweof correlations. Its mathematical foundation is probabilistic
consumption, one has to calculate the switching activityin nature and consists of using lag-one Markov Chains to
factors of the internal nodes of the circuit. The key issue incapture different kinds of depedencies in combinational
switching activity estimation is to account for various circuits under a zero-delay model. For the first time to our
dependencies, irrespective of the particular way in whichknowledge, we have considered in a systematic way
the inputs and the target circuits are described. different kinds of dependencies in large combinational
Common digital circuits exhibit a lot of dependencies; modules for both pseudorandom and biased input streams.
by far, the most known one is the dependency due to The results presented in this paper are useful in power
reconvergent fan-out among different signal lines, but evenestimation and low power design. Our approach provides a
structurally independent lines may have dependenciesound framework for efficiently and accurately estimating
(induced by the sequence of inputs applied to the circuit)the effects of different transformations/optimizations on
that cannot be neglected. Accounting for all kinds of the power consumption of the circuits under complex
dependencies is impossible even for small circuits; spatiotemporal correlations.
consequently, for real-size circuits, only some of the The paper is organized as follows. In section 2 we
dependencies have been considered and even then, onpresent in detail our model for switching activity
heuristics have been proposed. The main reason for thiestimation and provide a measure of its complexity. In
situation is the difficulty in managing complex data section 3 we give some discussions and our experimental
dependencies at acceptable levels of computational work.results on benchmark circuits. Finally, we summarize our
Methods of estimating the activity factor at a circuit main results and indicate possible extensions in section 4.
node involve estimation of signal probability. Computing
signal probabilities has attracted much attention One of the2, An analytical model for dependencies
earliest works in computing the signal probabilities in a
combinational network is presented in [1]. For tree circuits 2.1. Temporal correlations
which consists of simple gates, the exact signal
We treat the sequence that corresponds to different values
of a signal linex as a discrete process where time units
* This research as supported in part by the NSResearch ~ 1,2,...,n represent the time instances when the input vectors
Initiation Award under contract No. MIP-9211668. Vq1,Vs,...,V, are applied to the circuit under consideration.




