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Abstract— Efficiently recognizing the functionality of a circuit 

is key to many applications, such as formal verification, reverse 

engineering, and security. We present a scalable framework for 

gate-level circuit recognition that leverages deep learning and a 

convolutional neural network (CNN)-based circuit representation. 

Given a standard cell library, we present a sparse mapping 

algorithm to improve the time and memory efficiency of the CNN-

based circuit representation. Sparse mapping allows encoding only 

the logic cell functionality, independently of implementation 

parameters such as timing or area. We further propose a data 

structure, termed level-dependent decaying sum (LDDS) existence 

vector, which can compactly represent information about the 

circuit topology. Given a reference gate in the circuit, an LDDS 

vector can capture the function of the gates in the input and output 

cones as well as their distance (number of stages) from the 

reference.  Compared to the baseline approach, our framework 

obtains more than an-order-of-magnitude reduction in the average 

training time and 2×  improvement in the average runtime for 

generating CNN-based representations from gate-level circuits, 

while achieving 10% higher accuracy on a set of benchmarks 

including EPFL and ISCAS’85 circuits.  

I. INTRODUCTION 

Reliance on third-party resources, including third-party 
intellectual property (IP) cores and fabrication foundries as well 
as commercial off-the-shelf components, has raised concerns 
about the insertion of hardware Trojans into fabricated chips. To 
confront this threat, an approach relies on reverse engineering as 
a means to rebuild the full functionality of the netlist for further 
analysis [1].  

Gate-level reverse engineering consists of identifying the 
main functional blocks composing a circuit and their 
interconnection. The space of possible functional blocks can be 
defined via a library of components that can include, for 
example, commonly-used hardware design patterns or custom 
finite-state machine blocks. The identification problem is 
usually addressed in two steps [2]–[4]. First, a set of candidate 
matches are identified by mapping candidate blocks of the 
unknown circuit to components in the library. These candidates 
are then justified via formal verification based on a formal notion 
of matching between an unknown circuit block and a library 
component. Exhaustively justifying all the candidate matches 
via formal verification may turn into a time-consuming and 
computationally-demanding task for large circuits; a major 
challenge in reverse engineering is then to devise fast and 
efficient methods that can effectively point to a small set of 

candidate solutions and alleviate the burden of formal 
verification. This challenge offers the motivation for this work.  

 A set of structural and functional approaches have been 
proposed in the literature to match an unknown sub-netlist 
against an abstract component library, including mining 
behavioral patterns from simulation or execution traces [5], 
word-level structure reconstruction [3], or structural and 
functional analysis of individual gates and sub-modules [6]. In 
this paper, we address the problem of deriving a functional 
description of a circuit from an unstructured netlist by 
leveraging deep learning and circuit representations based on 
convolutional neural networks (CNNs). In doing so, we are 
motivated by the state-of-the-art performance of machine 
learning (ML) techniques, based on both convolutional and deep 
neural networks, for solving challenging problems including 
classification, language processing, and decision making in a  
variety of applications – from business, to social work, medicine, 
and engineering [7] [8].  

 Recent work shows that ML also promises to reduce the 
execution time for solving certain problems in electronic design 
automation (EDA) and VLSI design, such as circuit recognition 
[9], [10]. Specifically, we are motivated by the work of Dai and 
Brayton [9], who have recently proposed the use of CNNs for 
circuit recognition. In spite of the remarkable memory and time 
efficiency of ML algorithms, a major challenge of CNN-based 
circuit recognition, in both the training and deployment phases, 
is to construct compact and efficient circuit representations that 
scale well for large circuits and prevent overfitting, i.e., do not 
impair the model’s ability to accurately classify data that are 
outside of the training set. In this work, we address this challenge 
by investigating the effectiveness of deep learning for the 
identification of the functionality of datapath elements of a 
design from a gate-level netlist.  

 We focus on datapath elements as they include the majority 
of logic gates in microprocessor-like designs. We propose a 
novel sparse mapping algorithm, which allows to only encode 
information about the logic cell functionality, independently of 
implementation parameters such as timing or area, thus 
increasing the space and area efficiency of the CNN-based 
circuit representation used in our algorithms. We further propose 
a data structure, termed level-dependent decaying sum (LDDS) 
existence vector, which can compactly represent information 
about the circuit topology. Given a reference gate, an LDDS 
vector can capture the function of the gates in the input and 
output cones  as well as their  distance (number of  stages)  from  
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Fig. 1. Flowchart illustrating the proposed framework. 

the reference. We implement a deep learning framework that 
relies on the above data structure and algorithm to recognize the 
functionality of digital datapath circuits, and can perform better 
than the state of the art [9] in terms of average training time, 
execution time, and accuracy. 

II. PRELIMINARIES 

A flowchart illustrating the proposed framework is shown in 
Fig. 1. The CNN requires as input a compact vector-based 
representation of the data to be classified. We call this vector-
based representation existence vector (EV) and generate it as a 
part of the feature construction step. In the feature selection step, 
the fixed-size data, a matrix consisting of multiple EVs, is pre-
processed to be fed to the CNN. The CNN leverages this 
information to classify the operation of each circuit which, in 
this paper, can be a multiplier, adder, subtractor, modulo, 
divider, or an unknown operator. The details of each block will 
be provided in the following subsections.  

A. Feature Construction 

A critical step in using CNNs for circuit recognition (i.e., to 
differentiate between different types of circuits) is to convert the 
circuit structure into a format that is suitable for CNNs, namely 
a fixed-size real-valued matrix. Naive approaches, based on the 
adjacency matrix associated with the circuit graph or the AIGER 
format, may present scalability issues, since their size increases 
with the size of the circuits.  

One approach is to construct these features from smaller 
circuit elements such as the nodes in a directed acyclic graph 
(DAG) associated with the circuit, a data structure that is also 
used in technology mapping [11]. Technology mapping converts 
a circuit into a DAG with indexed nodes. The idea is then to 
restrict the set of Boolean functions available for the 
implementation of the circuit nodes to the ones of a specific 
standard cell library and map any input circuit to cells in the 
selected library.  

Deriving the functionality of each node in the circuit DAG 
by technology mapping is not sufficient, since we also need 
information about how the different nodes are connected, i.e., 
the edges of the graph. We then use EVs as a data structure, and  
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EV: [ 1 1 1 0] 

 
Fig. 2. (a) One-hot encoding of standard cells. (b) Assigning an EV to a circuit 

node. 

generate a vector for each circuit node, following the approach 
proposed in the literature [9]. To generate an EV for a node, we 

use one-hot binary coding, as shown in Fig. 2 (a). The 𝑖𝑡ℎ entry 
of the EV is set to one if and only if the corresponding node is 

implemented using the 𝑖𝑡ℎ cell element from the library. Then, 
we perform a bitwise OR operation between the one-hot code 
associated with the node and the ones of all the neighbours, to 
incorporate information about the nearest neighbours of each 
gate. An example circuit with the EV of one of its nodes is shown 
in Fig. 2 (b).  

B. Feature Selection 

An EV encodes functional and structural features of a circuit 
node. The number of EVs in a circuit is then equal to the number 
of gates (nodes) 𝑚 in the circuit graph. Because the input data to 
the CNN must have a fixed size regardless of the original circuit 
size, we need a mechanism to select a fixed-size subset of EVs 
in each circuit. 
 The idea is to partition the circuit into a fixed number p of 
groups, by using topological sort as a suitable approach for 
group ordering and for sorting the circuit vertices [9]. We then 
select k representative EVs from each group to be given as 
features for the CNN, where k can be an arbitrary number. To do 
so, we use the ranking heuristics suggested in the literature [9], 
based on selecting the EVs that occur most frequently in each 
group, or have the highest number of elements set to 1. We 
finally include these representative EVs, a total of kp vectors, 
into a matrix with fixed row and column sizes of kp and |𝐸𝑉|, 
respectively. 

 As the size of the circuit increases, each group covers a larger 
region, and some representative features of the operator to be 
recognized can be over-shadowed by sub-circuits in the same 
group. To increase the accuracy of classification, one solution is 
to increase the number of groups, which corresponds to 
increasing the size of the data matrices and the CNNs, hence the 
resource consumption and runtime. In the following, we 
describe two approaches that can further reduce the size of the 
CNN circuit representation while including more information 
about the circuit structure. Specifically, we present the LDDS 
encoding approach as an alternative solution to increasing 𝑝 by 
enhancing the structural information content encoded for each 
group.  

III. CIRCUIT REPRESENTATION IMPROVEMENTS 

A. Sparse Mapping 

We observe that most of the column entries in the CNN input 
matrices reported in the literature [9] are zeros, which suggests 
that the cell library based on 4-input lookup tables (4-LUTs),  
proposed in the literature as a candidate library for mapping,  
gives unnecessarily high degrees of freedom. To validate this 
conjecture, we use the forests of  trees  method  to  evaluate  the 
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Algorithm 1 Sparse Mapping (SM) 

Sparse Mapping (In: network 𝑁, library 𝐿; Out: Sparsely mapped network: 
𝑀𝑠) 

1: 𝐿𝑠 = PreSparseProcessing(𝐿) 

2: 𝐺 = TransformNetworkIntoAIG(𝑁) 

3: ComputeCutsAndMatches (𝐺,𝐿𝑠) 

4: M1 = MappingForMinDelay (𝐺, 𝐿𝑠) 

5: 𝑀𝑠 = TransformToMappedNetwork (G, M1) 

6: Return 𝑀𝑠 

 
Fig. 3.  Importance of constructed features in the baseline model. X-axis show 

the feature number (the features are sorted based on their importance.) 

importance of different features on an artificial classification 
task [12]. In this method, feature permutation is used to test the 
actual significance of a feature in the presence of noise (obtained 
by shuffling the feature of samples). We compute the feature 
importance as the difference between the baseline (model that 
was fit to the training dataset) performance and the performance 
on the permuted dataset. Results show that most of the features 
extracted in the baseline model are not important (see Fig. 3) and 
may end up with decreasing the accuracy of the  CNN models.   

We then propose to use a sparse mapping (SM) algorithm, 
which is based on the standard cell library mapping version in 
the ABC framework. The pseudocode of the sparse mapping 
heuristic is shown in Algorithm 1. To increase the sparsity of the 
CNN input matrix, we only consider the functionality of the cells 
in the library as a feature for constructing EVs. There are many 
cells in the standard cell library with the same functionality (e.g., 
Inv1, Inv2, …) but different implementation parameters such as 
delay. In our approach, we categorize all these cells as 
representing the same cell. This step is termed pre-sparse 
processing in Algorithm 1 and is performed on library cells. Our 
compact modeling procedure has multiple benefits. It reduces 
overfitting and accuracy, since it decreases the impact of noisy, 
redundant data on decisions [13], in addition to reducing the 
training time. We leverage ABC [11] to transform a network into 
an AIG format or to enumerate cuts for the DAG of the input 
netlist, as reported in the literature [14], but remove all the 
heuristic iterative optimizations used for delay or area 
minimization to shorten the generation time of our matrix 
representation.  

B. Level-Dependent Decaying Sum Existence Vectors 

We introduce level-dependent decaying sum (LDDS) 
existence vectors to incorporate information about the circuit 
structure in a compact way. Given a circuit DAG and a reference 
node r, the level with respect to r is the distance (number of 
stages) from r of each vertex in the output or input logic cone of 
the reference node itself. We construct LDDS vectors as 
summarized in Algorithm 2. The mapping function returns the 
index of each vertex in the library (i.e., the cell ID). The 
FindParents and FindChildren functions return the children and 
parents of their input vertex. For each vertex, we start by looking  

Algorithm 2 Level Dependent Decaying Sum EV 

Function LLDS (In: Base vertex, maxLevelDiff, DAG G; Out: 
𝐸𝑉𝐿𝐿𝐷𝑆 representation of input vertex) 
LevelDiff = 0;  𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟 = 1; 𝑄 = ∅ 

7: 𝑄 =  𝑄 ∪  𝑏𝑎𝑠𝑒 ∪  𝑏𝑎𝑠𝑒  
8: While (𝑄 ≠  ∅) do 

9:     𝑄𝑡𝑒𝑚𝑝 = ∅ 

10:     𝑐𝑜𝑢𝑛𝑡 =  0 

11:     Foreach node ∈ 𝑄  

12:         If (LevelDiff > 1) 

13:             𝐸𝑉𝐿𝐿𝐷𝑆[𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛𝑜𝑑𝑒)]+= 2−LevelDiff   

14:         Else 

15:             𝐸𝑉𝐿𝐿𝐷𝑆[𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛𝑜𝑑𝑒)] = 1  
16:         If (𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓 <  𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓) 

17:             If (count < 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟) 

18:                 If ( 𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑜𝑑𝑒)! =  𝐺. 𝑅𝑜𝑜𝑡𝑠() ) 

19:                     𝑄𝑡𝑒𝑚𝑝 = 𝑄𝑡𝑒𝑚𝑝  ∪  𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑜𝑑𝑒) 

20:                     𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑒𝑚𝑝
+= 𝑆𝑖𝑧𝑒(𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑜𝑑𝑒)) 

21:                     𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1 

22:                 Else If ( 𝐹𝑖𝑛𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛𝑜𝑑𝑒)! =  𝐺. 𝐿𝑒𝑎𝑣𝑒𝑠()) 

23:                     𝑄𝑡𝑒𝑚𝑝 = 𝑄𝑡𝑒𝑚𝑝  ∪  𝐹𝑖𝑛𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛𝑜𝑑𝑒) 

24:     End Foreach 

25:     𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟 =  𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑒𝑚𝑝
 

26:     𝑄 =  𝑄𝑡𝑒𝑚𝑝 

27:     𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓 =  𝐿𝑒𝑣𝑒𝑙𝐷𝑖𝑓𝑓 + 1 

28: End While 

29: Return 𝐸𝑉𝐿𝐿𝐷𝑆 

 

Fig. 4. Decrease of accuracy for LDDS with more than two levels. LDDSn 
means that n levels are considered in the computation.   

at the immediate neighbors (parent and children nodes) and 
assigning them a score of 1. As we progress toward further levels 
(lines 16-24) with respect to base vertex, the scores 
corresponding to the cells at that level are divided by a constant, 
which is 2 in our approach (line 13). Therefore, the second-level 
parents and children will have a score of 1/2, and so on, until we 
reach roots (leaves) which are primary fanins (fanouts) of the 
original circuit. The rationale behind this scaling factor (i.e., 2 in 
our approach) is to force the numerical entries of 𝐸𝑉𝐿𝐿𝐷𝑆 to be 
normalized within a fixed range and prevent corruption of the 
encoded information.   

 The LDDS approach discounts the effect of the presence of 
cells “far away” with respect to the current vertex in favour of 
cells that are “closer.” In this study, we stick to 2 levels, since 
increasing the number of levels resulted in loss of accuracy, as 
shown in Fig. 4, as well as significantly decreased time 
efficiency.  

IV. RESULTS AND DISCUSSION 

A. Benchmarks and Simulation Setup 

Our framework utilizes ABC [11] to perform technology 
mapping and then executes the algorithms in Sec. III to compute 
the CNN input matrices. We build the CNNs and train the 
models using the Tensorflow package [15]. We select six sets of 
benchmarks. Division and modulo circuits are based on the 
reference publication [9]; they are randomly generated in word- 
level Verilog and synthesized into gate-level circuits by Yosys 
[16]. The same approach is used to generate adder and subtractor  
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TABLE I Runtime for converting AIGs into CNN input matrices as well as 
required time for training the CNN 

Runtime (s) LDDS2 SM LDDS2+SM 

Converting AIG to Bool Matrix (78 gates) 0.011 0.001011 0.0057 

CNN training (100 epochs) 630.66 51.63 54.36 

 
Fig. 5.  Speedup for converting AIGs into CNN input matrices and required 

time for training the CNN with the proposed approaches as well as the baseline 

approach. 

TABLE II The average and standard deviation of accuracy rates 
Method Baseline LDDS2 SM LDDS2+SM 

Accuracy 88.2±3.6 94.3±1 96.4±0.8 99.0±1.0 

circuits. We also used multiplier circuits from [17] and [18], 
including three multiplier types, “btor”, “sp-ar-rc,” and “abc.” 
We finally added a separate class consisting of circuits from the 
ISCAS’85 [19] and EPFL [20] benchmarks, which do not belong 
to the aforementioned classes and are marked with “unknown.” 
The circuits operate on word lengths ranging from 2 to 32 bits. 
Numerical experiments are executed on a core i7 3.2-GHz CPU 
with NVIDIA Tesla K40c GPU. The technology mapping 
library is a generic 180-nm technology [21]. The number of 
groups 𝑝  is 40. For each group, we take the three most 
representative EVs (𝑘 =  3). Therefore, the dimension of each 
input matrix is 120 × 28. 

We build CNNs to classify the type of the circuit, namely 
multiplier, divider, modulo, adder, subtractor, or unknown 
operator. All circuits are partitioned into a training set, a 
validation set, and a testing set, where the size of the validation 
or testing set is fixed at 50 samples, and the size of the training 
set is 900 samples. The training set is randomly selected (out of 
4500 samples) in each run. For all the experiments, we build 
CNNs with the following layers in series: (1) a convolution layer 
with sixty-four 8 × 8 filters, (2) a Rectified Linear Unit (ReLU) 
activation layer, (3) a max-pooling layer with filters of size 
2 × 2, (4) a dropout layer with dropout fraction 0.25, (5) a fully 
connected layer with 32 outputs, (6) a ReLU activation layer, (7) 
a dropout layer with dropout fraction 0.5, (8) a fully connected 
layer whose number of outputs is equal to the number of 
expected classes (6 in our case). The training method follows the 
ADAM routine [22] while the loss function is the softmax cross 
entropy.  

B. Training Accuracy and Convergence Speed 

The runtime for converting circuit netlists into CNN input 
matrices as well as the required time for training the CNN with 
the proposed approach are shown in TABLE I. The comparison 
with the baseline approach is in Fig. 5. The pre-processing time 
grows linearly with the circuit size. The results indicate that the 
training (conversion) time for our  method is 11.44× (2.04×) 
faster than the baseline method [9]. We believe that this 
improvement is due to sparse mapping, which produces smaller 
CNN input feature sizes and a faster training process. 

TABLE II lists the average and standard deviation of the 
accuracy rates for each of the approaches on 100 runs, where all 
data sets are re-partitioned and reshuffled. The average accuracy 
of the proposed approach is at least 6% larger than the one 
previously reported in the literature [9]. We believe this is 
motivated by the richer structural information encoded via the 
LDDS approach and the smaller number of features enabled by 
the SM algorithm. Overall, the numerical results show that the 
proposed method can distinguish all the mathematical operators, 
even if they may have similar structure (e.g., adders and 
subtractors). Moreover, building compact circuit representations 
indeed helps improve the performance of our implementation. 

V. CONCLUSIONS 

We presented a deep learning-based circuit recognition 
framework consisting of a feature extraction stage, a feature 
selection stage, and a standard CNN. We proposed compact data 
structures and algorithms to generate circuit representations that 
can improve the training time and processing time by orders of 
magnitude with respect to the state of the art. As a future work, 
we would like to investigate the effectiveness of the proposed 
approach by training CNN models on a set of circuits with 
hidden trojans to help detect and locate malware in hardware 
designs. 
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