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Abstract—This paper presents a path balancing technology
mapping algorithm, which is a new algorithm for generating
a mapping solution for a given Boolean network such that the
average logic level difference among fanin gates of each gate in
the network is minimized. Path balancing technology mapping
is required in dc-biased Single Flux Quantum (SFQ) circuits
for guaranteeing the correct operation, and it is beneficial in
CMOS circuits to reduce the hazard issues. We present a dynamic
programming based algorithm for path balancing technology
mapping which generates optimal solutions for dc-biased SFQ
(e.g. Rapid SFQ or RSFQ) circuits with tree structure and acts
as an effective heuristic for circuits with general Directed Acyclic
Graph (DAG) structure. Experimental results show that our path
balancing technology mapper reduces the balancing overhead by
up to 2.7× and with an average of 21% compared to the state-
of-the-art academic technology mappers.

Index Terms—Energy Efficient, eSFQ, ERSFQ, Logic Syn-
thesis, Low Power, Rapid Single Flux Quantum, RSFQ, SFQ,
Superconducting Electronics, Technology Mapping.

I. INTRODUCTION

PATH balancing technology mapping is a new method of
mapping an RTL description such as a Boolean network

into a gate-level netlist. For a network generated by the path
balancing mapper, the average logic level1 difference among
fanin gates of each gate in the mapped netlist is reduced
(ideally zero). The path balancing technology mapping is
required in Single Flux Quantum (SFQ) logic families includ-
ing Rapid Single Flux Quantum (RSFQ) [1], energy-efficient
SFQ (eSFQ) [2], and Energy-efficient RSFQ (ERSFQ) [3] for
correct circuit operation.

SFQ gates with switching delay of 1ps and switching energy
of 10−19J are potential candidates for replacing CMOS gates
to achieve high performance and energy efficient systems [2].
As an example, a T-Flip-Flop (TFF) with speed of 770GHz is
reported in [4]. SFQ circuits are made of Josephson Junctions
(JJs), which are superconducting devices working based on
the Josephson effect [5]. One of the most popular families of
SFQ circuits is RSFQ, which is developed in 1980s [1].

Due to some key differences between SFQ and CMOS
circuits such as gate-level pipelining and fanout limitation in
SFQ circuits, existing Computer-Aided Design (CAD) tools
for CMOS technology cannot be directly used for SFQ cir-
cuits [6], [7]. Therefore, to make use of benefits that SFQ
circuits provide in generating high performance and low-
power solutions, new design concepts, automation tools, and
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1Logic level of a gate gi in a network N is the length of the longest path

(in terms of the gate count) from any primary input of N to gi.

architectures are needed [5]. An example difference between
SFQ and CMOS gates is that most of SFQ gates (except for
confluence buffers, splitters, TFFs and I/O cells) receive a
clock signal. This makes the clock distribution network in SFQ
more complex than CMOS; the clock network is much bigger
in SFQ compared to CMOS and it should be designed more
carefully to guarantee delivery of clock signals to all gates
with acceptable amounts of jitter and skew [8], [9].

Another difference between SFQ and CMOS circuits is the
requirement of path balancing in SFQ circuits; if there is a
difference among logic levels of fanin gates of a gate in an
SFQ circuit, path balancing D-Flip-Flops (DFFs) should be
inserted into outputs of the fanin gates with smaller logic
levels. This is done to guarantee arrival of all input signals
of a gate at the same clock period. Otherwise, input pulses
which have arrived at earlier clock periods will be consumed,
generating wrong output values. For some small circuits, one
could add a few asynchronous delay elements (e.g. chain
of Josephson Transmission Lines (JTLs)) to make sure that
all gates receive their inputs in right clock periods, hence,
guaranteeing correct circuit operation. However, this solution
cannot be scaled and it is hard to be automated, because it
requires information of routed wires (after place and route)
during logic synthesis. Therefore, path balancing should be
considered in logic synthesis (e.g. during the technology
mapping phase) of SFQ circuits not only to meet the balancing
requirement, but to minimize the path balancing overhead by
reducing the number of required path balancing DFFs.

In this paper, we present PBMap: a path balancing tech-
nology mapping algorithm which provides optimal solutions
for mapping tree-like dc-biased SFQ logic (including RSFQ,
eSFQ, and ERSFQ) circuits. Note that ERSFQ logic was
developed to eliminate static power losses of RSFQ by
replacing bias resistors with inductors and current-limiting
Josephson junctions. Similarly, eSFQ logic, which was also
powered by direct current, differed from ERSFQ in the size
of the bias current limiting inductor and how the limiting JJs
were regulated. So, although there are key differences among
RSFQ, ERSFQ, and eSFQ in terms of their biasing network
designs, these differences do not affect the proposed mapping
algorithm.

In our algorithm, DFF insertion to achieve path balancing is
done to enable gate-level wave-pipelining. In other words, in
a circuit generated by our algorithm, length of all paths from
any Primary Input (PI) to any Primary Output (PO) will be
the same. However, the benefit of using our path balancing
algorithm is that it reduces total number of required path
balancing DFFs and as a result it reduces total JJ count and
total area (Table II).
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Fig. 1: (a) Splitter gate in SFQ, (b) waveforms corresponding to the operation of this gate, and a splitter tree providing four fanouts with
depth (c) 2, and (d) 3. Delay for generating out1 in (d) is lower than (c). Thus, using the structure of (d) is better in networks where the
critical path goes through out1.

The rest of this paper is organized as follows: Section II
provides some background knowledge on SFQ circuits and
logic synthesis, and it summarizes the related work. It also
gives a quick overview on the state-of-the-art technology map-
ping flow. Section III provides a motivation example for path
balancing technology mapping, presents our path balancing
technology mapping algorithm, gives its proof of optimality
for trees, considers retiming, generalizes the technology map-
ping algorithm to Directed Acyclic Graphs (DAGs), and finally
talks about clock jitter accumulation problem. Section IV gives
the experimental results, and finally, Section V concludes the
manuscript.

II. BACKGROUND

A. Background on SFQ Logic Circuits

In SFQ logic, a single quanta of magnetic flux (Φ0 = h/2e
= 2.07mV ×ps) is used for representation of logic bits. In this
representation, presence of a pulse has the meaning of “logic-
1”, while absence of a pulse is considered as a “logic-0”.
Operation of SFQ logic is based on overdamped Josephson
junctions, and hence, it does not experience the problem of
hysteretic I-V, which degrades the operation speed of “1” to
“0” switching.

SFQ logic families are divided into two groups: ac-biased
and dc-biased. Adiabatic Quantum Flux Parametron (AQFP)
[10], [11] and Reciprocal Quantum Logic (RQL) [12] are
examples of ac-biased and RSFQ [1] is an example for dc-
biased logic family. The first version of new SFQ logic relied
on having ohmic resistors for interconncetion of JJs, hence,

is called Resistive Single Flux Quantum logic [13]. Using
this logic, the operation speed of up to 30GHz was reported,
which was quite higher than any other digital device with the
same complexity at that time [14]. Later on, another version
was proposed by using JJs instead of ohmic resistors. This
version is called Rapid SFQ (RSFQ) [1]. It improved the
parameter margins of the first version and also increased its
operation speed to 300GHz [15]. In the following, we explain
some properties and key circuit/gate level requirements of SFQ
circuits.

1) Fanout in SFQ: In SFQ logic (RSFQ/ERSFQ/eSFQ), if
a gate needs to have more than one fanout, a special SFQ
gate called splitter should be added to the output of this gate.
Splitter is an asynchronous gate that accepts an SFQ pulse and
produces two output pulses after its intrinsic delay. One splitter
can produce only two fanouts. For additional fanouts, more
splitters should be added in a binary tree structure. To have n
fanouts, n-1 splitters are needed. Fig. 1 shows the circuit-level
schematic of a splitter gate, its operating waveforms, and two
examples of splitter binary trees for providing four fanouts
(FO4). Please note that for AQFP, splitters are clocked buffers
that can have 1-to-2, 1-to-3 and even 1-to-4 fanouts [16], [17].

2) Gate-level pipeline: Unlike CMOS gates, in SFQ logic,
most of the gates receive a clock signal. There are three main
methods for clock distribution in SFQ circuits: (i) counter-
flow clocking where the clock flows in the opposite direction
of the data, (ii) concurrent-flow clocking in which the clock
and data flow in the same direction, and (iii) clock-follow-
data in which the clock arrives at a gate after its inputs have
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Fig. 2: Josephson Transmission Line (JTL).

arrived and processed by the gate. For more information on
clock distribution, please see [8], [18].

3) Path Balancing: For an SFQ gate to operate correctly, all
of its fanin gates should have the same logic level. If there is a
difference among logic levels of fanins of a gate, some DFFs
should be inserted into outputs of fanin gates with smaller
logic levels [19]. For example, if the first fanin (in1) of an
AND2 gate has a logic level of three and the second fanin
(in2) has a logic level of four, one DFF should be added to
the output of in1. Without path balancing, correct pulses on
in1 will be consumed by this AND2 gate one clock before
arrival of the corresponding pulses on the second input, hence,
this gate will not be able to produce correct output values.

Input pulses to an SFQ gate can be modeled by “tokens” that
must arrive at the same clock period and should be consumed
by the clock pulse arrives at the end of this period. Path
balancing guarantees correct arrival and consumption of these
tokens.

4) Interconnects in SFQ: In SFQ circuits, there are two
methods for transmision of signals among gates: using Joseph-
son Transmission Line (JTL), and using Passive Transmission
Line (PTL). Most of SFQ circuits use the JTLs for transmitting
signals among the gates, mainly because they can transfer the
SFQ pulses without any distortion [20], [21]. Fig. 2 shows the
circuit-level schematic of a JTL. This circuit can also provide
current and power gains (amplifications). For this purpose, the
critical current of JJs should grow in the propagation direction
(Ic1 < Ic2 < Ic3 < ...), and the inductance values should
decrease (L1 > L2 > L3 > ...) in that direction [1]. The PTLs
are similar to microstrip and strip lines. Each PTL requires
one transmitter and one receiver gate. Generally, for short
interconnects JTLs, and for long interconnects PTLs are used
[21].

B. Background on Logic Synthesis

Logic synthesis is divided into two phases: technology-
independent and technology-dependent (technology mapping)
phase. In the first phase, several optimizations are performed
to reduce total number of literals in the given network. Some
useful operations include: common sub-expression extraction,
decomposition, and re-substitution. In the second phase, suit-
able gates from a given library are assigned to nodes of the
given network in order to meet some constraints and/or to
minimize some cost functions. Before technology mapping,
the given network is transformed into a network of (N)ANDs
and inverters. This step is called technology decomposition,
and the resulting graph is called subject graph.

A k-feasible cone at node v of a network N = (V,E),
denoted by Cv , is defined as a sub-graph containing v and its
predecessors satisfying two conditions: (i) number of inputs
of this sub-graph should be fewer than or equal to k, (ii) all
paths connecting v to a node in Cv lies entirely in Cv . A cut
C=(X,X ′) with source s and sink t in a given network N
is defined as a partition of V into X and X ′ = V −X such
that s ∈ X , and t ∈ X ′. C=(X,X ′) is a trivial cut, if set X
has only one member (source s). The node cut-size of a cut
C=(X,X ′) denoted by n(X,X ′) or n(C) is defined as the
number of boundary nodes in X ′ which are adjacent to some
nodes in X . These boundary nodes are called the leaf nodes
of the cut.

A cut C=(X,X ′) is called k-feasible if its node cut-size
is at most k (i.e. n(C) ≤ k). A k-feasible cut of a node v
is defined as a valid k-feasible cut, in which node v is the
source node of the cut and the sink node is a PI. A fanin
(fanout) cone of a node v in a network N = (V,E) is defined
as the set of nodes in V that can be reached through the fanin
(fanout) edges of v. Maximum Fanout Free Cone (MFFC) of
a node v is a subset of its fanin cone in which any path from
a node in this subset to any PO of the network goes through
v. During optimizations, if a node is removed, all nodes in its
MFFC can be removed as well.

A binary tree is a tree in which nodes have either one child
or two children. A full or saturated binary tree with height
(or depth) H is a binary tree which contains 2H -1 nodes. A
binary tree with height H but with fewer number of nodes
is called a general binary tree. The binary tree that we will
consider in the rest of this paper is a binary tree in which all
nodes have two children; a child can be another node in the
tree or a PI.

C. Prior Work

In the literature of the logic synthesis and verification, there
are many papers addressing the technology-independent and
technology mapping phases. Some of these papers developed
useful algorithms/tools and invented effective heuristics for
optimizing some objective functions such as literal count [22]–
[27] or for increasing the verification speed by presenting fast
SAT solvers [28], [29]. Examples are SIS [30], MVSIS [31],
and Chaff [28]. Furthermore, there are many innovative meth-
ods such as integration of technology mapping and retiming
[32], [33], or logic decomposition during technology mapping
[34]. A logic synthesis and verification tool, ABC [35], has
been developed by the Berkeley verification and synthesis
research group to provide a flexible programming environment
to implement the recent innovations.

In the literature, there are also some papers which present
logic synthesis algorithms and tools for some specific appli-
cations. For example, in [36], authors proposed tree mapping
and decomposition algorithms to generate a power efficient
mapping solution for a given network. In [37]–[40], some
other technology mapping methods targeting the reduction
of power consumption are presented. In [41], a priority-cut-
based technology mapping is presented in which the priority
of selecting matches can be set as delay, area, or any other
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metric. In [42], a near optimal algorithm for technology
mapping is proposed. This algorithm minimizes area under
delay constraints by generating area-delay curves.

There are a few papers addressing the logic synthesis for
SFQ circuits [43]–[46]. In [43], a framework is developed
by constructing a virtual cell called “2-AND/XOR”. This
framework allows usage of the CMOS logic synthesis tools
for SFQ circuits as claimed in [43]. In [44], a Binary Decision
Diagram (BDD)-based top-down design methodology is used
for SFQ circuits. In [45], the required path balancing DFFs
and the splitter cells are added to the netlist generated by ABC
[35] followed by applying the standard retiming algorithm [47]
to reduce the required number of path balancing DFFs. In
[46], a technology mapping tool for SFQ logic circuits (called
SFQmap) is presented which provides two main optimiza-
tions: (i) logical depth minimization with path balancing, and
(ii) peephole optimization for minimizing product of the worst-
case stage delay and the logical depth (PSD).

In this paper, we present a path balancing technology
mapping algorithm which favors generating mapping solutions
with balanced structures. In addition, several closed form
formulas are developed which relate the number of leaf nodes
in a tree with the required path balancing DFF count at each
level of this tree. Thanks to these formulas, the optimality
of path balancing tree mapping algorithm is proven for SFQ
logic circuits. Path balancing can be considered during dif-
ferent phases including technology independent optimizations,
technology decomposition, and technology mapping. In this
paper, we focus on the technology mapping phase.

D. State-of-the-art Technology Mapping Flow

In the technology mapping flow of the state-of-the-art map-
pers, as explained in [48], at first the k-feasible cuts and cuts’
fucntions based on their inputs are computed for each node of
the given network. Next, in a topological ordering traversal,
and by using Boolean matching [49], the best matches and
their best implementations using the pre-generated supergates
[48] are extracted. At the end, the best cover for the given
network is generated in a reverse topological ordering traver-
sal. This approach is followed by ABC [35] as well. In the
following, each of these steps are explained in more details.

1) Computing k-feasible cuts: k-feasible cuts for nodes
in the given network are computed in a way similar to [50].
For each node, a trivial cut consisting of the node itself is
added to the set of cuts. Having this trivial cut and existence
of (N)AND and inverter in the library, the feasibility of finding
a mapping solution for any given network is guaranteed.

2) Computing Cut’s Function: For all computed k-
feasible cuts, except trivial cuts, the cut’s function (some-
times called truth-table) is computed. Function of a trivial cut
is the same as the Boolean expression of the source of this
cut. The function of a non-trivial cut is computed by assigning
some variables to the inputs of the cut. Using these variables,
the truth-table of the cut is computed by performing some
simulations. One round of simulation includes propagation of
a set of inputs through the network [51]. Some bit-parallel
methods such as what is presented in [52] is used to increase

TABLE I: Average hit rate for 20 ISCAS benchmark circuits in the
standard cut-enumeration-based technology mapping approach [35].

Supergate Level

k L = 1 L = 2 L = 3

5 0.056 0.109 0.118

6 0.047 0.057 0.067

the speed of simulations. Next, the function of a cut is stored
inside a field in the data structure of this cut. Since usually
4− 6-feasible cuts are considered, a variable with length of
16− 64 bits is enough for storing the function of a cut.

3) Supergates: A supergate is a small single-output com-
binational network composed of the original gates in the
given library. Supergates are generated by exhaustively con-
catenating the original gates in the library. This is done as
a pre-processing step after reading the library and before
perfoming the technology mapping. Generation of a supergate
is controlled by the following factors: number of inputs of the
supergate, total run-time for generating all supergates, area
of the supergate, critical path delay of the supergate, and
the depth of the supergate. Other than addressing the struc-
tural bias problem [48] by looking deeper into the network,
using supergates makes the cut-enumeration-based method
for library-based technology mapping more reasonable by
providing implementation choices for more cuts.

4) Boolean Matching: In the state-of-the-art technology
mapping flow, Boolean matching [49], [53] is used to identify
whether the Boolean function of a cut can be implemented
using generated supegates. A hash-table of functions of super-
gates is produced and during the mapping phase, function of
a cut is looked up in this hash-table in a constant time.

5) Best Matches and Best Covers: In a topological ordering
traversal, the best matches for both phases (positive and
negative) of each node for its best cut is computed and a
supergate that gives the least arrival time for that cut is
selected. After finishing this traversal and reaching the POs,
in another traversal in a reverse order, best supergates for
implementing functions of gates connected to POs are selected.
Next, best gates implementing inputs of those supergates are
chosen and so on. After the PIs of the network are visited, a
mapping solution for the entire network is generated.

Cut-enumeration-based technology mapping with using k-
feasible cuts suits best for LUT -based FPGA technology
mapping as in [50], [54]. This is because for any computed k-
feasible cut, there will be a k-LUT that can implement the
function of this cut. However, for library-based technology
mapping, theoretically, most of the time there will not be any
gates in the library to implement the function of a cut. For
example, by having 20 gates in the original library, and using
up to level 3 supergates, there will be around 4000 supergates
in the supergate library. Thus, the probability of having a
supergate to implement the function of a cut in the set of k-
feasible cuts for k = 5 and k = 6 will be 4000

225
≈ 10−6, and

4000
226
≈ 10−15, respectively. In these calculations, the fact that

there is at most 22
k

different k−input functions is employed.
In this paper, the aforementioned probabilty is called the hit
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Fig. 3: Two mapping solutions for F = a.b.(!c).d. The left circuit,
generated by ABC’s mapper [35] and requires three path balancing
DFFs. There is another mapping solution with only one DFF as shown
in the right graph.

rate2. Fortunately, for most of the practical circuits, there will
be much fewer number of cuts than the upper bound of 22

k

.
This results in having much better values for the hit rate. Table
I shows the average hit rate of 20 ISCAS [55] benchmark
circuits for two values of k and three levels of supergates.
As seen, the practical hit rate, specially for L = 3, is much
better than the aforementioned theoretical worst case value.
Therefore, it is reasonable to use k-feasible cuts together
with supergates for library-based technology mapping. In our
developed technology mapping tool, the state-of-the-art flow
is followed.

III. PROPOSED PATH BALANCING TECHNOLOGY MAPPING
ALGORITHM

A. Motivation

Suppose that we want to map the following expression:
F = a.b.(!c).d. As shown in Fig. 3, state-of-the-art mappers
(such as ABC [35]) produce the left circuit which requires
three path balancing DFFs. However, it is possible to have a
better mapping solution with fewer number of required path
balancing DFFs, as shown in the right graph in Fig. 3. This
is because there is no implemented algorithm in the current
state-of-the-art technology mappers for controlling balancing
of the network which is being mapped. In the next section, we
present a novel path balancing technology mapping approach
which generates mapping solutions with minimum number of
required path balancing DFFs for mapping trees. From now
on, we denote the total number of required path balancing
DFFs by #DFFs.

B. Presenting Our Algorithm

We present the problem of path balancing tree mapping
as a dynamic programming (DP) problem. The input of the

2The ratio of the total number of cuts that have at lease one supergate in
the supergate library capable of implementing their function to the number of
cuts without having any supergates that can implement their functions.

technology mapper is a network of two input (N)AND and
inverters which is called the subject graph. ABC uses And
Inverter Graphs (AIGs) to represent subject graphs. In AIGs,
all nodes are two input AND gates. Inverter is modeled as a
field in the data structure of the node. Therefore, if the subject
graph is a tree, it can be modeled as a binary tree in which
all nodes have two children. A child can be a node or a PI.
The goal is to find a mapping solution for the given subject
graph with fewest #DFFs.

In the path balancing technology mapping algorithm, the
optimal solution for mapping a tree rooted at node vi is defined
as a solution which minimizes #DFFs. Suppose that the set of
all k-feasible cuts of node vi is Ki, and for a k-feasible cut
Cj ∈ Ki, LCj

denotes its set of leaf nodes (inputs). The value
of the optimal solution, OPT (vi), is calculated recursively
using the following equation:

OPT (vi) = min

 ∑
∀v∈LCj

OPT (v) + B(LCj
)

∀Cj ∈ Ki

(1)
in which, B(LCj

) is a function which receives the set of leaf
nodes of a cut (Cj here) and returns the required number of
DFFs for balancing the inputs of this cut. This balancing is
required if there is a difference among logic levels of inputs
of the cut. For example, suppose that C1 has two leaf nodes
v1 and v2 (LC1

= {v1, v2}). If levels of v1 and v2 are three
and five, respectively, B(LC1

) will return two.
Example: Consider the binary tree shown in Fig. 4. The 3-

feasible cuts of node vi are shown in this figure. Using Eq(1)
and having k=3, the value of the optimal solution for node vi
is computed as follows:

OPT (vi) = min{
OPT (vi+1) +OPT (vi+2) +B({vi+1, vi+2}),
OPT (vi+1) +OPT (vi+5) +OPT (vi+6) +B({vi+1, vi+5, vi+6}),
OPT (vi+2) +OPT (vi+3) +OPT (vi+4) +B({vi+2, vi+3, vi+4}),
} (2)

The optimal path balancing tree mapping solution is generated
as follows:
In a topological ordering traversal starting from level-1 nodes,

vi C1

C3

C2

F

vi+2

vi+5 vi+6

vi+1

vi+3 vi+4

vi C1

C3

C2

F

vi+2

vi+5 vi+6

vi+1

vi+3 vi+4

 

Fig. 4: Showing 3-feasible cuts of node vi.
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the k-feasible cuts for each node in a way similar to [50],
and each cut’s function based on its inputs in a way similar
to [48] are computed. Afterwards, the best valid solution for
each node which minimizes #DFFs is found in a DP approach
using Eq(1). The tree traversal is continued until the root of
the tree is visited. After visiting the root, the optimal path
balancing mapping solution for the whole tree is calculated.
This solution can be generated by tracing the tree from its root
all the way back to its PIs. We will prove that the presented
DP based algorithm for path balancing technology mapping
provides optimal solutions for mapping trees when an SFQ
library of gates is used.

The complexity of computing the k-feasible cuts is
O(kmn), where m is the edge count, and n is the node count
[50]. The complexity of computing cut functions is linear in
the size of the network [51]. By having the k-feasible cuts,
the complexity of the path balancing tree mapping algorithm is
O(K ′ng), in which K ′ is the maximum number of k-feasible
cuts for any node of the subject tree, n is the node count, and
g is the number of supergates in the supergate library. The
overall complexity of the algorithm is O(kmn).

In order to use DP for finding the optimal solution for
a problem, this problem should satisfy the DP’s principle
of optimality. For this purpose, the optimal solution to the
problem should be built of the optimal solutions to its sub-
problems. It looks like it is possible to find some examples in
which the optimal path balancing mapping solution for a tree
rooted at node vi is not built of the optimal solutions to its sub-
problems. For node vi in Fig. 4, assume that its best cut is C1,
and suppose that for a tree rooted at node vi+2, there is a single
match of (7, 4), and for node vi+1, there are two matches (3, 2)
and (5, 3). A match is shown with a couple (x, y). The first
attribute stands for the height or depth of the match, and the
second attribute stands for #DFFs. The best mapping solution
for node vi will contain (5, 3) for node vi+2. This is because
it gives 3+4+(7-5) = 9 required path balancing DFFs, while
the other mapping solution for vi+2 gives 2+4+(7-3) = 10
required path balancing DFFs. Therefore, in this scenario, the
best mapping solution for node vi is not built of the best (with
the least #DFFs) for node vi+2. This means that this example
disproves the DP’s principle of optimality for path balancing
tree mapping.

We will prove that these kinds of counter examples do not
exist in actual circuits. For this purpose, we need to prove that
by increasing the height of a sub-tree from H=X to H=X+p,
#DFFs for internal balancing of the sub-tree will be increased
by more than p, where p is a natural number. Unfortunately,
by having gates with k > 2 inputs in the library, the problem
becomes very complicated. In the following, we provide a
proof of optimality for the case of having gates with only two
inputs in the library. This is valid for the used SFQ library of
gates [56]. In the proof, it is needed to have a closed form
formula for the total number of input pins of the mapped tree
based on #DFFs for that tree. This formula is developed in
Section III-D.

We use #DFFs as a metric for measuring how balanced a
graph is; if a graph has smaller value for #DFFs, this means
that it is more balanced. Therefore, minimizing #DFFs for a

graph during technology mapping results in achieving the most
balanced mapping solution for this graph.

C. Terminology

input pin: Primary input (or leaf node) of a tree.
inputs vs input pins : The first one is used to refer to fanins
of a gate, while the second one is used to refer to leaf nodes
of a tree.
n: Total number of input pins of a tree.
#input pins: Total number of leaf nodes (or PIs) of a tree
(= n).
N : Total number of internal nodes of a tree.
x: Level of a node in a tree. Root of the tree is at level one
and levels of other nodes are higher than one.
H: Height of a tree (last level of a tree, furthest from the root).
Buffer Node: A node which has one father node and one child
node. A DFF sits on the place of a buffer node.
Imaginary Node: A node which does not have a father node,
and actually does not exist in the tree (it is only a concept).
This concept is used for calculating #input pins of a tree.
Sterile Buffer Node: A buffer node which is not capable of
generating imaginary nodes.
Fertile Buffer Node: A buffer node which is capable of gen-
erating imaginary nodes. A fertile buffer node also generates
one sterile buffer node per level starting from its higher level
to the last level of the tree.
Extended Tree: A tree obtained by adding all buffer nodes and
imaginary nodes to the original tree. Extended tree is only a
conceptual thing and it is used for model development. We do
not actually construct an extended tree during the technology
mapping.
Generation of imaginary nodes: Each fertile buffer node
generates some imaginary nodes at the higher numbered levels
(further down from the root). We are interested in the number
of imaginary nodes generated at the last level of the tree. An
imaginary node belongs to a buffer node with smallest level
(closer to the root) that can be reached from this imaginary
node in the extended tree.
yi: Total number of buffer nodes at level i. Sum of all yis in
a mapped tree is equal to the total number of required path
balancing DFFs for that tree.
Y: Total number of required path balancing DFFs in a mapped
tree. Y =

∑H
i=2 yi.

D. Discussion about the Algorithm

Total number of nodes at the last level (x=H) of a full
binary tree is equal to 2H−1, in which H is the height of
the tree. Since all nodes have two inputs (Section III-B), thus,
#input pins for a full binary tree is 2H . A general binary tree
has fewer number of internal nodes, fewer nodes in the last
level, and fewer #input pins compared with a full binary tree.
In the following, a closed form formula for #input pins of a
general binary tree is developed.

In a general binary tree, there are some missing nodes com-
pared with a full binary tree with the same height; wherever
there is a missing node, a buffer node will sit in that place. If
this node (at level x) was not missing, it could create 2×2H−x



IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (DOI: 10.1109/TASC.2018.2880343) 7

i+1

F

i+3

i+6 i+7

i+2

i+4 i+5

i

i+1

F

i+3

i+6 i+7

i+2

i+4 i+5

i

 

(a)

i

i+1

F

x = 1

x = 2

x = 3

x = 4 = H

n   =   24 - 1×22 - 1×21 - 1   =   16 –   –   –        

8 input pins in 
this part

1 input pin 
in this part

Fertile buffer node

Sterile buffer node

Imaginary node

Regular node

 

(b)

Fig. 5: (a) A tree that we want to find its #input pins, and (b) its extended tree. Fertile and sterile buffer nodes and imaginary nodes are
shown in the extended tree. The left sub-tree (not shown) in the extended tree is a full binary tree rooted at node i+1. This sub-tree generates
2× 4 input pins, and there is a single input pin feeding the only buffer node at the last level (x=4). Thus, n=9.

input pins at the last level of the tree. So, this amount of #input
pins should be deducted from #input pins of a full binary
tree to achieve #input pins for this general binary tree. This
contributes to the reduction of the #input pins by 2×2H−x-1.
The ‘-1’ is due to the fact that each chain of buffer nodes,
starting from a fertile buffer node all the way down to the last
level, needs one input pin. We should be careful about not
over-counting the number of fertile buffer nodes. Referring to
the definition of the fertile and sterile buffer nodes, if the total
number of buffer nodes at level x+1 is the same as level x,
it means no new fertile buffer node is generated at level x+1.
Therefore, the total number of fertile buffer nodes at level x+1
is yx+1 − yx.

Based on the above discussion, we can write the following
formula for #input pins (n) of a general binary tree with height
H:

n = 2H−y2×2H−1−(y3−y2)×2H−2−(y4−y5)×2H−3−
...− (yH−1 − yH−2)× 22 − (yH − yH−1)× 21 + yH (3)

By performing some simplifications on Eq(3), the final
closed form formula for #input pins of a binary tree will be
as follows:

n = 2H − y2 × 2H−2 − y3 × 2H−3 − y4 × 2H−4

− ...− yH−1 × 21 − yH (4)

Fig. 5 shows a tree, its extended tree, and displays the
calculation of #input pins for this tree using Eq(4) and the
concepts of buffer nodes and imaginary nodes. Note that
eventhough an imaginary node is connected to the buffer
node at x=3, it belongs to the buffer node at x=2 based on
the definitions and terminology presented in Section III-C.
Therefore, the buffer node at level x=3 is not considered
fertile.

For future use, we rearrange the above equation to obtain
the following one:

yH +yH−1×21 + ...+y4×2H−4 +y3×2H−3 +y2×2H−2

= 2H − n (5)

Now we are ready to present required lemmas and the main
theorem in order to prove optimality of the algorithm presented
in Section III-B. From now on, we use tree and binary tree
interchangeably.

Lemma 1: Total number of input pins (n) for a binary tree
is one more than the total number of nodes in this tree, i.e.,
n=N+1. Recall that in our problem, all nodes of a binary tree
have two children.
Proof: Please see Appendix A.

Suppose that there is a binary tree t1 with height X and
#input pins of n. Suppose that the height of this tree is
increased from X to X+p while #input pins remains the same.
The resulting tree is called t2.

Theorem 1: If the total number of buffer nodes of the binary
tree t2 is more than the total number of buffer nodes of the
binary tree t1 by a positive integer value ∆y, then ∆y ≥ p (p
is a natural number).

Generally, going from a binary tree with height X to a
binary tree with height X+p, while preserving #input pins,
the total number of buffer nodes will be increased. This is
because total number of nodes will be the same for both trees
(lemma 1), thus, we need to remove at least p nodes from
the internal nodes of the first tree and put one at each level
to increase the height of the tree from X to X+p. There are
different trees with height X+p and #input pins of n. We want
to prove that if the total number of buffer nodes (for the new
tree with height X+p) is increased, it cannot increase by less
than p. So, a valid assumption is considering the most balanced
tree for t2, and the least balanced tree for t1. If the theorem
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is proven for this case, then obviously it is valid for all other
cases.

First, we need to find a lower bound for the total number of
buffer nodes of a tree with height X+p and #input pins of n,
and also an upper bound for the total number of buffer nodes
of a tree with height X and #input pins of n.

Lemma 2: The maximum value for p (difference between
height of t2 and t1) in the Theorem 1 is n-1-X , (p ≤ n-1-X).
The minimum value is 1.
Proof: Please see Appendix B.

Please note that similar to what is mentioned before, in the
following, the most and the least balanced binary trees are ones
with the minimum and maximum values for total number of
buffer nodes, respectively.

Lemma 3: The most unbalanced (least balanced) binary
tree with height 1 ≤ X ≤ 3 has X nodes and total number of
buffer nodes equals Y = (X-1)X/2.
Proof: Please see Appendix C.

Lemma 4. The most unbalanced (least balanced) binary tree
with height X ≥ 4 has 2X-1 nodes and Y =(X-2)(X-1) total
buffer nodes.
Proof: Please see Appendix D.

Lemma 5. The most balanced binary tree with height X
and #input pins of n is obtained as follows:
Starting with y2 and maximizing it (=1). If the left hand side of
Eq(5) is not larger than its right hand side, we keep y2=1 and
go for maximizing y3. Otherwise, y2=0. Continuing this way
and choosing the maximum valid values for yis that satisfy
Eq(5), the resulting tree will be the most balanced tree with
height X and #input pins of n.
Proof: Please see Appendix E.

Lemma 6. The most balanced binary tree with height X+p
and #input pins of n that can be generated from the most
unbalanced binary tree with height X and the same #input
pins (the tree in lemma 4) has (X-p-1)(X-p-2)/2+2pX+p-
2p2 total buffer nodes.
Proof: Please see Appendix F.

Now, we are ready to prove the Theorem 1. By transforming
the statements in Theorem 1 into the mathematical expres-
sions, we basically need to prove that the following inequality
is not valid for any natural number for p: 1 < Ydiff < p,
in which, Ydiff is the difference between the total number of
buffer nodes of the second tree (t2) and the first one (t1). The
following equation shows the expression for Ydiff :

Ydiff = {(X − p− 1)(X − p− 2)/2 + 2pX − p− 2p2}−
{(X − 2)(X − 1)}

= (−X2 + 4(p + 1)X − 2p− 3p2 − 3)/2 (6)

in which, X, p ≥ 1 are natural numbers. Another constraint,
as mentioned in the previous lemmas, is 1 ≤ p ≤ X − 1.
By solving these inequalities, it is easy to see that there is no
valid values for p that satisfies all inequalities.�

What we just proved has the following meaning: having
gates in the library with no more than two inputs (as in the
SFQ library of gates [56]), it is not possible to provide a
counter example to disprove the optimality of the dynamic
programming based approach presented for path balancing
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Fig. 6: Matches for a node in a subject graph: (a) before retiming (b)
after retiming.

tree mapping. Therefore, the path balancing tree mapping
algorithm presented in Section III-B gives the optimal solution
for 2-input gates and serves as an effective heuristic for multi-
input gates.

E. Retiming

After finishing the technology mapping and inserting the
path balancing DFFs, a standard retiming algorithm [47] as in
[45] can be used to reduce the total number of path balancing
DFFs. In our path balancing technology mapping algorithm,
we considered the retimed versions of matches for each node
during the tree traversal. In other words, the number of path
balancing DFFs that is considered in Eq(1) is for retimed
matches. Fig. 6 shows a match for a node in a subject graph
before and after applying the retiming algorithm. In our path
balancing technology mapping algorithm, the retimed version
(Fig. 6b) is used for counting the number of DFFs for a match.
Therefore, it should be proven that the developed formulas in
Section III-D for #input pins is valid for retimed matches as
well. For this purpose, it is enough to show that after applying
the retiming algorithm to a match, Eq(4) will be valid for
relating its #input pins to its buffer node count.

Lemma 7: Eq(4) is valid for a retimed match.
Proof: Please see Appendix G.

F. DAG Mapping

For finding path balancing mapping solutions for DAGs,
a cut-enumeration-based method similar to what is presented
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Algorithm 1: PBMap
Input: Given network: N = (V,E)
Output: Mapped network with minimum path

balancing overhead: NMap

1 //pre-mapping computations:
2 Computing k − feasible cuts for each node.
3 Computing truth− tables for each cut.
4 Constructing and initializing the mapping manager,

pMan.
5 Generating the library of supergates.
6 for each node v in N do
7 Find the best mapping solution based on Eq(1).

8 Depth Minimization (pMan,N )
9 Area Optimization (pMan,N )

10 //generating the mapped network:
11 NMap = Network From Map (pMan,N )
12 return NMap

in [50], [57] followed by a dynamic programming approach
similar to what is discussed in Section III-B is used. The
subject graph in this case is a DAG as opposed to Section III-B
which was a tree. As experimental results in Section IV shows,
this method provides considerable improvements in reduction
of the total number of path balancing DFFs and total area
compared with the state-of-the-art technology mappers. Note
that for most of the benchmark circuits the subject graph is
actually a DAG.

G. Clock Jitter Accumulation

Clock jitter accumulation is a measurement of the timing
uncertainty at the user defined time offset over the course of
a few clock cycles [58]. In the worst case, this can result in
obtaining erroneous outputs. Therefore, it is crucial to design
a clock distribution network with acceptable amount of accu-
mulated jitter. We believe that in our proposed path balancing
technology mapping and retiming algorithm, to a first order,
the accumulated clock jitter along input-output paths of the
circuit will not be changed compared to conventional path
balancing methods. This is because our algorithm reduces the
number of required path balancing DFFs for a given circuit
without changing the gate-level wave-pipelined structure of
the circuit.

IV. EXPERIMENTAL RESULTS

The path balancing technology mapping algorithm (PBMap)
is implemented inside the ABC [35]. Algorithm 1 shows its
pseudo code. After finding balanced matches for each node,
depth of the best match is minimized using an algorithm
similar to what is presented in [50]. This depth minimization is
done without degrading the best achieved path balancing solu-
tion (without increasing the balancing overhead, i.e., #DFFs).
Faster system operation in the sense of finishing a given task in
a shorter amount of time directly depends on the logical depth.
In fact, the operation latency is the product of the number of
cycles needed to do the operation and the clock cycle time.

Shorter logical depth directly translates to lower cycle latency
for the operation, but its effect on clock cycle time is hard to
characterize before place and route is done. That is why we
only talked about reducing the logical depth as our objective.

One could consider the total number of gates and DFFs
as the cost function and develop theorems similar to what is
presented in Section III for the new cost function. However, to
minimize the total area, we added an extra area optimization
pass as in line 9 of the shown pseudo code. In this area
optimization pass, a match with the least area which preserves
the best obtained #DFFs and the minimum depth is chosen for
each node.

To see if circuits generated by PBMap operate correctly, we
simulated a few benchmark circuits including a 4-bit Kogge
Stone Adder (KSA4) using JSIM [59]. Fig. 7 shows the
input/output waveform for the KSA4 circuit for two cases: (a)
when our path balancing algorithm is applied, (b) without any
path balancing. Four random values are considered for input
a, input b, and carry in (cin): a0=1001, a1=1111, a2=1001,
a3=1111, b0=1010, b1=1100, b2=1010, b3=1100, cin=1001.
The correct sum (S0 − S3) and carry out (Cout) for these
inputs are as follows: S0=1010, S1=1010, S2=1110, S3=1010,
Cout=1101. Please note that having a 0 as subscript of a signal
makes it the least significant bit and having a 3 makes it the
most significant bit. As seen in Fig. 7a, the circuit generated by
PBMap produces the correct outputs, while as Fig. 7b shows, a
circuit with no added path balancing DFFs produces erroneous
outputs. Notice that since the depth of KSA4 circuit is 6, we
have to wait at least 6 clock periods after applying the first
set of inputs to see the first round of correct outputs.

An SFQ library of gates as in [56], consisting of and2,
or2, xor2, DFF, splitter, and inverter gates were used, and
several ISCAS [55], EPFL [60], MCNC [61], and arithmetic
benchmark circuits were considered. Table II show the exper-
imental results for PBMap and a baseline mapper. The base-
line mapper is ABC’s mapper plus inserting path balancing
DFFs and applying the standard retiming algorithm [47] for
minimizing DFF count. The total number of path balancing
DFFs are mentioned for both before and after applying the
retiming algorithm mainly to show the effectiveness of our
path balancing algorithm in reducing DFF count. Retiming
algorithm helps in reducing the DFF count in netlists generated
by both PBMap and baseline mappers. In Table II, KSA16 and
ID8 are 16-bit Kogge-Stone adder and 8-bit Integer Divider,
respectively.

PBMap was able to reduce #DFFs by 2.7×, and 1.2× before
and after retiming for one of the EPFL benchmark circuits
(priority) compared to the baseline. PBMap reduces area, total
JJ count (#JJ), logical depth, and run-time by 1.11×, 1.08×,
96%, and 7.66×, respectively over the baseline for the same
circuit. Area in Table II is the total area of gates, path balancing
DFFs, and splitters. On average for all benchmark circuits,
PBMap improves the run-time over the baseline by 49.78%
mainly because its run-time for retiming is less than the
baseline due to requirement of inserting fewer path balancing
DFFs. #DFFs (before retiming), #DFFs (after retiming), area,
#JJs, and logical depth are reduced by an average of 20.64%,
15.06%, 12.22%, 11.22%, 14.56%, respectively for PBMap



IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (DOI: 10.1109/TASC.2018.2880343) 10

s0
s1
s2
s3
cout

clk

a0

a1
a2
a3
b0
b1
b2
b3
cin

 

(a)

s0
s1
s2
s3
cout

 

(b)

Fig. 7: Simulation results for a 4-bit Kogge-Stone adder (KSA4). (a) input/output signals for the KSA4 circuit generated by our algorithm,
(b) output signals generated for the same inputs by a KSA4 circuit which is not path balanced. Four sets of random inputs are applied:
a0=1001, a1=1111, a2=1001, a3=1111, b0=1010, b1=1100, b2=1010, b3=1100, cin=1001. The correct outputs are: S0=1010, S1=1010,
S2=1110, S3=1010, Cout=1101. As seen, only the results in (a) are correct.

compared with the baseline.
To compare circuits generated by PBMap with other pub-

lished papers, we include experimental results of a 16-bit
wave-pipelined sparse-tree RSFQ adder [62]. The fabrication
results published in [62] shows that JJ count for this de-
sign is 9941. Using the same cell library (CONNECT cell
library [63]), PBMap consumes 8901 JJs for mapping a 16-bit
Kogge-Stone adder which shows 10.5% reduction in JJ count
eventhough the Kogge-Stone adder is itself more complex
than the sparse-tree adder. The difference between these two
sets of numbers are because of the following reasons: (i) our
algorithm is highly effective in reducing total JJ count. (ii)
the results we presented are for post-synthesis i.e., we did
not account for any JJs used in JTL connections, while the
results in [62] account for such connection costs. Please note
that using CONNECT cell library, JJ count for KSA16 is
increased compared with the case of using the cell library
in [56]. One important reason for seeing this difference is that
there is no OR gate in the CONNECT cell library, and since
inverter is expensive (it consumes 10 JJs while an XOR has

11 JJs and an AND gate has 13 JJs), implementing OR gate,
which frequently appears in arithmetic circuits, using AND
and inverter gates (De Morgan’s law) consumes more JJs by
a factor of 3 times or more. In [64], an 8-bit RSFQ ALU
is presented, which supports 12 sets of operations including:
ADD, ADD-Invert A, AND, NOR, XNOR. Therefore, this ALU
is much more complex than our adders and comparing its JJ
count with our adders is not fair, hence, it is not mentioned
in this section.

V. CONCLUSION

In this paper, a path balancing technology mapping algo-
rithm (PBMap) based on the dynamic rogramming approach
is presented. We proved that the proposed technology map-
ping algorithm provides optimal path balancing tree mapping
solutions for dc-biased SFQ circuits. Our technology mapping
algorithm is quite effective in reducing the total number of path
balancing DFFs for many tested benchmark circuits. To further
reduce the total number of required path balancing DFFs, the
standard retiming algorithm is used. Experimental results show
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TABLE II: Experimental results for PBMap and baseline mapper (ABC’s mapper). #DFFs is reported for before and after applying the
retiming algorithm. Area is in mm2 and run-time is in second. Area and JJ count (#JJs) are for after retiming. Logical depth is the
maximum logic level in the network.

#DFFs (before) #DFFs (after) Area #JJ Logical Depth Run-time
circuits PBMap Baseline PBMap Baseline PBMap Baseline PBMap Baseline PBMap Baseline PBMap Baseline

c1908 1033 1216 696 844 8.7 9.3 12013 12785 20 24 0.14 0.21

c5315 5289 6146 2908 3575 37.2 42.1 52033 58661 23 28 1.4 2.1

c7552 3681 4354 2429 2867 34.3 37.4 48482 52641 19 22 1.04 1.9

c3540 2683 3187 1159 1372 20.3 21.8 28300 30165 31 37 0.56 0.73

c499 674 632 476 444 5.6 5.6 7758 7734 13 13 0.064 0.066

c880 1406 1663 774 957 9.3 10.4 12909 14415 22 26 0.16 0.22

s1196 1226 1328 746 817 11 11.8 15332 16443 18 20 0.29 0.25

s38417 15929 21289 8405 12306 143 168.7 208289 243091 21 30 10.72 17.13

s1238 1558 1665 864 984 12.6 13.8 17617 19171 19 23 0.26 0.32

int2float 507 528 270 274 4.5 4.8 6432 6725 16 16 0.082 0.04

cavlc 1514 1544 522 565 11.6 12.2 16339 17115 17 17 0.19 0.02

priority 9313 35040 9064 19925 71.9 152.3 102085 212467 127 249 41.9 363.2

decoder 51 51 8 8 4 6.2 5469 8340 4 5 0.012 0.012

sin 75861 89481 13666 16858 153.8 176.9 215318 245736 182 229 409.8 589.5

i10 11212 15007 7776 10182 81.5 99.7 114306 139263 33 43 5.6 10.7

frg2 2796 2974 1375 1470 21.7 23.9 30340 33‘237 12 13 0.53 0.62

pj1 66490 83007 36897 43631 411.1 468.2 585751 663755 34 44 115.8 186.6

i9 1275 1612 647 876 12.8 14.9 17842 20734 12 15 0.26 0.3

9sym 327 353 143 149 3.4 3.6 4859 5041 14 14 0.05 0.05

KSA4 30 30 25 25 0.5 0.5 692 692 6 6 0.02 0.0175

KSA16 233 235 199 200 3.4 3.5 4797 4842 10 10 0.08 0.07

ID8 4505 5494 1854 2140 16.1 19.4 22752 27020 77 85 2.32 3.32

avg. imp. 20.64% ↓ 15.06% ↓ 12.22% ↓ 11.22% ↓ 14.56% ↓ 49.78% ↓

that PBMap reduces #DFFs, area, #JJs, logical depth, and
run-time by an average of 20.64%, 12.22%, 11.22%, 14.56%,
and 49.78%, respectively compared with the state-of-the-art
technology mappers for 22 benchmark circuits.
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APPENDIX A
PROOF OF LEMMA 1

We use induction hypothesis for proving lemma 1. Base
case: a tree with one node has two input pins. Induction step:
assume that for a binary tree with N internal nodes, there are
N+1 input pins. Now, for the N+1 step, we need to add one
more node to the previous tree by replacing an input pin with
a new node. If an input pin is replaced by a new node, both
the number of nodes and the number of input pins increase by
one (one input pin is lost and two new input pins are gained
in return for the new added node.)�

APPENDIX B
PROOF OF LEMMA 2

Since #input pins is n, based on lemma 1, the total number
of nodes is fixed at n-1. Now, if we want to create a tree with
the maximum height (to maximize p), a single node should be
put at each level, because at least one node has to be present
at each level. Thus, the maximum height will be n-1, hence,
X+p ≤ n-1. Therefore, p ≤ n-1-X . �

APPENDIX C
PROOF OF LEMMA 3

Since X is not a large number, it is easy to manually check
the correctness of this lemma. Fig. 8 shows two possible binary
trees for X=2, and the most unbalanced binary tree for X = 3.
The buffer nodes are shown in these figures too. In the most
unbalanced case there is one buffer node at level two, two
buffer nodes at level three, three buffer nodes at level four
,..., X-1 buffer nodes at the last level. So, the total number of
buffer nodes is equal to the sum of the natural numbers from
1 to X-1, which is (X-1)X/2. �

APPENDIX D
PROOF OF LEMMA 4

The most unbalanced binary tree with height X ≥ 4 is
achieved when we start placing a node at each level from level
x=X to the level x=1 (until now, X nodes are consumed), and
returning from the right side of the tree with similar method,
consuming X-1 more nodes. So, the total number of nodes
will be 2X-1, and based on lemma 1, #input pins is 2X .
From now on, adding more nodes means removing one buffer
node, so, making the tree more balanced. The total number of
buffer nodes is computed similar to lemma 3.�

APPENDIX E
PROOF OF LEMMA 5

To have the most balanced binary tree with height X and
#input pin of n, we need to find a tree with minimum total
buffer node count, or equivalently the minimum value for Y
(sum of the yis). By fixing the values of H and n in Eq(5),
the minimum value for Y is obtained when a yi with a larger
coefficient contributes more in this equation. In other words,
we should start with y2 and maximize it, then if more values
are needed to satisfy Eq(5), y3 should be maximized. We
should continue this way until the left hand side of Eq(5)
becomes equal to its right hand side. If this happens at level
i, then yj=0 for all j > i. It may also be needed to add
a few buffer nodes to level i+1 to satisfy the Eq(5) without
maximizing yi+1.�
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Fig. 8: Two possible binary trees with height X = 2, and the most
unbalanced binary trees with height X=3, and X=4.



IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (DOI: 10.1109/TASC.2018.2880343) 14

2

4

F

x = 1

8

x = 2

x = 3

9

1

5

10 11

3

6

12

7

13 14
x = 4

2

3

F

x = 1

6

x = 2

x = 3

7

1

4

8 9

5

10 11
x = 4

2

4

F

x = 1

8

x = 2

x = 3

9

1

5

10 11

3

6

12

7

13 14
x = 4

2

3

F

x = 1

6

x = 2

x = 3

7

1

4

8 9

5

10 11
x = 4

 

Fig. 9: Two examples for lemma 5.
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Fig. 10: The most balanced binary tree that we can get by increasing
the height of the tree described in lemma 4 without increasing the
number of input pins.

Fig. 9 shows two examples for X=4. As seen in the left
tree with n=15, the maximum value for y2 cannot be used
because it does not generate a valid tree based on the given
constraints for height and #input pins. Thus, y2 is set to 0.
For this tree, the only scenario which satisfies Eq(5) is when
there is a buffer node at the last level, as shown in this figure.
However, for n=12, we can set y2=1, which generates the right
graph in Fig. 9.

APPENDIX F
PROOF OF LEMMA 6

Based on lemma 5, to find the most balanced binary tree,
we should start consuming buffer nodes at the lower levels
(closer to the root of the tree). In the case of a tree described
in lemma 4, there are 2X-1 nodes. X+p nodes should be put
at each level (one per level) to generate the height of X+p.
The rest of the nodes, X-p-1, are put at the last level of the
tree. So, a tree similar to what is shown in Fig. 10 will be
obtained. Now, we need to count the number of buffer nodes
of this tree. It consists of two groups. First, the X-p-1 nodes
at the last level. The first of these nodes needs 0 buffer node,
the second one needs 1, the third one 2,..., the (X-p-1)th one
needs X-p-2 buffer nodes. This sums up to (X-p-2)(X-p-

1)/2. The second group of buffer nodes correspond to the
long wires which start from a node at level 1 to level 2p and
end at the last level of the tree. The first wire in this group
which starts from the node at level x=1, needs X-p-1 buffer
nodes because it travels from level 2 to the last level of the
tree and at each level it needs one buffer node. The second
wire in this group needs X-p-2 buffer nodes,..., summing up
to 2pX+p-2p2. Therefore, the total number of buffer nodes
are (X-p-1)(X-p-2)/2+2pX+p-2p2. �

APPENDIX G
PROOF OF LEMMA 7

Referring to Section III-D, the formula of #input pins for
a binary tree is developed by considering the effect of each
buffer node at each level of the tree in reducing the total
number of input pins compared with a full binary tree. After
retiming, a subset of buffer-nodes will be moved from higher
levels (closer to leaves of the tree) to lower levels (closer
to the root of the tree). Therefore, it should be proven that
the contribution of buffer-nodes in Eq(4) for new architecture
(after retiming) and for the old one (before retiming) are the
same. In other words, Eq(4) is valid for before and after
retiming. For this purpose, suppose that there is a node (node
j) at level x=X of a binary tree and for simplicity, suppose
that all of its inputs are coming from PIs (e.g. node 3 in Fig.
6a). This node generates two buffer nodes per level starting
from x=X+1 all the way down to the last level (x=H). The
contribution of those buffer nodes in the right-hand side of
Eq(4) is as follows:

2× {2H−(X+1) + 2H−(X+2) + ... + 21 + 1} (7)

After retiming, node j will be moved to the last level
(x=H), and it will generate a single buffer node at each level
starting from x=H-1 all the way up to x=X . For example,
after retiming is applied to the tree in Fig. 6a, node 3 will be
moved to the last level (x=4) and it will generate one buffer
node at level three and one at level two. Contributions of the
new buffer nodes generated after retiming to the right-hand
side of Eq(4) is as follows:

1× {2H−(X) + 2H−(X+1) + ... + 21} (8)

It is easy to see that both of Eq(7) and Eq(8) have the same
values equal to 2H−X+1 − 2. This shows that Eq(4) is valid
for before and after retiming, hence, lemma 7 is proven.�
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