Reducing Transitions on Memory Buses Using Sector-
based Encoding Technique

Yazdan Aghaghiri
University of Southern California
3740 McClintock Ave
Los Angeles, CA 90089

yazdan@sahand.usc.edu

Abstract

In this paper, we introduce a class of irredundant low power encoding
techniques for memory addressbuses. The basic ideaisto partition the
memory space into a number of sectors. These sectors can, for
example, represent address paaes for the code, heap, and stack
segments of one or more application pograms. Each address is first
dynamicdly mapped to the appropriate sedor and then is encoded with
respect to the sedor head. Each sector head is updated based onthe last
accessed addressin that sector. The result of this sctor-based encoding
techniqueis areductionin the number of bus transitions when encoding
consecutive addresses that access different sedors. Our proposed
techniques have small power and delay overhead when compared with
many of the existing methods in the literature. One of our proposed
techniques is very suitable for encoding addresses that are sent from an
onchip cache to the main memory when multiple gplication programs
are executing onthe processor in a time-sharing basis. For a computer
system withou an onchip cadhe, the proposed techniques decrease the
switching activity of data addressand multi plexed addressbuses by an
average of 55% and 67%, respectively. For a system with on-chip
cache, up to 55% transition reduction is achieved on a muilti plexed
address bus between the internal cache and the external memory.
Asauming a 10 pf per line bus capadtance, we show that power
reduction d up to 52% for an external data address bus and 2% for the
multi plexed bus between cache and main memory is achieved using ou
methods.

1 INTRODUCTION

With the rapid incresse in the complexity and speed o integrated
circuits and the popularity of portable embedded systems, power
consumption hes become a aiticd design criterion. In today's
processors, a large number of 1/0O pins are dedicated to interface the
processor core to the external memory through high-speed addressand
data buses. Compared to a genera-purpose high-performance
processor, an embedded processor has much fewer transistors
integrated onthe chip. Therefore, the amount of the energy disspated
a /O pins of an embedded processor is significant when it is
contrasted with the total power consumption d the processor. It is
desirable to encode the values ent over these buses to decrease the
switching activity and thereby reduce the bus power consumption. An
encoder on the sender side does this encoding whereas a decoder on the
receiver side is required to restore the original values. For this approach
to be dfective, the power consumed by the encoder and the decoder has
to be much lessthan the power saved as a result of adivity reduction on
the bus. Furthermore, there should be little or no celay penalty. These
constraints, which are imposed onthe encoder/decoder logic, limit the
space of possible encoding solutions.

Permisson to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
repulish, to post on servers or to redistribute to lists, requires prior specific
permisson and/or afee

ISLPED’ 02, August 12-14, 2002, Monterey, California, USA.

Copyright 2002 ACM 1-58113-475-4/02/0008. ..$5.00.

Farzan Fallah
Fujitsu Laboratories of America
595 Lawrence Expressway
Sunnyvale, CA 94086
farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California
3740 McClintock Ave
Los Angeles, CA 90089

pedram@ceng.usc.edu

Although numerous encoding techniques for instruction address buses
have been reported ([2], [3], [4], [5], [7], [9], [10], [11], etc.), there are
not as many encoding methods for data address or multi plexed address
buses ([6], [9]).* In the case of instruction address bus encoding, high
temporal correlation between consecutive addresses is exploited to
decrease the number of transitions on the bus. Althoughsequentiality is
interrupted when control flow instructions come to execution, it is dill
possble to encode the addresses effectively because the offset
(arithmetic difference) between consecutive addresses is typicdly a
small integer value [1]. Unfortunately, there is much less correlation
between consecutive data aldresses, and the off sets are usually much
larger. Therefore, reducing the transitions on a data address bus in the
course of bus encoding is a much more difficult task. In multi plexed
address buses, compared to data address buses, there is more
correlation between addresses because of the presence of instruction
addresses; thus, more reduction in adivity can potentially be obtained
when compared to data aldresses. However presence of two dfferent
address streams (i.e., instruction and dbta aldresses) with dfferent
characteristics makes the encoding complex.

In this paper we introduce low overhead encoding methods targeting
data aldress and multiplexed address buses. Our methods are
irredundant meaning that they do rot require any additional line to be
added to bus. This feaure makes it possible to adopt our techniquesin
an existing system without making any changes to the chip pinous and
the designed printed circuit board. It will be seen that second goup of
our encoders are very low overhead in terms of their power
consumption and delay. No time consuming gperation like for example
addition, isinvolved in them.

The rest of this paper is organized as follows. In Section 2 the related
works are described. Section 3 provides the insight and a top-level view
of the proposed sector-based encoding techniques. Our encoding
techniques are presented in Section 4. Section 5 presents experimental
results of utilizing our techniques to encode address buses and the
number of gates and power consumption d our encoders. Conclusion
and some future work are discussed in Section 6.

2 PREVIOUSWORK

Musoll et a. proposed the working zone method in [6]. Their method
takes advantage of the fact that data accesses tend to remain in a small
set of working zones. For the addresses that lie in each o these zones a
relatively high degree of locdity is observed. Each working zone
requires a dedicated register that is used to keep trad of the acessesin
that zone. When a new address arrives, the offset of this address is
cdculated with respect to al of the zone registers. The addressis, thus,
mapped to the working zone with the smallest offset. If the offset is
sufficiently small, one-hat encoding is performed and the result is sent
on the bus using transition signaling (by transition signaling we mean
that instead o sending the code itself we XOR it with the previous

1 A multiplexed address bus refers to a bus that is used for sending
both instruction and data addresses.

value of the bus.) Otherwise, the address itself is ®nt over the bus. The
working zone method uses one extra line to show whether encoding has
been done or the original value has been sent. It also uses additional
lines to identify the working zone that was used to compute the off set.
Based onthis information, the decoder on the other side of the bus can
uniquely decode the address

The working zone method has also the aility to detect a stride in any
of the working zones. Stride is a cnstant offset that occurs between
multiple consecutive addresses repeatedly and can be used to
completely eliminate the switching adivity for those addresses. For
instruction addresses, stride is the diff erence between the addresses of
consecutive instructions. Stride is very important when instruction
address encoding is tacled. In fact, the large number of sequential
instructions with constant stride is responsible for the considerable
transition savings that is usualy seen in instruction address encoding
techniques. For data aldresses, stride an happen when, for example, a
program is accessing elements of an array in the memory. Apart from
some special cases, detecting and uilizing strides has a very small
impad on cecreasing the switching adivity of data addresses.

The working zone method has a large area and power dissipation
overhead due to the complexity of the decoder and encoder logic. In
addition, it is ineffective for data aldress buses. Thisis largely due to
the fact that offsets on a data addressbus are often nd small enough so
they canna be mapped to ore-hat codes; in such a ase the origina
addressis snt over the bus, which usually causes many transitions on
the bus.

Ancther encoding method that can be used for data addresses is the
bus-invert method [7]. Bus-invert selects between the original and the
inverted pattern in a way that minimizes the switching adivity on the
bus. The resulting patterns together with an extra bit (to ndify whether
the address or its complement has been sent) are transition signaled
over the bus. This technique is quite dfective for reducing the number
of 1's in addresses with randam behavior, but it is ineffective when
addresses exhibit some degree of locdity. To make the bus-invert
method more dfective, the bus can be partitioned into a handful bit-
level groups and bus-invert can be separately applied to each o these
groups. However, this scheme will i ncrease the number of surplus bits
required for the encoding, which is undesirable.

In[8], Mamidipaka & a. proposed an encoding technique based onthe
notion d self-organizing lists. They use a list to create a one-to-one
mapping between addresses and codes. The list is reorganized in every
clock cycle to map the most frequently used addresses to codes with
fewer ones. For multi plexed addressbuses, they used a combination o
their method and Increment-XOR [9]. In Increment-XOR, which is
proven to be quite dfedive on instruction addressbuses, each address
is XORed with the summation d the previous address and the stride;
the result is then transition signaled over the bus. Obviously, when
consecutive addresses grow by the stride, no transitions will happen on
the bus. The size of the list in this method has a big impact on the
performance. To achieve satisfactory results, it is necessary to use a
long list. However, the large hardware overhead asociated with
maintaining long lists make this technique quite epensive.
Furthermore, the encoder and the decoder hardware are practically
complex and their power consumption appeas to be quite large.

Ramprasad et a. proposed a coding framework for low-power address
and dhta buses in [9]. Although they have introduced remarkable
methods for encoding instruction addresses, their framework does nat
introduce eff ective techniques for data address and multi plexed address
buses.

3 OVERVIEW

In this paper we propose three sector-based encoding techniques. All
these techniques partition the address space into dgoint sedors. Each
addressis encoded based onthe sector in which it is located. Usualy

the addresses in the same sector have a tendency to be close to each
other; this means if we excode each address with respect to the
previous addressaccessed in the same sector, spatial locdity enables us
to develop an encoding technique that results in orly a small number of
transitions on the bus.

To better explain this, consider two cases. In the first case, a trace of
addresses, which are scattered dl over the address pace, is sent over a
bus withou any encoding. Because these addresses are dispersed, it is
more likely that they have larger Hamming distances in their binary
representations. In the second case, we partition the address space into
two sectors so that the origina trace is divided into two sub-traces
based onthis sctorization. In each sedor, the addresses are doser to
each aher. If we sum up the inter-pattern transitions of these two sub-
traces, this simmation will be lessthan the total transition court for the
original trace. In practice, addresses are nat partitioned into two sub-
traces; rather it is the function d the encoding technique to reali ze this
“virtual separation” of addresses in the trace. This last statement reveals
the key insight for the proposed sector-based encoding techniques.

Let’'s consider the data addresses for a memory system without cache.
Eadh data access generated by the CPU can be ether for accessing a
data value in a stack, which is used for storing return addresses and
locd variables, or in a heap, which is used to hdd the global data and
dynamicadly all ocated variables. The stack may reside in some memory
segment, e.g., in the upper half of the memory, whereas the heap may
reside in another memory segment, e.g., in the lower half of the
memory. Let H and S denote Heap and Stack accesses, respedively. By
H->S access, we mean address bus transitions that occur when the
stack is accessed after a heap access S2H, S2S and H>H are
defined similarly. The number of bit transitions caused by H->S and
S>H accesss are often higher than thaose for the S>S and H>H
accesss. This is because the heap and stack sectors are usually placed
very far from one ancther in the memory address space. Per our
detailed ssimulations on benchmark programs, if we gply the Off set-
XOR encoding technique [9] to a data aldress bus, S>H and H>S
accesses will be responsible for almost 73% of the overall bit
transitions. Now suppose we break the trace into two parts, one
includes accessss to the stack, whereas the other includes the accesses
to the heap. If we gply the Off set-XOR encoding to each of these two
traces sparately and add total transitions of each trace, then up to 61%
reduction in the switching activity will be ahieved with respect to the
undvided trace.

A key advantage of the encoding techniques presented in this work is
that they do nd require any redundant bits. Obviously, in the codeword
some bits are dedicaed for conveying information about the sector that
has been used as a reference for encoding. The remaining bits are used
for encoding the offset or the diff erence between the new address and
the previous addressaaessed in that sedor. The value of the last access
in the sector is kept in a specia register cdled a sector head. Among
our proposed techniques, the first two are only suitable when addresses
accessed in two separate sectors. The first methodis very general. The
second method is not as general as the first one, but its implementation
is much simpler and its encoder has gnaller delay. The last method is
an extension d the second method, which maintains its logic simpli city
and sped], yet it can support arbitrary number of sectors at the expense
of amarginal hardware overhead. The problem of how to partition the
address space into dgoint sedors © that addresses are evenly
distributed over these sectors is a critical one. As it will be eplained
shortly, in the first method, the trace partitioning is dynamicdly
changed so that the encoding method can precisely track addresses in
up to two sedors. However, in the second and third methods, the
partitioning is dore statically. Obviously, a careless partitioning can
cause large churks of addresses to lie in a single sector and a
consequent degradation in the performance of the encoding. We will

show how this scenario can be prevented by a novel sectorization d the
addressspace.

4 ENCODING TECHNIQUES
4.1 Dynamic-Sector Encoder

Our first technique, named DS, stands for Dynamic Sector encoding.
DS encoder partitions the address gace into two sectors; thus, it has
two dff erent sector heads. To encode an address its offset is computed
with resped to both sector heads. The closer sector head is chosen for
encoding the address The sector heads are dynamicadly updated. After
the codeword is computed based onthe sector head that is closer to the
sourceword, that sector head will be updated with the value of the
sourceword, i.e., one of the sector heads always tracks the addresses. A
detail ed explanationis provided next.

In the sequel, X and Y are aswumed to be N-bit 2’'s-complement
integers. The binary digits of X are represented by X; to Xn, where Xy
isthe MSB.

Definition 1. LSB-Inv(X) is defined as:
if (X>=0)

LSB-Inv(X) = X
else

LSB-Inv(X)= X XOR (2"*-1)

Definition 2. Given two N-bit integers X and Y, distance of X from
Y is defined as foll ows:

dist(X,Y) = {Rin1

sign(X,Y) = Ry
where R= LSB-Inv(X — Y). Note that dist is an (N-1)-bit integer.
Notation { R} y.; denotes casting R to (N-1) bits by suppressng its
MSB.

Definition 3. Given three N-bit integers A, B and X, we say X is
closer to A when dist(X,A) is snaler than dst(X,B).

Lemma 1. As X sweeps the N-bit space, half of thetime X is closer
to A and half of the time it is closer to B. If X is closer to A, X
+2Mwill be closer to B and vice versa.

Suppose al N-bit integers are put on the periphery of a drclein such a
way that 2"-1 and O are next to each ather. For any two integers X and
Y, the length of the shortest arc between them is equal to dst(X,Y) as
defined above. The direction d this arc, either clockwise or ndt, is
shown by sign(X,Y). Based onthis construction, one can easily verify
Lemma 1.

Definition 4. Given two arbitrary integers A and B in the N-bit
space we define C(X,A;B) asfollows:

S = Min {dist(X,A), dist(X,B)} // S is an (N-1)-bit integer.

if (dist(X,A) < dist(X,B))
M = sign(X,A)
else
M = sign(X,B) // Mis a single bit.

If (SN_1 == 1)

C(X,A;B) = NOT (M || {S}n-2) // || is the concatenation operator.
else

C(X,A;B) =M || {S}n2 // C(X,A;B) is an (N-1)-bit integer.

Lemma 2. As X sweeps the N-bit space, C(X,A;B) will sweep the
(N-1)-bit space. Each integer in this space is covered exactly
twice: once when X is closer to A and a second time when X is
closer to B.

Using Lemma 2 we eplain the way that the DS encoder works. We
cdl the two sedor heads SH; and SH.. First, C(X,SH1;SHy) is
cdculated. Thisis an (N-1)-bit integer. We use the MSB bit to send the
sector information, which is the sector whose head was closer to the

addressand hes been used for encoding. For example, 0 can be used for
SH; and 1 for SH,. Lets call this bit the Sector-ID. Therefore, the DS
encoder is defined as foll ows:

// DS Encoder
Codeword = (Sector-ID)|| C(X,SH1;SH.)
Update the value of the SH that is closer to X with X

This code is transition signaled over the bus (i.e., it is XORed with the
previous value of the bus). Lemma 2 guarantees that for any arbitrary
values of sector heads, the N-bit addressis mapped to an N-bit integer
in a one-to-one manner. As a result, it is possible to uriquely decode
the numbers on the receiver side.

The LSB-Inv function wsed in the DS code is intended to reduce the
number of 1's in the generated code since this code will be transition
signaled onthe bus and the number of 1's will determine the number of
transitions on the bus. Note that this function is applied to 2's
complement numbers to reduce the number of 1's in small negative
numbers. When applied to large negative numbers, then the number of
1'sisincreased. In practice and onaverage, the LSB-Inv function is
quite efective since off setsin each sector tend to be small numbers.

To dbtain a better understanding d how the DS encoder works, let's
ignare the function d the LSB-Inv operator. Subsequently, C(X,A;B)
becomes equal to a function that calculates the off set of X with resped
to either A or B, whichever is closer and then deletes its MSB. This bit
deletion is necessary because one bit of the codeword is used to send
the Sector-ID; therefore, only the (N-1) remaining bits can be used for
the offset. Using (N-1) bits each sector head covers 2% numbers (we
consider a drcular address space, i.e., 2V=0). Half of the covered
numbers are greder than the sedor head and the other half are smaller
(seeFigure 1). Note that some addresses are covered twice, while some
are not covered at al. We all the first set of addreses S; and the
second ;. Thesize of S; is equal to the size of S,. Moreover, by adding
M or -2M to Sy, it can be mapped to S,. The addresses in S, are
covered by both SH; and SH», but they are excoded only with respect
to the closer sector-head. This means for each addressin S;, one codeis
wasted. These wasted codes can be used to encode the addresses in ;.
This is dore by mapping S to S; and encoding the numbers with
respect to the sedor-head, which is not closer. This makes DS a one-to-

one mapping.

On the receiver side, the sector is directly determined based on the
MSB bit. Then, by using the value of the correspondng sector head in
the receiver side (the sector heads on the sender and receiver sides are
completely synchronized) and the remaining (N-1) bits of the

0 \ \
SH1 [] Covered by SH1
I cCovered by SH2
SH2 I Covered by both (S1)
|:| Covered by none (S2)
21

Figure 1- Address space, two sector heads and their coverage
sets.

codeword, the sourceword X is computed. After that, it is determined
whether the computed X is adually closer to the sector head that has
been used for decoding. If true, the sourceword has been corredly
caculated; otherwise, a value of 2" shoud be added to X to produce
the correct sourceword.

// DS Decoder
// Received Codeword after transition signaling is Z

U = LSB-Inv (Zna || O || {Z3n22)

if (Zy == 0)
X=SH; +U
If (dist(X,SH.) < dist(X,SH,))
X 4= 2N
else
X =SH+ U

If (dist(X,SHy) < dist(X,SH,))
X+=2"

if (dist(X,SH;) < dist(X,SH>))

SH;=X
else

SH,=X
Table 1 shows an example of using DS to encode a threebit address
space. The first column denates the original addresses (sourcewords).
The two bold numbers in this column show the sector heads. The
second and the third columns provide sign(X,SH) and dst(X,SH) with
respect to the two sedor heads. The fourth column shows the SH that
has been used in cdculation d C(X,SH1;SH,). The fifth column shows
C(X,SH1;SHy). The last column shows the codewords. The MSB of the
codewords shows the Sector-ID; O for the addresses that are encoded
with resped to SH; and 1 for thase encoded with respect to SHo.

Table 1- An example of DS mapping, for athree-bit address space
and sector heads equal to 001 and 011.

x| Woon | Wotn | sewin | Coxoorom | (T
000 1,00 1,10 001,0 10 010
001 0,00 1,01 001,0 00 000
010 001 1,00 011,1 10 110
011 0,10 0,00 011,1 00 100
100 011 001 011,1 01 101
101 1,11 0,10 011,1 11 111
110 1,10 011 001,0 01 001
111 1,01 1,11 001,0 11 011

4.2 Fixed-Sector Encoders

In this sction we take alook at ancther set of sector-based encoding
techniques that utilize fixed partitioning d address pace. In each o the
sectors there is a sector head that is used for encoding the addresses that
lie in the sector. These techniques, which are referred to as FS are nat
as quite general as DS, in the sense that sometimes even if consecutive
addresses are far from one ancther, they may end up being in the same
sector. Subsequently, they are encoded with respect to the same sector
head and the value of the encoding totall y fades away. However, the FS
techniques have two major advantages over DS. The first ore is the
simplicity of decoder and encoder and their negligible delay overhead
for the memory system and the second one is the extensibility of these
methods. DS canna be easily extended to support four sectors. If it is
somehow extended, the encoder/decoder will be too complex and
costly (in terms of area, delay and power overheads) to be used for low
power bus encoding schemes. In contrast, as it will be seen, FS can be
easily extended to support an arbitrary number of sectors. This is
attractive when for example the target bus is the bus between the
internal cache and the outside memory chip. Over that bus, the
addresses of instructions and data blocks of multiple applications are
sent to main memories, which will makeup a trace of addresses utterly
scattered owver the address space. A sector-based encoder needs more
than two sectors to be of use for such a bus. Therefore, the importance
of FSencoding techniquesis redized.

421 Fixed-Two-Sector Encoder

In the Fixed-Two-Sector (FTS) encoding, the address space is
partitioned into two sectors. The sectors are smply lower half and
upper half of the addressspace. There is one sector head for each of the
sectors. Each sector head consists of (N-1) bits (As the MSB is known
by default). The MSB of the address or sourceword determines the
sector head to be used for encoding. In addition, this MSB will be
exadly equal to the MSB of the codeword. The remaining bits are
XORed with the sector head to generate the codeword. As long as the
addresstrace is such that distant addresses lie in alternative sectors and,
in those sectors, the addresses show some degree of locdity, this
technique helps reduce the transiti ons.

FTS encoder works as foll ows:
/] FTS encoder

if Xy ==1)
Codeword = 1 || (SH2 XOR {X}n-1)
SHy= {X}n1

else
Codeword = 0 || (SH: XOR {X}n-1)
SH1= {X}N-l

The codeword is transition signaled over the bus. SH; and SH; are (N-
1)-bit numbers and they belong to lower half and wper half of the
memory map, respectively. Therefore, the MSB of the codeword in the
above equation will always be equal to the MSB of X. The simplicity
of FTS comes from the fad that unlike DS, no subtraction and
comparison qperations are required to determine the sector head that is
used. This also simplifies the decoder .

422 Fixed-Multiple-Sector Encoder

In Fixed-Multiple-Sector (FMS) encoding the address space is
partitioned into multiple sedors. The number of allowed sectors is a
power of 2.

Consider FTS, if all addresss lie in the lower half of the memory, then
FTS encoding cegenerates to that of XORing addresses with the bus
which clealy leads to poor performance. FM S avoids this problem by
exercising two techniques. First one is increasing the number of
sectors. This helps to reduce the probability of having dstant addresses
in the same sector. Second and more important is that FMS uses a
segment-based method to partition the address pace, which further
hel ps to prevent the above problem. This method is described next.

Suppose the address space is divided into 2 sedors. If the same
approach as FTS is used, the M most significant bits of the sourceword
are nealed to define the sectors. These bits will be the same for the
sourceword and the codeword. The remaining bits in the sourceword
are then XORed with the correspondng sector head to compose the
codeword. However, the increased number of sectors may not be
enough to evenly distribute the addresses over the sectors. Consider the
main memory of a system with an internal cache. When compared to
the whole address pace, the main memory can be so small that it may
totally reside in ore of the 2" sedors. For this reason, we propose a
new technique for partitioning the address pace. Now, instead of using
the MSB hits, some of the center bits in the addresses are used as
Sector-ID bits. Implicitly, this changes the sectors from a large
contiguolts <ction d address pace to smaler digoint (dispersed)
sections. We call each o these subsections a segment of the secor and
this type of partitioning dispersed sectorization.

Now consider the two dfferent sectorization methods as depicted in
Figure 2. In contiguous ctorization, the number of sectors that cover
the addresses between any two arbitrary numbers in the address pace
depends to the value of those boundary numbers and number of sectors.
However, in dspersed sedorizaion, the size of the segments will also
be a decisive fador to determine the number of sectors between two
different addresses. Even if a subsedion of the address pace is small,

as long as that space includes a segment from each o the sectors,
addresses that liein that space @n fall in any of the 2" sedors.

Fiaure 2- Combarison of contiauous ver sus disner sed

Suppose there are 2 sedors in FMS. Each of the sector heads is an
address bounckd to one of the sectors. Consequently, M bits of each
sector head are constant and known. Therefore, we only need (N-M) for
storing each sector head. However, to make the following pseudo-code
easier to understand we assume that sector heads are also N-bit
numbers and those bits that are in the position d the sedor-1D bits are
all zeros. We implicitly know the sector to which each sector head
belongs. The Sector-ID bits in the sourceword are used to select the
correct sedor head for codeword cd culation and they have to be copied
to the codeword exadly as they are. When these bits are XORed with
correspondng zeros in the sector head, they do nd change.

// FMS encoder

// 2" sectors, 2" Sector Heads, SH[1]...SH[2"]

// Sector-ID bits: Xi+m...Xi+1 (An M-bit number)

Codeword = X XOR SH[XHM...XM]

Update SH[Xi.m...Xi+1] with X and make the Sector-ID bits zero.

A basic question to ask is, “Which bits do we use for Sector-ID?” The
number of bits defines the number and size of sedors. The locaion o
bits defines the number and size of segments. In the sequel, we
consider a bus between an internal cache and an external memory. We
determine a range for the Sector-1D bits. As long as the Sector-ID bits
are within that range, the reduction in switching adivity will be about
the same.

We asaume that Sector-ID bits are M contiguots bits in the address
Shifting the position d the Sector-ID bits to right will make the
segments snaller. A main memory usually occupies a small portion o
the address space. The segments $houd be small enough so that one
segment of each sector goes into the space taken by the memory. On
the other hand, the Sector-I1D bits shoud be shifted to left to make each
segment at least as large & one physicd page in the memory paging
system. Althowgh consecutive pages in virtual addressng can be far
from each aher when they are translated to physicd memory
addresses, all the addresses that are in the same physical page, will be
very close. Suppose that multiple programs are executed. All cache
misses cause requests to the external memory. Whenever a program is
switched ou and a new program gets executed, many second level
misses happen that are basically reading the code and dhita of the new
program form consecutive blocks in physicd pages. The dispersed
sectorization scheme should work in a fashion to put al of these
addresses in the same sector. As long as the Sector-ID bits satisfy the
two aforementioned constraints, a goodperformance will be achieved.

5 EXPERMINETAL RESULTS

To evaluate owr encoding techniques, we simulated SPEC2000
benchmark programs [13] using the simplescalar simulator [12]. The
results are based on averaging over six programs named vpr, parser,

equake, vortex, gcc and art. We generated three different kinds of
addresstraces. These traces represent diff erent memory configurations.
The first two traces were generated for a memory system withou an
onchip cache and are traces of data and multiplexed addresses,
respectively. A data address trace includes all data acceses and
asaumes that data and instruction buses are separate. A multi plexed
addresstrace includes dl instruction and cbta aldresses. The third set
of traces was generated for a system with two levels of internal caches
and a memory management unit that translates scond level cade
misses into physicd addresss. The second level cade is a unified
cache; therefore, addresses that miss this cache are either instruction a
data addresses requesting for data and instruction Hocks.

We have compared ou proposed techniques with the Working Zone
method with two registers or briefly WZE-2. We first show a detailed
comparison d our techniques and WZE-2 when applied over the data
address traces. After that we present the final results of similar
evaluations of our techniques and WZE-2 over all different set of
traces.

In Table 2 the detail ed results have been shown for data address traces

(no cache). For each trace we have shown the original number of
transitions (Base) and the number of suppressd transitions after
applying dfferent techniques. We have also shown the percentage
reduction in the total number of transitions for each trace and each
encoding technique.

Table 2- Total suppressed transitions (in millions) and per centage
savingsfor traces of data address (without cache).

Bae | WZE2 DS FTS FMS

o a |-2683_| 403t | atar | a7t
P : 361% | 557% | 56.8% | 52.1%
= | 7055 2809 | 5269 | 5316 | 5125
P ' 353% | 662% | 66.8% | 64.4%
1137 | 2917 | 3235 | 2531

equake | 6768 il T aza06 | av.eve | 37.4%
1700 | 3453 | 3958 | 4115

vortex | 8118\ ey 306% | 45.4% | 47.2%

11.09 32.87 37.16 31.61

gee 6599 I1eavs [aosu | seas |47 9%
1280 | 4165 | 4913 | 4548

at 8313 125y [50406 | 59196 | 5a7%
Average | 0% 23% 51% 55% 51%

The same procedure has been repeated for the two ather sets of traces
and the results are shown in Table 3. The numbers in parentheses in the
FMS column shows the number of Sector-ID bits that have been used.
As ore can seg for data addresses and multiplexed addresses our
techniques outperform the WZE-2. For the multiplexed address bus
with a cache, FMS performs significantly better than the other
techniques.

Table 3- Average transition saving for different techniques.

WZ-2 DS FIs_|_FMs

3&“2@23;35 23% 51% 55% | 51%(1)

M uIti(EI Sg:c ﬁg)dr%s 47% 41% 52% 67%(3)
M uIti(s\Il @ée: £SW$S 16% 19% 6% 55%(3)

Figures 2 and 3 dpict the encoders for DS and FMS, respedively. The
encoder for FTS has nat been shown because of its smilarity with the
FMS encoder. The signals have been tagged with the bits they cary.
For example 32,30->1 represents bit 32 and bits 30 to 1. To make a
better comparison d the overhead of these techniques, we made a
comparison between the power consumption d the encoders. For this,

all three ecoders and decoders were designed and their netlists were
generated in Berkeley Logic Interchange Format (BLIF). The netlists
were optimized using SIS script.rugged and mapped to a 1.5-volt 0.18u
CMOS library using the SIS techndogy mapper. The 1/0O voltage was
asumed to be 3.3 volts. The address traces were fed into a gate-level
simulation program caled sim-power to estimate the power
consumption d the encoders and decoders. The clock frequency was 50
MHZ. We also calculated the power dissipated onthe bus in absence of
any encoding. We assumed a 10pF capacitance per bus line. Different
bus configurations were asumed for evaluation d different encoding
techniques. For DS and FTS we asaumed a data address bus withou
any internal cache. For FMS we experimented over the multi plexed bus
between cace and main memory. FMS was the most efficient
technique for this bus. The results are shown in Table 4. The reduced
bus power shows the power after encoding. The last column shows the
percentage power saving after considering the extra overhead o
decoder and encoder for different techniques.

Given the fad that Working-Zone encoder needs sveral subtractors for
cdculating dfsets with resped to zone registers, severa comparators
for choosing the zone register with the small est off set, a subtractor and
several registers and comparators for detecting the stride, and a speda
table for encoding the offset to a one-hot code, its overhead will be
much higher than that of our sedor-based encoders.

Table 4- Percentage Power Saving for Different Techniques

Origina Bus | Encoder Reduced Bus Power Power

Power (mW) Power (after encoding) Saving
DS 13.7 0.67 6.71 41%
FTS 137 0.24 6.16 52%
FMS 6.7 041 3.01 42%

In terms of delay and area, FMS prodiwces the best results. It only
consists of four levels of logic, whereas the encoding techniques that
require adding addresses or incrementing them ([2],[3],[6], €tc.) need
more than ten levels of logic for a 32-bit bus. The following table
shows the number of gates and area required for each of the sedor-
based encoders.

Table 5- Comparison of the encoder hardwarefor the proposed

techniques
Number of gates Area (* 1000)
DS 505 488.7
FTS 256 205.8
FMS 313 282.7

6 CONCLUSION

In this paper, we proposed a new approach toward bus encoding by
sectorization o address gace. The sectorization can be d@ther adaptive
or fixed. We compared dff erent approaches in terms of power, speed
and extensibilit y. For the multi ple fixed-sector method, we introduced a
technique that partitions the sectors evenly. We also showed that using
our methods up to 52% power reduction for an external data aldress
bus and 4% reduction for a multiplexed bus between internal cache

Sector-ID

311 Trersit B32-B1
ransition >
321 Signal

Figure 3- DS Encoder

and external memory can be achieved.

7 REFERENCES

[1] D. Patterson, J. Hennessy, * Computer Architedure, A Quantitative
Approadh”, second edition, 1996.

[2] L. Benini, G. De Michdi, E. Macii, D. Sciuto, C. Silvano,
“ Asymptotic Zero-Transition Activity Encoding for AddressBuses in
Low-Power Microprocessor-Based Systems,” |IEEE 7th Great Lakes
Symposium on VLSI, Urbana, IL, pp. 77-82, Mar. 1997.

[3] W. Fornadari, M. Polentarutti, D.Sciuto, and C. Silvano, “Power
Optimization o System-Level Address Buses Based on Software
Profiling,” CODES, pp. 29-33, 2000.

[4] L. Benini, G. De Michdli, E. Macii, M. Porcino, and S. Quer,
“System-Level Power Optimization of Speda Purpose Applications:
The Beach Solution,” IEEE Symposium on Low Power Electronics
and Design, pp. 24-29, Aug. 1997.

[5] P. Panda, N. Dutt, “ Reducing Address Bus Transitions for Low
Power Memory Mapping”, European Design and Test Conference, pp.
63-67, March 1996.

[6] E. Musoll, T. Lang, and J. Cortadella, “ Explaiting the locdity of
memory references to reduce the aldressbus energy”, Proceadings of
International Symposium on Low Power Electronics and Design, pp.
202-207, Monterey CA, August 1997.

[7] M.R.Stan, W. P. Burleson, “ Bus-Invert Coding for Low Power 1/0”,
|IEEE Transadions on Very Large Integration Systems, Vol. 3, No. 1,
pp. 49-58, March 1995.

[8] M. Mamidipaka, D. Hirschberg, N. Dutt, “ Low Power Address
Encoding wsing Self-Organizing Lists’, International Symposium on
Low Power Design, Aug 2001.

[9] S. Ramprasad, N. Shanbhag, I. Haj, “ A Coding Framework for Low
Power Addressand Data Busss’, IEEE Transactions on Very Large
Scde Integration Systems, 7:212:221, 1999.

[10] Y. Aghaghiri, F. Fallah, M. Pedram, “ Irredundant Address Bus
Encoding for Low Power”, International Symposium on Low Power
Design, Aug 2001, pp 182-187.

[12]L. Macchiarulo, E. Macii, M. Poncino, “Low-energy for Deep-
submicron Address Buses’, International Symposium on Low Power
Design, Aug 2001, ppl76-181.

[12] www.smplescdar.org

[13] www.spec.org
" L as
ress

»| Sector Head 1 E32B1

(G2X1) 1 > 31 ontion

—) » »| s ’
»| Sector Head 2

(%
I+ P Sector Head 2M

Figure 4- FM S Encoder

