
1

Accurate and Efficient Power Simulation Strategy by

Compacting the Input Vector Set

Abstract
Accurate power estimation of digital CMOS circuit can be obtained by explicit simu-

lation. However, power dissipation is input dependent. To obtain an accurate power

estimate, a large input vector set has to be used resulting in large simulation time.

One solution is to generate a representative vector set of the original input vector set

that contains only a few thousand vectors which can then be simulated in a reasona-

ble time. This paper addresses the problem of vector compaction for power simula-

tion. We compact the input vector set such that the statistical properties which affect

the power consumption are preserved. Experimental results show that compaction

ratio of 100X is achieved with less than 2% average error in the power estimates.

Keyword: power estimation, simulation, input vector compaction, spatial temporal correlation

1. Introduction
The increase in integration and higher clock frequency have made power consumption an

important (and in some cases dominant) concern in today’s IC design. The popularity of porta-

ble applications and the increase in the packaging and cooling cost are also driving forces

behind the push for low power design. Accurate power estimation tools are required to assist

the designers in designing low power circuits.

For digital CMOS circuits, the total power consumption is given by the following formula:

(1)

The first term Pdyn represents the dynamic power required to charge and discharge the load

capacitances during the logic transitions and is given by:

(2)

Chi-ying Tsui
Department of Elect. and Elect. Engineering

Hong Kong University of Science and Technology
Clear Water Bay Hong Kong

Massoud Pedram
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089

Ptotal Pdyn Psc Pleakage+ +=

Pdyn 0.5
V dd

2
CLE switching()

T cycle
---×=

in Integration, the VLSI Journal, vol. 25 (1998)

pp.37-52

2

where Cload is the load capacitance, Vdd is the supply voltage, Tcycle is the clock cycle time,

and E(switching) is the expected number of transitions per clock cycle.

The second term Psc is the power consumption due to the direct (short circuit) current Isc which

flows when both the pMOS and the nMOS transistors are simultaneously on for a time duration

ΔT during the output transition [1] and is given by:

(3)

The third term Pleakage is the power consumption due to the subthreshold leakage current (Ileak-

age) which is governed by a bipolar-like mechanism and is carried by minority carriers and dif-

fusion currents.

Circuit level simulation based techniques[2][3] have been developed which can capture the

fine details of the transistor model. These methods are accurate and capable of handling vari-

ous device models and design styles. Because of the fine details of the transistor models that

these techniques employ, they suffer from high computational cost and memory overhead. A

fast transistor-level power simulator was developed in [4] which applies an event-driven timing

simulation algorithm to increase the speed by two to three orders of magnitude over conven-

tional circuit level simulators. It gives detailed power information (instantaneous, average and

rms current values) as well as the total power consumption which includes short circuit power,

leakage power and capacitive switching power. However, although orders of magnitude of

speed improvement are achieved, for large designs, still only thousands or hundreds of vectors

can be input to the simulator. This results in inaccuracy in the power estimation process as

described next. Power consumption in digital circuits is input pattern dependent, i.e. depending

on the input vectors applied to the circuit input, very different power estimates may be resulted.

To obtain an accurate average power consumption, a set of input vectors that resemble the

characteristics of data for typical applications is required. Usually these characteristic input

vector set is obtained from higher level simulations (such as instruction level, or behavioral

level simulation) and has a size of millions of vector. Input vector size of hundreds or thou-

sands, if selected arbitrarily, may not be able to capture this typical behavior and may thus lead

to underestimation or overestimation of the power consumption of the circuit. So although in

each simulation step the power estimation is very accurate, because of the limited number of

input vectors simulated, circuit level simulation may not give an accurate estimation of the

overall power consumption. One method to solve this problem is to compact the millions of

input vectors into a characteristic stimulus vector set which has a size of thousands, yet is sta-

tistically equivalent to the larger vector set.

Psc V ddIsc
TΔ

T cycle
--------------=

3

If the design is good [1] and the threshold voltage is not too low, the short circuit power and

leakage power is negligible compared to the capacitive power consumption. Under these

assumptions, the power estimation problem can be reduced to that of calculating the transition

count of each circuit node under a given delay model. Techniques have been developed which

offer orders of magnitude speed-up compared to the conventional circuit simulation. The tech-

niques can be classified into two categories, dynamic and static.

Dynamic techniques explicitly simulate the circuit under a gate-level logic model with a typi-

cal input vector sequence (or input stream). This has the same problem as the circuit simulation

in which the accuracy strongly depends on the input vector sequence. However, since gate level

simulation runs much faster than circuit level simulation, more vectors can be run. The gate-

level simulation still takes a lot of time to run tens of thousands of vectors (or more). Statistical

techniques such as Monte Carlo simulation approach [5] alleviate the above mentioned prob-

lem of pattern dependence. These methods are based on the technique of sampling. Power con-

sumption is estimated by simulating a small fraction of the input vector space. The average

power consumption for each sample is regarded as a random variable. From the central limit

theorem, the mean value of the random variable will converge to the average power consump-

tion of the circuit. This method assumes the signal and transition probabilities of the primary

inputs are independent and cannot handle signal correlations at the inputs. For many circuits

such as control path of a microprocessor or a finite state machine, the data inputs are indeed

both spatially and temporally correlated (we use the term spatiotemporal correlation to repre-

sent spatial and temporal correlations at the same time). The Monte-Carlo methods may thus

give inaccurate estimates.

Static techniques do not explicitly simulate the circuit. Instead, they rely on statistical informa-

tion (such as the mean activity and correlations) about the input stream and then calculate

(directly or incrementally) these statistical information for the internal nodes of the circuit in

order to obtain the average power consumption of the circuit [6][7][8]. The problem of input

dependence is alleviated by using appropriate statistical information that captures the charac-

teristics of the input vector. Static techniques usually employ probabilistic methods which cal-

culate the signal and transition probabilities of the internal nodes based on the probabilities of

the primary inputs. These methods are fast and alleviate the input dependence problem. Under

a real delay model, it becomes difficult to estimate the power due to glitches and thus the esti-

mation accuracy varies as a function of the gate inertia model and the glitch filtering scheme

employed. The accuracy is in general not as high as that obtained from explicit simulation.

In conclusion, explicit simulation can give an accurate power estimation but requires from

thousands to millions of simulation vectors to obtain an accurate overall power estimate. This

4

is clearly very costly (if not impractical). Probabilistic methods are fast and efficient since the

input dependence is implicitly captured, but they usually employ crude circuit models and

hence cannot provide very accurate estimates. To achieve very accurate power estimates (e.g.

estimating the power consumption of the chip before taping out), explicit simulation is a better

choice but to reduce the complexity of power estimation, a compact input vector set that can

capture the power consumption behavior of the given input data has to be derived. In this

paper, we investigate and identify the factors and properties of the input vector set that influ-

ence the power consumption of the digital circuit and develop an algorithm to compact a set of

input vectors such that these power determining properties are preserved.1 In particular, the

spatiotemporal correlations of the inputs has a direct and sizable impact on the power con-

sumption. We describe a method of compacting a set of input vectors such that the spatiotem-

poral correlations are preserved. From the experimental results, a compaction ratio of 100X

can be easily achieved with a less than 2% average error in the power estimates.

The rest of this paper is organized as follows. Section 2. discuss the factors and input vector

properties that affect the power consumption of the circuit. Section 3. presents the algorithm of

vector compaction. Section 4. describes an accurate and efficient multi-level power estimation

framework based on vector compaction. Experimental results are presented and conclusion

remarks are given in Section 5. and Section 6. respectively.

2. Factors Affecting the Dynamic Power Consumption
Since power consumption is input pattern dependent, the following signal properties have sig-

nificant impact on the power consumption of the circuit.

2.1. Transition Probability and Signal Correlation
The switching of a node can be viewed as a probabilistic event and hence the expected number

of logic transitions over a period of time can be estimated by the transition probability of the

node. Under the assumption that the primary inputs are temporally uncorrelated, the transition

probability of an internal node n is given by:

(4)

where TPn and Pn are the transition and signal probabilities of n, respectively. When calculat-

ing the signal probability of the internal nodes, signal correlation among the internal nodes due

to reconvergent fanout has to be taken into account. An exact method for calculating the signal

probability under the uncorrelated input assumption was developed using Ordered Binary

1. We use the term compaction as the process is a lossy compression.

TPn Pn 1 Pn–()=

5

Decision Diagrams (OBDDs) in [9].

The assumption of spatial and temporal independence at the primary inputs is however not

always true. Indeed, in many applications, only some input patterns out of all possible input

patterns are feasible and the sequence of the input patterns is far from random. For example, in

the microprocessor domain, input patterns are generated from architectural level traces which

are driven by the instruction opcodes and the instruction mix for typical applications.

Spatial correlation among the primary inputs is determined by their conditional probabilities.

Two signals, x and y, are spatially correlated if:

(5)

When calculating the signal probability of the internal nodes, two types of correlations have to

be considered. The first is the structural dependency due to reconvergent fanout. The second is

the stochastic dependency due to the primary input correlations. Nodes that are structurally

independent may become correlated because of the input dependency [10].

If the circuit inputs are not temporally independent, the switching activity has to be captured

by the transition probability which depends on the sequence of input patterns applied and

hence the transition probability of the primary inputs. In [8], transition probability of a signal is

modeled by the state transition probabilities of a lag-one Markov Chain consisting of two

states, 0 and 1. In [11], it is shown that by reshuffling the input vector sequence to achieve a

different temporal correlation with the same input signal probabilities, a power consumption

difference as high as 30% can be observed.

In [10], it is shown that the spatiotemporal correlation at the primary inputs has significant

impact on the power consumption of the circuit. For an input sequence having high correlation

(generated by a sequence counter), the power consumption can be as low as 5% of the power

consumption for another input sequence which has low correlation (generated by a random

number generator). To exactly account for the correlations is practically impossible even for

small circuits. (The number of correlation coefficient that must be considered among n inputs

is 2n.) In [10], the correlations are approximated by considering only pairwise signal correla-

tions. These pairwise correlations are captured among the sixteen possible transitions of a pair

of signals (x,y). The mathematical foundation of the model is a lag-one Markov Chain with

four states (0, 1, 2, 3 which correspond to 00, 01, 10, 11 encodings of (x,y)). In [8], it is shown

that the accuracy in estimating the switching activity of individual nodes in a circuit improves

by an average factor of 6X compared to the approaches that do not account for any of the cor-

relations.

P xy() P x()P y()≠

6

To summarize, signal probabilities, transition probabilities and spatiotemporal correlations are

the important properties of the primary inputs which affect the power consumption of the cir-

cuits. These properties are related to each other. Indeed if we know the pairwise transition

probabilities, then the signal and transition probabilities can be derived according to the fol-

lowing equations (which are related to the spatiotemporal correlations in a straight-forward

manner):

(6)

(7)

where P(x) and Px
a->b are the signal and transition probabilities of x and Px(a->b),y(i->j) is the

pairwise transition probabilities of x switching from a to b and y switching from i to j simulta-

neously.

3. A Vector Compaction Algorithm
The problem of vector compaction is stated as follows:

Vector Compaction Problem 1: Given an input vector sequence, S1, of length L1 with some

property P1, compact or reconstruct another vector sequence S2 of length L2 with property P2

such that P1 and P2 are the same (or nearly the same).

❒

The compaction ratio is equal to L1/L2. For the power estimation application, the relevant prop-

erties are the joint transition probabilities of the input signals. As it is difficult to account for

the exact joint transition probabilities, we use the pairwise transition probabilities to approxi-

mate it.

From the discussion in Section 2., if we closely resemble the pairwise transition probabilities,

the compacted vector set should be able to capture the power-determining factor of the original

vector set. To measure how closely the compacted vector set resembles the original vector set,

we use a metric C1 which measures the absolute error in all pairwise transition probabilities

among all possible combinations of inputs and is given by the following equation:

P x() Px 0 1→()y i j→()

j 0=

1

∑
i 0=

1

∑ Px 1 1→()y i j→()

j 0=

1

∑
i 0=

1

∑+=

Pa b→
x Px a b→()y i j→()

j 0=

1

∑
i 0=

1

∑=

7

(8)

where

(9)

xi is the ith input signal, P1
x(a->b),y(i->j) and P2

x(a->b),y(i->j) are the pairwise transition probabil-

ities of x and y for S1 and S2, respectively. Figure 1 shows an example of calculating C1.

.

So the problem of the vector compaction for power estimation is re-formulated as:

Vector Compaction Problem 2:Given an input vector sequence S1 of length L1 and a compac-

tion ratio R, generate an output vector sequence S2 of length L2 where L1/L2 = R and such that

C1, as defined in equations (8) and (9), is minimized.

❒

The algorithm for generating the compacted vector is described next.

We reduce the problem of observing pairwise transition probabilities to that of observing pair-

wise signal probabilities as follows. The four types of signal transitions, 0->0, 0->1,1->0, 1-

>1 are encoded by 4 symbols, a, b, c,d, respectively. The pairwise transition probabilities of

two signals x and y are then translated to the pairwise signal probabilities of these two signals

C1 Diff xi x j,()
j i 1+=

n

∑
i 1=

n 1–

∑=

Diff xi x j,() P1
xi a b→()x j c d→()

P2
xi a b→()x j c d→()

–
d 0=

1

∑
c 0=

1

∑
b 0=

1

∑
a 0=

1

∑=

S1
x1 x2 x3

0 0 0
1 1 1
0 1 0
1 1 0
0 1 1
0 1 1
0 0 1
1 0 1
0 0 1

S2
x1 x2 x3

0 0 0
1 0 0
0 0 1
1 1 1
0 1 0
0 1 1
0 0 1
1 0 1
0 0 1

P1
x1(a->b),x2(i->j) P2

x1(a->b),x2(i->j)

x1(a->b)

x 2
(i

->
j)

0->0 0->1 1->0 1->1

1-
>

1
1-

>
0

0-
>

1
0-

>
0

x 2
(i

->
j)

0->0 0->1 1->0 1->1

1-
>

1
1-

>
0

0-
>

1
0-

>
0

x1(a->b)

0 1/8 1/8 0

1/8

1/41/81/8

1/8

0

0

0

0

00

0

0 1/4 1/4

1/8

1/81/8

1/8

0

0

0

0

0

0

0

0

0

Diff(x1,x2) = 0.5

Similarly Diff(x1,x3) = 0.5 and Diff(x1,x2) = 0.75

C1 = 0.5 + 0.5 + 0.75 = 1.75

Figure 1 Example showing how to calculate C1

8

with the new signals taking on values (a,b,c,d) instead of (0,1). For example,

(10)

and

(11)

The vector sequence S1 of Figure 1 can then be cast as a vector sequence of symbols as shown

in Figure 2.

Generating a vector sequence that satisfies the pairwise transition probabilities is thus reduced

to generating a vector set of symbols which satisfies the pairwise symbolic probabilities. (See

Section 3..1) After the generation of the symbolic vectors, we have to convert it back to a

sequence of vectors of signal values 0 and 1 for the simulation purpose. For a sequence of n

binary vectors, n-1 symbolic vectors can be obtained. Conversely, if we have n-1 symbolic vec-

tors, we should be able to reconstruct n binary vectors accordingly. However, the consecutive

symbol vector may not be “temporally compatible” and thus we may fail to generate any

binary vector. The following example illustrates the incompatibility problem. Let αi
n-1 and αi

n

be two consecutive symbols for signal i. If αi
n-1 = a, then the corresponding binary bit pair

bi
n-1 and bi

n is (0,0). αi
n is then used to generate the binary bit pair (bi

n, bi
n+1). But bi

n is

already bound to 0 by αi
n-1, so αi

n can only be either a or b since it corresponds to binary pairs

(0,0) and (0,1). Therefore only the following pair of symbols are temporally compatible: (a,a),

(a,b), (b,c), (b,d),(c,a),(c,b), (d,c),(d,d). One way to solve this problem is that when we gener-

ate the symbolic vectors, we make sure that the consecutive vectors are temporally compatible.

So the problem of vector compaction is formulated as follows:

Constrained Symbolic Vector Compaction Problem: Given a symbolic input vector set S1 of

length L1, compact or reconstruct another symbolic vector set S2 of length L2 such that the cost

metric C1 is minimized subject to the constraint that S2 satisfies the temporal compatibility

Px 0 0→()y 1 0→()
P x a=() y c=()∧()=

Px 1 1→()y 0 0→()
P x d=() y a=()∧()=

S1

0 0 0
1 1 1
0 1 0
1 1 0
0 1 1
0 1 1
0 0 1
1 0 1
0 0 1

b b b
c d c
b d a
c d b
a d d
a c d
b a d
c a d

Figure 2 Binary vector vs. symbolic vector

9

constraint.

❒

Another method is to neglect the temporal incompatibility between pairs of consecutive sym-

bolic vectors. Instead of connecting the pairs of binary vectors generated from the two consec-

utive symbol vectors, two separate pairs of binary vectors are generated (we call it the

unconstrained symbolic vector compaction problem). In this case we generate 2n binary vec-

tors. When the vectors are input to the simulator, only the power consumption due to alterna-

tive pairs of vectors will be included. This method has a drawback that 2n binary vectors will

be generated instead of n. Therefore the compaction ratio will be reduced by a factor of 2.

3.1. The Compaction Algorithm
The overall flow of the compaction process is shown in Figure 3.

The first phase is the statistical data analysis stage. Here the information on the pairwise transi-

tion probabilities is collected. Note that this is the same as the pairwise symbolic probabilities

P(x=α^y=β) (where α and β are one of the four symbols: a,b,c,d).

The main phase of the process is the vector generation stage. It takes in the pairwise transition

probabilities and a user-given compaction ratio R and generates a set of symbolic vectors. For

the unconstrained symbolic vector compaction, a row based construction algorithm is used in

which one vector is built at a time until all required vectors are generated. The objective of the

construction process is to maintain the pairwise transition probabilities. During the vector con-

struction process, a symbol is selected for each input bit as follows. For the first bit x0, the sym-

bol α that has the maximum transition probability (P(x0=α)) is picked. P(x0=α) can be

obtained from the pairwise transition probability as follows:

(12)

where α is symbolic code for the k->l transition and xj is any input bit which is different from

x0.

For an input bit xj (j>0) the symbol that has the largest sum of joint pairwise symbolic proba-

bilities with the symbols that have already been picked for the previous input bits (xi,i<j) is

P x0 α=()() P x0k l→
x jp q→

()
q 0=

1

∑
p 0=

1

∑=

10

selected. The following objective function F1 is used to measure the pairwise transition proba-

bilities (0 through j-1)

(13)

where α is the symbol being considered for xj and βi is the symbol already chosen for bit xi.

The symbol α* that maximizes F1 is chosen for xj. The vector is generated after a symbol is

chosen for each bit.

Let L1 be the number of vectors to be generated. After symbols are chosen for all the bits for

the first vector V1, the pairwise symbolic probabilities are different for the remaining L1-1 vec-

tors since some symbolic pairs have already occurred in V1. The pairwise symbolic probabili-

ties have to be updated as follows. Let αi and βj be the symbols chosen for bit xi and xj in V1,

respectively. Before generating V1, the expected number of occurrence of xi = αi and xj = βj in

input vector set

input preprocessing
statistical data
collection and

analysis

compaction
ratio R

pairwise transition probabilities

vector generation

symbolic vectors

conversion to
binary vector pairs

compacted input vector set

Figure 3 Flow of compaction algorithm

F1 P x j α=() xi βi=()∧()
i 0=

j 1–

∑=

11

L1 vectors is given by . After they are chosen for V1, the expected

number of occurrence of xi = αi and xj = βj in the remaining L1 - 1 vectors is equal to

. Therefore the pairwise symbolic probability of xi = αi and xj = βj

has to be updated as follows:

(14)

For the other pairwise symbolic probabilities of xi = α and xj = β where α ≠ αi or β ≠ βj, they

have to be updated as follows:

(15)

The final phase is translating the symbolic vectors into binary vector pairs which is a simple

decoding mechanism.

For the constrained symbolic compaction problem, we have to ensure that the symbolic vector

generated at step t is temporally compatible with the one generated at step t-1 as described

next. When selecting a symbol αi
t for bit xi for the tth vector, we can only choose from the sym-

bols that are temporally compatible with the symbol αi
t-1 for bit xi where αi

t-1 is the symbol of

xi selected for the t-1th vector. We choose the symbol that is temporally compatible and has the

minimum F1 given by equation (13). Because of the temporal compatibility restriction, the

symbolic vectors generated do not necessarily result in minimum C1. It is a very difficult prob-

lem to optimize C1 for the constrained symbolic compaction. Here we propose a greedy mech-

anism. After we obtain the first set of symbolic vectors from the procedure described above,

we translate them to a binary vector sequence S. For each binary vector, we calculate the gain

Gi of changing the value of bit xi. The gain is the change in C1 if xi is flipping and is calculated

as follows. Let S* be the new binary vector sequence if xi is flipping, Gi is then given by:

(16)

where Diff(xi,xj) and Diff*(xi,xj) are the sum of the absolute difference in pairwise transition

probabilities between xi and xj for S and S*, respectively. The calculation of Diff(xi,xj) is given

by equation (9). The bit that has the largest positive gain G is chosen to change value. The

gains of the rest of the bits are recalculated after the value of xi is changed. The process is

repeated for every bit that has a positive gain. Then we go to the next vector and repeat the bit

P xi αi=() x j β j=()∧()L1

P xi αi=() x j β j=()∧()L1 1–

P xi αi=() x j β j=()∧()
P xi αi=() x j β j=()∧()L1 1–

L1 1–
---=

P xi α=() x j β=()∧()
P xi α=() x j β=()∧()L1

L1 1–
--=

Gi Diff xi x j,() Dif f ∗ xi x j,()–
j i≠
∑=

12

changing mechanism. After we try on every vector, the whole process is iterated again until no

reduction in C1 is observed or the number of iterations reaches a user-defined number.

3.2 Complexity Analysis
For unconstrained symbolic vector compaction, we have to choose a symbol for bit xk such that

F1 given in equation (13) is maximum. Therefore the complexity to select symbols for a row is

O(n2) where n is the number of input bits. The total complexity is O(ln2) where l is the number

of vector in the new vector set.

For constrained symbolic vector compaction, the complexity of calculating the gain during the

greedy algorithm is O(n) and the complexity of processing each vector is hence O(n2). The

total complexity of each iteration is thus also equal to O(ln2) where l is the number of vectors

in the new vector set.

4. A Paradigm for Efficient and Accurate Multi-level Power Esti-
mation
Modern VLSI chips may contain millions of transistors. Even though we may compact the

input vectors to one or two thousands, it is still very time consuming to simulate the whole chip

using the compacted vector set at the circuit (or even the gate) level. The fastest transistor level

simulators have a performance of 1000 transistor-vectors per 1 CPU second (on Sun Sparc 20).

So simulating a 100K transistor circuit for 1000 vectors takes 100,000 seconds! An efficient

but accurate chip level power estimation paradigm which can solve the problem is proposed as

follows. The chip is first divided into several building blocks. Each building block has a

detailed structural model at the gate level or the circuit level. A behavioral model of the chip is

built using the building blocks as components. The behavioral model can be described in

VHDL, Verilog or other high level hardware modeling languages. Simulation is then carried

out at the behavioral level (as it will be significantly faster than gate or transistor level simula-

tion). The input vectors to the simulator are derived from the set of typical benchmark applica-

tions that the chip is designed for. A statistical data collection agent is then used to collect the

bit switching statistics for the buses or nets that are connected to the input of each building

block. After the statistical data are collected, a vector generation program is used to generate

the compacted input vector set for each building block which can then be fed to the corre-

sponding low level simulator to estimate the power consumption of each building block. The

total power consumption of the whole chip can be obtained by adding the power consumption

of all building blocks and the power consumed at the buses which connect the building blocks.

5. Experimental Results
To demonstrate the effectiveness of the vector compaction technique, we carried experiments

13

on MCNC-91 benchmark circuits and some datapath circuits such as adders and multipliers.

Two sets of vectors, each having 100,000, are used as input vector sets. The first vector set con-

sists of a highly correlated vector set used for testing purpose. The second one is a vector

sequence generated by applying a set of operators on the previous generated vector. The opera-

tors include random vector generation, flipping all bits, shift right or left by a fixed number of

bits, flip alternate bits, etc. The operators are selected randomly and applied multiple times.

The simulator used is a gate-level logic simulator which can measure real delay dynamic

power consumption. A clock frequency of 20MHz is assumed and all power measures are in

μW. The run time is reported on a SUN SparcStation 20.

The first experiment is to show the significance of preserving the spatiotemporal correlations

during the vector compaction process. We compact the vector set with a compaction ratio of

100X. Gate level power simulator with real delay model is used for the power estimation.

Table 1 summarize the results for both unconstrained and constrained symbolic vector com-

paction, respectively. For each vector set, we provide the compaction results corresponding to

when we account for both spatial and temporal correlations and when we only account for tem-

poral correlations. It can be shown that by considering spatiotemporal correlations using pair-

wise transition probabilities, the compacted vector gives a very accurate power estimation

when the vectors are pumped through the gate-level simulator. The average errors compared to

the original vector set are less than 2% for both unconstrained and constrained symbolic vector

compaction. The maximum errors are 5.07% and 4.45%, respectively. It is more accurate com-

pared to the case when we only consider temporal correlations which has an average error of

15% and a maximum error of 75%. The reason is that the latter approach does not fully capture

the input signal correlation which has significant impact on the total power consumption.The

above trend is also observed when we measured the power consumption using zero delay

model. Table 2 summarizes the CPU time to compact the input vectors by 100X for the uncon-

strained symbolic vector generation. It can be seen that the runtime is very fast.

The second experiment uses Powermill [4], a circuit level power simulator which is the indus-

trial standard for power estimation. Two sets of vector sequences are used. Each has 4000 vec-

tors. The first set is a highly biased vector set and the second set is a randomly-generated

vector set. Each vector set is compacted by 20X using unconstrained symbolic vector genera-

tion. Table 3 summarizes the results. Power is measured by the average current drawn from the

power supplies and accounts for both capacitive and short-circuit currents. The result clearly

shows the effectiveness of the vector compaction program in preserving the power-determining

behavior of the original sequence. % error is below 5% in all cases and the average % error is

less than 2%.

We also used the vector compaction methodology to implement a multi-level power estimation

14

framework for a video compression application. The power estimation framework is built to

estimate the power consumption for different motion estimation architectures. An architectural

level simulator was written using C. Streams of video data was input during the architectural

level simulation and bit statistics at the inputs of the processing elements in the architecture

were collected. After the architectural level simulation, the vector compaction program is

called to generate a compacted set of input vector for the detailed gate-level power simulation.

We used the framework to simulate the power consumption of a 1-dimensional systolic mesh-

connected array architecture for full search motion estimation algorithm [12]. Figure 4 shows

the block diagrams of the architecture and the basic processing element. 1,000,000 input vec-

tors derived from real video sequences were used in the architectural simulation and 2,000 vec-

tors were generated using unconstrained symbolic vector compaction. Real delay gate-level

power estimations were carried out for both the original vector set and the compacted vector

set. Table 4 summarizes the power estimation results. It can be seen that high accuracy can be

maintained (about 1.3% error) while the simulation time is reduced by 500 times if the com-

pacted vector set is used.

Figure 4 16 X 1 systolic mesh-connected array architecture
and basic processing element

4,1 3,1 2,1 1,1

3,2 2,2 1,2

2,16 1,16

...
...

...
...

...
...

...
...

..

...
...

...
...

...
...

...
...

..

...
...

...
...

...
...

...
...

..

1,1 2,1 3,1 4,1

1,2 2,2 3,2

1,16 2,16

..........................

..........................

..........................

PE
(0,0)

PE
(1,0)

..........

PE
(15,0)

Accumulator Max.

a) 16 X 1 systolic mesh-connected array architecture

PEx y

a

z

x

a

y

zb) Structure of the basic processing element

abs

15

6. Conclusion
We presented a method of compacting a large vector set into a characteristic vector set with

smaller number of vectors. By doing so, the number of simulation cycle required for obtaining

power estimation is dramatically reduced. We showed that by keeping the pairwise transition

probabilities which is used to mimic the spatiotemporal correlation during the vector compac-

tion, the average error in power estimation using the compacted vector is within 2% of that

using the original vector. Also the vector compaction methodology was used to implement an

accurate and efficient multi-level power estimation framework.

Bibliography

[1] H.J.M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on
the design of buffer circuits”, IEEE Journal of Solid State Circuits, vol. 19, pp. 468-472,
August, 1984

[2] S. M. Kang, “Accurate simulation of power dissipation in VLSI circuits”, IEEE Journal
of Solid State Circuits, vol. 21, no. 5, pp. 889-891, Oct., 1986

[3] F. Rouatbi, B. Haroun and A. J. Al-Khalili, “Power Estimation Tool for Sub-Micron
CMOS VLSI Circuits”, in Proceedings of European Design Automation Conference, pp.
204-209, 1992

[4] C. Deng, “Power Analysis for CMOS/BiCMOS Circuits”, in Proceedings of Interna-
tional Workshop on Low Power Design, pp. 3-8, April, 1994

[5] R. Burch, F. Najm, P. Yang and T. Trick, “A Monte Carlo approach for power estima-
tion”, IEEE Transactions on VLSI Systems, vol. 1, no. 1, pp. 63-71, March, 1993

[6] A.A. Ghosh, S. Devadas, K. Keutzer and J. White, “Estimation of Average Switching
Activity in Combinational and Sequential Circuits”, in Proceedings of IEEE Design
Automation Conference, pp. 253-259, June, 1992

[7] C-Y. Tsui, M. Pedram and A. M. Despain, “Efficient Estimation of Dynamic Power Dis-
sipation under a Real Delay Model”, in Proceedings of IEEE International Conference on
Computer-Aided Design, pp. 224-228, Nov., 1993

[8] R. Marculescu, D. Marculescu and M. Pedram, “Logic level power estimation consider-
ing spatiotemporal correlations”, in Proceedings of IEEE International Conference on
Computer-Aided Design, pp. 294-299, Nov., 1994

[9] S. Chakravarty, “On the complexity of using BDDs for the synthesis and analysis of
boolean circuits.”, in Proceedings of the 27th Annual Allerton Conference on Communi-
cation, Control and Computing, pp 730-739, 1989

[10] R. Marculescu, D. Marculescu and M. Pedram, “Efficient power estimation for highly
correlated input streams”, in Proceedings of the 32nd IEEE Design Automation Confer-
ence, pp. 628-634, June, 1995

[11] S. Rajgopal and G. Mehta, “Experiences with Simulation-Based Schematic Level Cur-
rent Estimation“, International Workshop on Low Power Design, pp. 9-14, April, 1994

[12] P. Pirsch and T. Komarek, “Array architectures for block matching algorithms”, IEEE
Transactions on Circuits and Systems, vol. 36, no. 36, pp. 1301-8, October, 1989

16

Circuits

Vector Sequence S1 Vector Sequence S2

Power
Est.
of

orig.
vector

set

% Error Power
Est. of
orig.

vector
set

%Error

Comp.
using

te only

Unconst.
comp.
using
sp_te

Const.
comp.
using
sp_te

Comp.
using

te only

Uncons.
comp.
using
sp_te

Const.
comp.
using
sp_te

9symml 2142.1 9.24 0.34 0.35 2210.0 36.67 0.96 0.00

C432 856.8 24.94 1.72 1.11 701 9.60 0.43 1.39

C880 1403.2 3.00 0.98 0.07 1282.2 3.74 0.44 0.12

C1908 1173.7 7.85 0.38 0.17 1110.9 8.60 0.40 1.38

C3540 11985 13.36 0.58 0.04 13516.6 3.65 2.02 1.04

C6288 98573 0.25 3.25 1.17 122789 44.21 0.57 2.32

add16 1368.7 3.98 0.77 0.57 1286.2 16.39 0.49 1.71

mul2 153.1 75.31 0.85 0.69 140.9 2.63 0.92 0.55

mul4 770.2 14.31 0.52 0.61 879.8 15.51 1.07 0.54

mul8 5206.1 8.45 1.14 0.80 6193.6 11.05 0.28 1.52

mul16 27815 18.67 5.07 2.10 37552 40.70 0.36 2.10

cordic 502.0 11.67 0.44 0.51 483.8 7.28 0.12 0.05

f51m 798.0 15.48 0.15 0.94 970.8 30.28 3.09 3.10

comp 4355.2 12.62 0.99 1.97 3782.1 22.32 0.40 3.11

count 3314.5 6.66 3.43 2.16 2500.1 14.94 0.64 0.21

k2 4301.6 0.24 3.08 4.45 3738.7 3.58 2.57 3.74

x1 2379.1 2.53 1.65 0.39 2147.1 9.27 0.15 0.95

apex7 1725.6 8.19 0.31 0.11 1653.4 6.35 1.14 0.57

Average
% error

13.15 1.43 1.01 15.93 0.89 1.35

Table 1: %Error in power estimation using unconstrained symbolic vector compaction:
Real Delay (sp-te: spatiotemporal correlations; te: temporal correlation only)

17

Circuit
unconstrained symbolic
vector compaction (sec)

9symml 0.5
C432 7.8
C880 26.1
C1908 7.65
C3540 17.2
C6288 8.43

adder16 6.63
mul2 0.93
mul4 1.6
mul8 7
mul16 25.3
cordic 4.34
f51m 0.4
comp 5.73
count 6.48

k2 13.25
x1 20.7

apex7 13.6

Table 2: CPU time (in sec) for unconstrained symbolic vector compaction

current(mA) for
biased seq.

current(mA) for ran-
dom seq.

circuit original comp. original comp.
C432 0.407 0.411 0.775 0.748
C880 0.779 0.765 1.467 1.516
C1908 1.282 1.254 1.923 1.936
C3540 3.397 3.488 5.718 5.822
C6288 14.57 13.83 47.60 47.62
mul2 0.070 0.070 0.096 0.097
mul4 0.579 0.582 0.839 0.833
mul8 3.185 3.131 6.305 6.315

Avg. % Error 1.87 1.41

Table 3. Current Estimation by PowerMill

Circuit
Power estimation using

1,000,000 vectors
Power estimation using

2,000 compacted vectors

16X1 motion estima-
tion architecture

150.61 152.58

Table 4: Comparison of the power estimation for the motion estimation architecture
using the compacted vector set

