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Abstract: This paper presents a dynamic energy management policy for a wireless video streaming system, consisting of a battery-powered 
client and a video server. The video quality in wireless streaming is a function of three factors: the encoding aptitude of the server, the 
decoding aptitude of the client, and the wireless channel conditions. First, the energy consumption of a wireless video streaming system is 
modeled considering these factors, and then, a model of the wireless video streaming system is presented. Using the proposed model, the 
optimal energy assignment for each video frame is derived so as to maximize the system lifetime while satisfying a given minimum video 
quality requirement. Experimental results show that the proposed policy increases the system lifetime of a wireless video streaming system by 
an average of 20%. 

1 Introduction 
We have seen an explosive growth in wireless multimedia applications, e.g., streaming audio and video in today’s consumer electronics. This 
trend is the result of the availability of mobile communication and computing systems. The mobility of these systems, in turn poses two 
challenges for the designers: (1) establishing and maintaining a stable communication channel for real-time operation and (2) power-aware 
operation so as to increase the lifetime of the battery-powered wireless system while meeting a minimum quality of service (QoS) 
requirement. Furthermore, it is desirable to provide a mechanism for graceful degradation in QoS so that a dynamic power manager (DPM) 
can incrementally trade off QoS for higher energy efficiency. Fine Granularity Scalability (FGS) coding technique [1], which was adopted as 
the standard in MPEG-4, provides an effective mechanism for graceful video quality degradation based on its hierarchical layer structure, 
which consists of a base layer and one or more (optional) enhancement layers. Although extensive studies have been conducted on the 
hierarchical layer structure of MPEG-4 and its error resiliency under fluctuations in the channel bandwidth [2][3][4], energy efficiency in a 
battery-powered server-client system has received little attention.  

For the video streaming application, there are two sources of energy consumption in wireless mobile hosts: the computation energy for 
processing a video stream and the communication energy for transmitting and receiving the data. The computation energy of a server and a 
client is usually a strong function of the CPU frequency, which can be changed by employing methods such as dynamic voltage and 
frequency scaling (DVFS) [5]. The communication energy, on the other hand strongly affects the bit-error-rate (BER), and hence, the video 
quality.  

A modern digital communication system, as depicted in Figure 1, comprises of two transceivers. A base-band transceiver, which uses 
digital signal processing, encodes the input data bits so as to increase the data fidelity against unexpected changes in the channel 
characteristics. A pass-band transceiver, which uses analog signal processing, modulates digital data into analog symbols and guarantees a 
minimum received signal-to-noise-ratio (SNR). In order to design a low-energy communication system, the overall energy consumption of 
the transmitter and receiver should be considered. There are detailed studies of the trade-off between energy consumption and BER in the 
communications field [6]. These studies can be divided into two main categories. The first set of techniques, which focus on the pass-band 
transceiver, exploit the fact that different modulation schemes result in different BER vs. SNR characteristics. The basic idea is that by 
adaptively changing the modulation and/or equalization, while keeping the received SNR at the receiver constant, one can achieve different 
BER. The second set of techniques, which focus on the base-band transceiver, study the interaction between code performance and 
encoder/decoder design complexity. The main idea is to add a number of error controlling bits to the original data bits to protect them from 
channel changes. The key trade off is between the complexity of the encoding/decoding algorithms and the BER.  

The achievable video quality in the streaming video systems is determined by three factors: the encoding capability of the server, the 
decoding capability of the client, and the wireless channel error rate. It is well known that channel bandwidth fluctuation due to various 
external causes can result in the severe degradation in the video quality. This is due to the streaming nature of this real-time operation and the 
extra time overheads required for retransmissions if errors occur in the data packets.  

The encoding (decoding) aptitude of the server (client) is defined as the amount of data that can be processed in a given deadline. When 
the server (or/and the client) changes its operating frequency and voltage to extend its battery lifetime, the encoding (decoding) aptitude is 
also affected; so is the quality of the streaming video. This scenario is not uncommon because many of the state-of-the-art processors which 
are designed for mobile applications are equipped with DVFS for low-power operation [8]. In [9] a low energy MPEG-4 streaming policy 
using a client-feedback method was proposed where the client’s decoding capability at each time slot is sent to the server and the server 
adjusts its transmission rate based on the feedback from the client. By using this feedback approach, a significant amount of communication 
energy can be saved. However, the authors considered only energy consumption on the client side, and ignored the server in their analysis. 
Other related work include reference [10], where the authors proposed an energy-optimized image transmission system for indoor wireless 
applications, which exploits the variations in the image data and the wireless multi-path channel by employing dynamic algorithm 
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transformations and joint source-channel coding. A detailed energy model for the client-server system was proposed and a global 
optimization problem solved by using feasible direction methods that resulted in an average of 60% energy saving for different channel 
conditions. 

In this paper, we propose an adaptive policy for a wireless video streaming system in which the optimal energy assignment to each video 
frame considering energy consumptions of both the server and the client is employed. The system energy consumption is thereby minimized, 
while meeting a required video quality constraint. Hierarchical game theory is used to solve the corresponding mathematical optimization 
problem. Experimental results show an average of 20% increase in the overall system lifetime. In [7] a low energy wireless communication 
system is described, where the modulation level and transmit power of the transmitter and the aptitude of channel decoder of the receiver are 
dynamically changed to match the characteristics of the communication channel, thereby, minimizing the energy consumption of the 
transceivers. The game theoretic framework proposed in this paper is similar to that of [7]. However, in our proposed work we consider not 
only the power dissipation of the transceivers but also the power dissipations of the encoding and decoding cores; furthermore, the application 
scenario that is targeted in our paper is video streaming in a client-server system whereas in [7] the application domain was related to mobile 
ad-hoc networks. In addition, in our work we satisfy an additional constraint, which is related to the average video quality received by the 
client. Finally, in our application, we impose a maximum power dissipation constraint on the server and client, which captures the 
electrochemical constraint on the maximum current output of the battery sources. 

The remainder of this paper is organized as follows. Section 2 includes backgrounds on MPEG-4 FGS, model for energy consumption of 
the server and the client in the streaming system. Section 3 describes our energy assignment problem, and section 4 discusses the game 
theoretic formulation for this problem. Experimental results are described in Section 5 and it is followed by conclusion in Section 6.  

2 Background 
2.1 Fine Granularity Scalability (FGS) 
To adapt to a time-varying channel capacity (which is in turn due to changes in the channel conditions, for example because of congestion or 
fading phenomena), a number of scalable video coding techniques have been proposed. Typical techniques include SNR scalability, temporal 
scalability, and spatial scalability in MPEG-2 and MPEG-4 [11]. In these layered scalable coding techniques, the encoded bit-stream consists 
of a base layer and several enhancement layers. The bit-rate of the base layer is determined by the minimum channel bandwidth and is 
sufficient to ensure a minimum video quality. The enhancement layers provide higher video quality when the channel has extra bandwidth for 
the transmission of extra layers.  

The FGS video coding technique, which has been adopted as the standard in MPEG-4, provides a graceful adjustment to the video quality 
compared to other scalable coding technique because with this technique, any number of bits in the enhancement layers may be truncated 
according to the channel condition. Therefore, the Video quality (VQ) can be represented as a continuous (linear) function of the number of 
transmitted bits:  

. .( )send b eVQ k R k R R= = +  (1-a) 
where k is a regression coefficient, Rsend is the total bit-rate (in bits/sec), Rb is the base layer bit-rate, and Re is the enhancement layer bit-rate. 
Note that Rb must be less than the minimum attainable bandwidth in the wireless channel; otherwise, no useful video transmission is possible 
and VQ goes to zero. Re is varied in response to the channel conditions. Rsend is thereby set to provide an acceptable level of video quality by 
transferring the minimum amount of video data to the client subject to the existing channel conditions and the remaining battery lifetimes of 
the video server and/or client. Note that the following inequality should also be satisfied,  

.send f VQR fκ ε≤ +  (1-b) 
This inequality simply states that the total bit-rate in the channel should be less than or equal to the bit generation rate of the encoder’s 
processing core, which in turn can be expressed, as first order approximation, in terms of  operating frequency, f. κf and εVQ denote the 
coefficients of this first order approximation.   

2.2 Energy Model of the Server 
The energy consumption of the server for processing and transmitting a video frame may be written as:  

= +S S S
Comp CommE E E  (2) 

where ES
Comp and ES

Comm denote the per-frame energy consumption costs of the computation and communication processes in the server. 
ES

Comp and ES
Comm are in turn calculated as follows: 

( )
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Figure 1. Communication system model 
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where CS
eff denotes the effective switched capacitance per clock cycle time in the server, VS is the supply voltage level (assuming full swing 

transitions) of the server’s processing core, f S is the clock frequency of the server CPU, and τ is the time duration of a frame (i.e., inverse of 
its frame rate). PEnc, PMod, and pamp denote power consumptions of the corresponding blocks in the transmitter. In this equation, pamp is the 
dominant term. The other terms tend to be smaller in magnitude and depend linearly on the symbol rate with an additional constant. Hence, 
for our optimization purposes, the communication energy consumption of the server may be approximated as:  

( )S
C om m T x s const am pE P R P p τ= ⋅ + + ⋅  (4) 

where PTx and Pconst are the symbol-rate-dependent and constant power consumption components of the base-band transmitter. Rs denotes the 
symbol rate.  

To characterize the bit error rate (BER) in terms of the power consumption of the transmitter, the relationship between the received signal-
to-noise ratio (SNR) and the BER of the pass-band transceiver, i.e., the modulating/demodulating pair, can be used. For example, consider a 
Quadrature Amplitude Modulation (QAM) scheme where the BER is related to the received SNR by the following equations (cf. [6]): 

 

1 (1 )
12. 1 . 3

1

M

rcvd
M

BER P
SNRP Q

MM

= − −
⎛ ⎞⎛ ⎞

= − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠  

(5) 

where M is the number of constellation points in the QAM modulation, typically 2 bM =  where b is the number of information bits 
represented by each constellation point. SNRrcvd is the received signal-to-noise-ratio at the receiver. Let N0, β, and Rs denote the noise spectral 
density, the spectral shaping factor, and the symbol rate, respectively. The received SNR is related to the transmit power level pamp, noise in 
the channel PNoise, and the path loss parameter, σ, by [6]: 

 0

amp amp
rcvd

Noise s

p p
SNR

P N R
σ σ

β
= ⋅ = ⋅

⋅ ⋅  
(6) 

For a given BER and modulation scheme, i.e., for fixed b, one can calculate the required SNR, from Eqn. (5), and then use Eqn. (6) to find 
the minimum required transmit power level. The overall energy consumption of the transmitter for transmitting a single symbol is then 
calculated from Eqn. (4).  

 

2.3 Energy Model of the Client 
The energy consumption of the client for receiving and processing a video frame may be written as:  

 
C C C

Comp CommE E E= +  (7) 

where EC
Comp and EC

Comm denote the per-frame energy consumption costs of the computation and communication processes in the client. They 
are calculated as follows: 

2C C C
Comp eff CE C V f τ= ⋅ ⋅ ⋅  (8) 

where CC
eff denotes the effective switched capacitance per clock cycle time in the client, VC is the supply voltage level (assuming full swing 

transitions) of the client CPU, and f C is the clock frequency of the client CPU. EC
Comm is due to energy consumptions of the low noise 

amplifier, the demodulating block, and the channel decoding block and may be written as:  

 ( )C
Comm LNA Demod DecE P P P τ= + + ⋅

 
(9) 

where PLNA, PDemod, and PDec denote the power consumptions of the corresponding blocks in the receiver. Considering that all blocks except 
the channel decoder consume fixed amount of power and do not respond to changes in channel conditions, for optimization purposes, the 
client energy consumption may be approximated as: 

( )C
Com m Rx s const DecE P R P P τ≅ ⋅ + + ⋅  (10) 

where PRx and Pconst are the symbol-rate-dependent and constant components of power consumption of the pass-band receiver.  
Typically, a channel decoder is a multi-stage implementation of a recursive decoding function. Therefore, the accuracy of decoding is 

increased as the number of decoding stages (iterations) increases. On the other hand, increasing the number of stages would increase the 
power consumption of the decoder. In this work, a Viterbi decoder is studied as the channel decoder. In adaptive Viterbi algorithms (AVA), 
developed in [12]-[14], the decoding performance is increased by reducing the number of operations required to decode a single bit. This is 
achieved by reducing the Truncation Length (TL) or by reducing the number of Survivor Paths (SP), i.e., those paths that are kept in order to 
find the optimum path. There are two main variations of the AVA. In the first variation, which is called the T-Algorithm [16], a fixed 
Threshold T, is chosen and then those paths that have path metrics equal to or less than T are included in the SP memory. In the second 
variation, called the M-Algorithm [15], a fixed number (M) of paths are kept and all other paths are discarded. These paths are selected by 
choosing the first M paths with the minimum path metric values.  

Consider an adaptive Viterbi decoder with the functional block diagram depicted in Figure 2a. The decoder can be divided into three basic 
units. The input data (i.e., the noisy observation of the encoded information bits) is used in the Branch Metric Unit (BMU) to calculate the set 
of branch metrics λji,k. These are then fed to the Add-Compare-Select Unit (ACSU) to update the path metric cost according to the following 
recursive equation: 
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, 1 , , , ,min( , )i k j k ji k l k li kγ γ λ γ λ+ = + +
 (11) 

where γi,k is the path metric cost for state si  in time step k, and λji,k is the branch metric cost between states si and sj from time instances k and 
k+1, respectively (cf. Figure 2b). The Survivor Memory Unit (SMU) processes the decisions that are being made in the ACSU in order to 
carry out the ACS-recursion and outputs the estimated path, with a latency of at least TL.  

Power consumption for an adaptive Viterbi decoder may be macro-modeled by summing up the power consumption of each block times 
the number of paths that block is being used. This would result in following proposed power macro-model: 

( )2 .( . )K
D e c B M U A C S U S M UP P P T L P= + +

 (12) 

where PBMU, PACSU, and PSMU are the per-operation power consumptions of the corresponding modules and K represents the memory depth of 
the corresponding convolutional encoder. Notice that the ACSU module performs two additions and one comparison operation in each step 
(cf. Eqn. 11). 
 

3 Lifetime Optimization Problem 
The encoding/decoding aptitude of an image processing core is a strong function of its operating frequency and voltage level. Thus, one can 
characterize the video quality VQ of frame j as: 

 ( , , )s c
i j j jVQ f e e ω=   (13) 

where eS
j and eC

j denote the server and the client energy consumptions for frame j while ωj  denotes the wireless channel conditions for 
transmission of frame j.   

We consider a wireless system operating over a fading channel. Time is assumed to be discrete. Each frame is processed in one timeslot of 
duration τ, where τ is the inverse of the frame rate. In each timeslot, the channel state changes among a number of different states chosen 
from a finite set 

1 2{ , , , }nω ω ωΩ =  according to a probabilistic model [16]. The server and the client are assumed to be battery-powered, 

each with a fixed number of energy units available for use. Each channel state ωj determines the throughput that can be achieved per unit 
energy expended by the server/client. The video encoding/decoding processing cores can operate with frequencies fS and fC in a range 
bounded by a lower bound fmin and an upper bound fmax.   

The problem at hand is to maximize the lifetime of the system, given the remaining energy levels of the server ( 0
SE ) and the client (

0
CE ). 

In other words, the objective is to find an energy allocation pair ( S
je and C

je ) for each timeslot j of duration τ so as to maximize the overall 

system lifetime, Λ, (which is an integer multiple of τ) subject to: 

(I)  max max:
S C
j jS Ce e

j p and p
τ τ

∀ ≤ ≤  (14) 

(II) ( )j minavg VQ VQ≥   

(III) 0 0
1 1

S S C C
j j

j j
e E and e E

Λ Λ

= =

≤ ≤∑ ∑
 

 

where avg(VQj) denotes the average video quality over the system lifetime. Constraint (I) signifies the fact that power consumption of the 
server and client (i.e. energy consumption per frame) are upper-bounded due to restrictions on the maximum current output of their battery 
sources as well as the parasitics in the power distribution network. Constraint (II) guarantees the average video quality of the system whereas 

BMU
ACSU

SMU
    OutputInput
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a. Block diagram of the Viterbi decoder 

 
b. Finding the optimum path 

Figure 2: Adaptive Viterbi decoder 
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constraint (III) corresponds to the total energy bound. Note that this constraint is implicitly taken into account for an online solution to the 
optimization problem, since as soon as (III) is violated the system’s life time will end. In the remainder of this paper subscript j is used to 
indicate the time slot j in which the corresponding parameters are evaluated. 

At the beginning of each timeslot j, the server chooses an average power consumption value, /S
o p te τ , for itself based on the current 

estimates of the remaining battery lifetimes of itself and the client and the predicted channel state for timeslot j. In our approach, the channel 
state for timeslot j is taken to be the same as the channel state j-1 received from the client.1 From the chosen energy consumption rate, the 
server will then put into effect the respective encoding (computation) and transmit (communication) parameters by looking up these values 
from a pre-computed and locally-stored policy parameter table. Since the actual channel state and/or the remaining lifetime of the client may 
be different from the one predicted on the server side, the client will have to solve another optimization problem. This time the client knows 
the actual channel state and the adopted parameters of encoding and transmitting on the server side and has more accurate and up-to-date 
information about its own remaining lifetime; therefore, the client can determine its average power consumption value, /C

o p te τ , more 

effectively and thus obtain and enforce the reception and decoding parameters which are again looked up from the policy parameter table.  
The aforementioned policy optimization problem, which involves a hierarchical variable determination process, is a form of multi-level 
optimization problems known as Stackelberg game [17] as detailed next. 

4 A Game-theoretic Formulation  
4.1 Background 
In his monograph about market economy [18], H. V. Stackelberg used a hierarchical model to describe real market conditions. His model 
captured the scenario in which different decision makers attempt to make the best decisions in a market with respect to their own, generally 
different, utility functions. Generally speaking, these decision makers cannot determine their course of action independently of each other; 
rather, they are forced to act according to a certain hierarchy. Consider a simple case of such a problem where there are only two active 
decision makers. The hierarchy classifies these two decision makers into a leader, who acts independently of the market, and a follower, who 
has to act in a dependent manner. The leader is able to dictate the selling prices or to overstock the market with his products, but in making 
his decisions, he has to anticipate the possible reactions of the follower since his profit strongly depends not only on his own actions but also 
on the response of the follower. On the other hand, the choice of the leader influences the set of possible decisions as well as the objectives of 
the follower who in turn must react to the selections of the leader. 

The aforementioned problem can mathematically be formulated as follows: Let X and Y denote the set of admissible strategies x and y of 
the follower and of the leader, respectively. Assume that the values of the choices are measured by the means of the functions 

( , )Lf x y and ( , )Ff x y , denoting the utility functions of the leader and follower, respectively. Then, with the knowledge of the selection y of 
the leader, the follower can select his best strategy ( )x y  so that his utility function is minimized on X: 

{ }( ) ( ) ( , )L F
x

x y y Argmin f x y x X∈ Ψ = ∈
 

(15) 

Being aware of this selection, the leader solves the Stackelberg game [18] for computing his best selection: 

{ }( , ) , ( )L L
y

Argmin f x y y Y x y∈ ∈ Ψ
 

(16) 

It is worth noting that the solutions to the Stackelberg game are different from the Nash equilibrium points, due to the special hierarchy 
that is imposed on the players. In Nash equilibrium solution all players have the same level of hierarchy and make decisions simultaneously, 
but in a Stackelberg game the decisions are made one after the other, following certain rules. In general, in an n-player Stackelberg game all 
players in same hierarchy level achieve the Nash’s equilibrium point, but this is not true for players from different levels of hierarchy. 

 

4.2 Application to Streaming Video  
In our context, the follower and the leader become the client and the server, respectively. Strategy x for the client is the  
adoption of a specific vector of truncation lengths (TL’s denoted by ai’s) for the sub-carriers and an operating frequency for 
the decoding image processing core, f C, and therefore, { }1 2( , , , , ) : ,C C

n iX a a a f i a TLS f FS= ∀ ∈ ∈ , where n is the number of sub-carriers 

in the Orthogonal Frequency Division Multiplexing (OFDM) signal, TLS denotes the set of all (feasible) TL’s for the adaptive Viterbi 
decoder, and FS is the set of feasible frequencies for the image processing core. Strategy y for the transmitter is a choice of specific overall 
transmission power level, pamp, a set of modulation levels for the different sub-carriers, bi’s,  and operating frequency for the encoding image 
processing core, f S. Therefore, { }1 2( , , , , , ) , : ,S S

amp n amp iY p b b b f p PLS i b MLS f FS= ∈ ∀ ∈ ∈  where MLS and PLS denotes the sets of 

(feasible) modulation levels for each sub-carrier and available power levels for signal transmission. These sets are known from chipset 
specification or the standard protocol supported by the chipset. Note that this formulation can easily be extended to take into account different 
transmit power levels for each sub carrier. This case is not explored here because it would require multiple output amplifiers (one per sub-

                                                                 
1 Obviously, more elaborate channel estimation techniques may be employed to improve the selection process, but this simple channel prediction scheme 

serves our purpose of illustrating the general approach. 
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carrier) in order to support independently controlled different power level per sub-carrier. This is quite expensive from implementation point 
of view.  

The overall objective of the client-server game is to ensure that we achieve an acceptable level of performance while maximizing the 
overall video service time. Notice that the video service is terminated as soon as any one of the server or the client exhausts its energy source. 
For solving this optimization problem, the server and the client take turn at the beginning and end of each timeslot. The server’s goal is to 
minimize the overall energy consumption of the client-server system whereas the client’s objective is to make sure that it will not exhaust its 
energy source any sooner than the server does. In this way, this two-player game results in extending the overall system lifetime by first 
minimizing the energy consumption and then by ensuring that no one dies earlier than the other. Details are explained below. 

The client (follower) uses the absolute value of the difference between its remaining lifetime at timeslot j, denoted by C
jΛ , and the 

remaining lifetime of the server at timeslot j-1, denoted by 1
S
j−Λ , as the cost function, i.e., 1( , ) S C

F j jf x y −= Λ − Λ . Notice that the client 

knows 1
S
j−Λ  as a result of the last data transmission. The client must therefore determine client parameters (i.e., TL’s and fC) so as to make 

C
jΛ as close as possible to 1

S
j−Λ .   

The client must do this optimization under appropriate maximum power consumption and BER constraints (cf. Eqn. (14)). Maximum 
power constraint for the client can be written as: 

 
, , max , max

1

. . .
n

C C C C C C C
comm j comp j i j j

i

e e p a f pτ θ η ε
=

+ ≤ ⇔ + + ≤∑
 

(17) 

where ai,j denotes the TL value used for the ith sub-carrier in timeslot j. Notice that the left hand side inequality in Eqn. (17) corresponds to the 
inequality constraint (I) of Eqn. (14). The right hand side inequality in Eqn. (17) is derived from Eqn’s (7), (8), (10), and (12). θ  is a constant 
coefficient that captures the effect of ai’s on the power consumption of the Viterbi decoder (cf. Eqn. (12)). ηC is a constant coefficient that 
captures the effect of fC on the power consumption of the decoding image processing core. εC is the constant that sums the constant values of 
Eqn’s (7), (8), (10), and (12). 

The client must also maintain a stable channel condition, i.e., it must satisfy a maximum BER constraint. This constraint however involves 
non-linear equations, which would make the optimization problem hard to solve. Therefore, a linear estimation of BER based on the 
modulation-level and truncation length for each sub-carrier is used as follows: 

 , ,. .
i iBER i j BER i ja b BERα β+ ≤

 (18) 

where 
iBERα and

iBERβ are empirical coefficients for linear estimation of BER for the ith sub-carrier in terms of the modulation level and the 

truncation length of the decoder. BER denotes the global BER requirement to receive image data correctly.  Note that Eqn. (18) implicitly 
captures inequality constraint (II) of Eqn. (14). This is due to the fact that by upper bounding the BER in the channel, client makes sure that it 
can receive all of video data generated in the server side. 

The optimization problem on the client side may be formally stated as follows: 

{ }1
ˆ

: ˆ ˆ ˆ ˆarg min ,S C
j j

X

C nX Y REQ X TLS FS−Λ − Λ Γ + Φ ≤ ∈ ×
 

(19) 

Note that ˆ ˆ ˆ CX Y REQΓ + Φ ≤  represents the matrix-vector form of inequality constraints (17) and (18). Here, Γ and Φ denote the coefficient 

matrices that account for the channel conditions and per-frame energy consumptions of the basic building blocks of the client. ˆ CREQ  is a 
vector consisting of an upper bound on maximum power consumption, 

m a x
Cp , and the required BER value for all sub-carriers as shown 

below:  

1

2

1

2

( 1) ( 1)

( 1) ( 2)

max

0 0 0
0 0 0

00 0

0 0 0 0 0
0 0 0 0

ˆ0 0 0 0

00 0 0

n

n

n n

C

BER

BER

BER

n n

C C

BER

C
BER

BER

p
BER

REQ BER

BER

θ θ θ η
α

α

α

ε
β

β

β

+ × +

+ × +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Γ =
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎡ −
⎜ ⎟ ⎢
⎜ ⎟ ⎢
⎜ ⎟ ⎢Φ = =
⎜ ⎟ ⎢
⎜ ⎟
⎜ ⎟⎜ ⎟ ⎣⎝ ⎠

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥⎦  

(20) 

Since the power consumption of the client can easily be derived from Eqn’s (7), (8), (10), and (12), the client actually solves the following 
equivalent optimization problem : 



 7

1

ˆ ˆ ˆ ˆarg min : ,
ˆ

C C
j j C n

S
j

E e
X Y REQ X TLS FS

X τ−

− Γ + Φ ≤ ∈ ×
Λ

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭  

(21) 

The ratio of C
jE to 1

S
j −Λ  signifies the power dissipation target for the client in order for it to survive until the end of the server’s expected 

lifetime.  C
je  denotes the power consumption (i.e., per-frame energy consumption) of the client, which is calculated from the TL’s and the fC 

value by equation: ˆ,C C
je Xρ ε=< > + where 2 . 2 . 2 .T K K K

SMU SMU SMU
CP P Pρ η=⎡ ⎤

⎣ ⎦
 is a constant coefficient vector and ,a b< >  is used to 

represent the inner product of vectors a and b. The client’s objective in this optimization step is to find *X̂  such that its actual power 
consumption rate becomes as close as possible to its target power dissipation.  

The server (leader), on the other hand, attempts to minimize the overall energy consumption of the client-server system, given the channel 
conditions provided by the client, hence ( , ) C S

L j jf x y e e= + . This optimization problem is solved with constraints similar to that of the 
client’s. The maximum energy consumption rate is calculated following Eqn’s (2), (3), and (4) as follows,  

 , , max , max. .S S S S S S S
comm j comp j amp j je e p p f pτ η ε+ ≤ ⇔ + + ≤

 
(22) 

As in the client case, the bit error rate in the channel is upper-bound by using a linear equation as shown below: 

, ,. .
ii amp j BER i jp b BERω δ+ ≤

 (23) 

where ωi and
iBERδ denote the BER estimation coefficient for sub-carrier I, respectively 

The server also uses the minimum video quality constraint, VQmin, to find a lower bound on the channel rate for this timeslot. To do so, 
first the server adopts a target video quality for the frame at timeslot j, based on the total achieved video quality until then as reported by the 
client, and its own expected life time. This calculation is done as follows: 

1 ,
min

.
( )

C S
j j tar j

S
j

VQ VQ
avg VQ VQ

t
− + Λ

= ≥
+ Λ

 
(24) 

where 1
C
jVQ − is the total video quality achieved at the client and reported to the server at timeslot j-1, and S

jΛ is the expected remaining life 

time of the server at timeslot j. Given the requirement for average video quality VQmin (cf. inequality constraint (II) of Eqn. (14)), the server 
solves Eqn. (24) to find the target average video quality, VQtar,j, for time slot j. Next, it uses this value to constrain the bandwidth and 
operating frequency of the encoding image processor using Eqn’s (1) as follows: 

, ,
1

. . .
n

S
tar j s i j f j VQ

i

VQ k R b fκ ε
=

≤ ≤ +∑
 

(25) 

The first term in Eqn. (25) describes the total bandwidth of the communication whereas the second term represents the encoding aptitude 
of the image processor.  

Notice that the server must estimate its remaining battery lifetime at each timeslot j. A simple way to calculate S
jΛ  is to divide the 

remaining energy level of the server by its energy depletion rate. A key challenge is to accurately estimate the expected depletion rate of the 
server. Simply using the energy depletion rate of the previous timeslot, j-1, is not appropriate because it will not account for the long-term 
behavior of the node and may thus result in erroneous estimates. The approach we have taken is to calculate the (history-based) aggregate 
energy depletion rate of the server as a moving exponentially-weighted average so that the recent past has more influence, but the distant past 
is not completely ignored.  

The optimization problem for the server can now be mathematically formulated as: 

{ }
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆarg , , : , , ( )S n
L

Y
min X Y Y REQ Y PLS MLS FS X Yρ ϑ+ Ξ ≤ ∈ × × ∈Ψ

 
(26) 

 Similar to the client case, writing Eqn’s (22), (23), and (25) in matrix-vector form would result in the coefficient matrix Ξ for linear 
estimation of the

m a x
Sp , VQ, and BER in terms of the SNR and the modulation level.  Here ϑ  is a constant coefficient vector 

1 0 0T Sϑ η= ⎡ ⎤⎣ ⎦ . ˆ,Yϑ< >  signifies the power consumption (i.e., per-frame energy consumption, S
je  ) of the server. ˆ SREQ  is a vector 

representing the maximum power consumption 
m a x
Sp and the minimum requirements for the VQ and BER.  
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1

2

( 3) ( 2)

max

1

2

1 0 0 0
0 . . . 0
0 0 0 0

ˆ 0 0 0
0 0 0

0 0 0
n

n n

S S S

s s star

tar VQ f
S

BER

BER

n BER

p
k R k R k RVQ

VQ
REQ BER

BER

BER

ε η

ε κ
ω δ

ω δ

ω δ

+ × +

⎛ ⎞⎡ ⎤−
⎜ ⎟⎢ ⎥ − − −− ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥− +
⎜ ⎟⎢ ⎥

= Ξ = ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠  

(27) 

Notice that when solving Eqn. (26), the optimization variables are X̂  and Ŷ , that is, the server estimates the best strategy that the client may 
put in practice in response to the server’s strategy and then based on this estimate of the client’s policy, the server goes on to determine both 
the optimum values of the server and the client parameters. It will then implement the server policy, but will not report or in any way attempt 
to enforce the client policy. The client in its own turn will determine its optimum policy parameters as explained previously. 

5 Experimental Results 
We implemented an MPEG-4 FGS streaming system on a high performance testbed [20]. The processing core in this testbed is the Intel’s 
Xscale processor, which supports nine different frequencies from 200MHz to 733MHz. A D/A converter was used as a variable operating 
voltage generator to control the reference input voltage to a DC-DC converter that supplies operating voltage to the CPU. Inputs to the D/A 
converter were generated using customized CPLD logic. When the CPU clock speed is changed, a minimum operating voltage level should be 
applied at each frequency to avoid a system crash due to increased gate delays. In our implementation, these minimum voltages are measured 
and stored in a table so that these values are automatically sent to the variable voltage generator when the clock speed changes. Voltage levels 
mapped to each frequency are distributed from 0.9V @200MHz to 1.5V @733MHz. For the software work, Microsoft reference MPEG-4 
FGS encoder/decoder was modified to fit our purpose. Two generated bit-streams of QCIF video sequence with 150 frames, a base layer and 
a FGS enhancement layer with 5 bit-planes (bp0~bp4), are split into packets with size of 256-byte. RTP/RTCP on UDP was used as a network 
protocol between the server and the client. Both the server and the client were equipped with an IEEE 802.11b wireless LAN (WLAN) card. 
Energy consumption of the WLAN interface was measured by using a data acquisition (DAQ) system.  

In order to simulate the system, the Simulink 5.0 environment from Matlab 6.5 Release 13, was used. To model a multi-path fading 
channel, a parallel combination of Rayleigh and Rician fading propagation channels was used (see [16] for details about these channels.) The 
maximum Doppler shift and the spreading factor of the Rician fading channel were set to 40Hz and 1, respectively. 

To account for the effect of multi-path fading, three different paths with delays of 2us, 3us, and 5us and gains of –3, 1, and 2 were 
considered in Rayleigh propagation channel. The characteristics of this channel were simulated and recorded for duration of 4800 frames, i.e., 
five minutes @15 frames/second. To produce the channel probability distribution, h(ωi), this data is used. Then these probability values are 
fed into the Stackelberg game for policy design. To show the effectiveness of our approach three different scenarios were simulated and 
compared with each other. In scenario number one, for each timeslot i, after the detection of channel conditions we assigned enough energy to 
the server and the client to support the specified average video quality.  

In scenario number two, average channel condition was used to determine the required energy in each timeslot, and finally in scenario 
three our adaptive algorithm was used to calculate the required energy for each timeslot. 

Figure 3 shows the lifetime versus required average video quality graphs for scenarios 1 and 3. Total initial energy for this experiment is 
set to 600 J. According to this graph, our approach increases the system lifetime by as much as 20% for high values of the required video 
quality. On average, the proposed method increases the system lifetime by more than 15% over the whole range of video qualities.  
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Figure 4 shows the comparison between scenarios 2 and 3. Since in scenario 2, the assigned energy to each frame is fixed, and is selected 

according to the average channel behavior, the system consumes extra energy to produce higher video quality, and hence, has a lower system 
lifetime. Figure 3(a) shows comparison between the system lifetimes for scenarios 2 and 3. It is clear that system lifetime is significantly 
increased for scenario 3 where we employed the proposed dynamic policy approach. Notice that the average video quality was maintained 
above the required value. However, for scenario 2, the average video quality is unnecessarily improved, which may be OK if there no was 
energy dissipation overhead (cf. Figure 3(b)).  

 
  

6 Conclusion 
In this paper, the energy consumption of a mobile video streaming system was modeled. Using this model, an adaptive approach for energy 
assignment to each frame was developed. The proposed approach guarantees the minimum video quality for all frames and meets a required 
average video quality over the system lifetime. Actual experimental data was used to extract parameters of the proposed model. Based on 
these parameters, simulations were setup to demonstrate the effectiveness of the proposed approach. It is rather straightforward to extend the 
proposed approach to multi-hop routing networks, where the video information is received from a mobile/stationary host and is relayed 
through some intermediate nodes in a mobile ad-hoc network to reach the target node. More precisely, the multi-hop scenario can be easily 
handled by extending the two-level hierarchical game to a multi-level hierarchical game.  
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