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Abstract. Quantum arithmetic circuits have practical applications in
various quantum algorithms. In this paper, we address quantum addi-
tion on 2-dimensional nearest-neighbor architectures based on the work
presented by Choi and Van Meter (JETC 2012). To this end, we propose
new circuit structures for some basic blocks in the adder, and reduce
communication overhead by adding concurrency to consecutive blocks
and also by parallel execution of expensive Toffoli gates. The proposed
optimizations reduce total depth from 140

√
n + k1 to 92

√
n + k2 for

constants k1, k2 and affect the computation fidelity considerably.

Keywords: Quantum Adders, 2D Quantum Architectures, Nearest Neigh-
bor Interaction.

1 Introduction

Quantum algorithms are often described in the quantum circuit model of com-
putation, where for a quantum circuit with n qubits, any pairs of qubits can
interact. However, current advances in physical quantum technologies can only
allow qubit interactions in one-, two-, or three-dimensional spaces. Restricting
interactions to only linear dimension results in O(n) overhead. On the other
hand, working with 2D (or 3D) quantum architectures where each qubit can
interact with 4 (or 6) neighboring qubits provides more flexibility.

For a given quantum circuit C one can construct an interaction graph GC =
(VC , EC), the nodes of which represent qubits in C with edges between them
when a gate in C involves the related qubits. Additionally, the architecture (or
fabric) of a quantum computing system can be described by a simple connected
graph GQ = (VQ, EQ) where vertices VQ represent qubits and edges EQ represent
adjacent qubit pairs that gates can be applied on [1]. Accordingly, the problem
of mapping a quantum circuit C with arbitrary interactions between qubits onto
a quantum architecture with limited interaction distance can be mapped to the
problem of embedding graph GC into graph GQ.

In general, the graph embedding problem is NP-hard. However, optimal em-
bedding methods with polynomial time complexities for several classes of graphs
have been proposed [2]. In [3], the concept of dilation in graph embedding has



been applied to find a depth lower bound for a quantum circuit after embed-
ding. In this case, dilation is defined as the maximum distance between adjacent
nodes of the graph after embedding. Working with proven properties of log-
depth binary trees and considering the fact that log-depth quantum addition
circuits exist, Choi and Van Meter [3] showed that the depth lower bound of
the exact quantum addition circuit on a k-dimensional quantum architecture is
Ω( k
√
n). In [4], the authors examined the minimum overhead in depth for em-

ulating a circuit C by a circuit C ′ subject to the constraints imposed by the
interaction constraints and showed that this overhead is O(n) for 1D, O(

√
n) for

2D, O(log2 n) or O(log n) (depending on the approach) for hypercube.

Exploring an efficient realization of a given quantum algorithm or quantum
circuit for a restricted architecture has been followed by a number of researchers
during the recent years. Physical implementations of the quantum Fourier trans-
form (QFT) [5, 6], Shor’s factorization algorithm [7–9], quantum error correction
[10], and general reversible circuits [11] for 1D/2D architectures have been ex-
plored in the past. Worst-case synthesis cost of a general/Boolean unitary matrix
under the 1D restriction has been discussed in [12–15]. In [16–18] heuristic meth-
ods for converting an arbitrary quantum circuit to its equivalent circuit on 1D
architectures have been proposed.

Quantum adder and its modular version have applications in different quan-
tum algorithms including Shor’s factoring algorithm. In [19], a quantum adder
withΘ(

√
n) depth on 2D quantum architectures was proposed which has 140

√
n−

72 depth, in terms of one- and two-qubit quantum gates. Asymptotically, the
depth of the proposed adder is optimal. However, constant-factor optimization
is possible and in fact desirable. Besides the effect of reducing circuit size/depth
on physical realization, any additional gate in the circuit longest path can reduce
circuit fidelity to some extent. Based on the analysis done in [20] for fault-tolerant
error correction with a concatenated 7-qubit CSS code [21], nearest-neighbour
communication overhead results in 175x reduction in error threshold. Improving
error threshold is costly and may include using a more sophisticated quantum
control protocol to have gates with higher fidelities or applying a more robust
error correction code. Therefore, reducing unnecessary communication overhead
for a useful quantum computation is vital. Because of the effect of addition on
e.g., modular multiplication and modular exponentiation circuits [9, 22, 23], re-
ducing communication overhead for quantum adder by circuit optimization —
the focus of this work — is of particular interest.

In this paper, we show how 140
√
n+const depth in [19] can be further im-

proved to 92
√
n+const. For this purpose, we reconsider the basic blocks in the

suggested quantum adder and introduce some constant-factor optimizations in
communication overhead in different stages. To physically implement a given cir-
cuit, one needs to decompose all gates into primitive one- and two-qubit gates.
To decompose a 3-qubit Toffoli (T ) gate, we use Clifford+T gates which are
universal and have fault-tolerant (FT) implementation [21]. Fig. 1 shows the de-
composition of the Toffoli gate into one- and two-qubit gates. To consider depth,
we report circuit depth in terms of single-qubit, CNOT (C) and SWAP (S) gates.



The rest of this paper is organized as follows. In Section 2, the method in [19] is
discussed. We introduce the reduction techniques in Section 3. The result of the
proposed reductions is analyzed in Section 4 and Section 5. We finally conclude
the paper in Section 6.

• • • T • • • • T •

• • T T † • × T T † × T T †

H T † T T † T H H T † × • × T H

Fig. 1. Decomposition of the Toffoli gate into one-qubit and six CNOT gates [24] and
the implementation with adjacent qubits.

2 Quantum Addition on 2D Architectures

In this section, we describe the circuit structure in [19] for quantum addition on
2D architectures. For an n-qubit quantum circuit, the method in [19] arranges
the qubits in

√
n×
√
n arrays where each qubit can interact with its four neigh-

boring qubits with no additional cost. Additionally, the circuit was divided into
3 phases which are executed sequentially. In the first phase, ripple-carry addition
is performed on the first column, and carry-lookahead addition is performed on
the other

√
n− 1 columns. In the second phase, carry propagation is performed

between columns, and finally in phase 3 carry generation and summation are
performed.

In the first phase, after using a half-adder and
√
n − 1 full-adders output

carries c2, · · · c√n+1 will be available. It is done in 32
√
n− 17 unit-time steps in

[19]. The carry-lookahead addition in other columns produces

gk
√
n+j = ak

√
n+j · bk√n+j (1)

pk
√
n+j = ak

√
n+j ⊕ bk√n+j (2)

for 1 ≤ k ≤
√
n − 1 and 1 ≤ j ≤

√
n. After computing gi and pi values in all

columns in parallel, G[i, j] and P [i, j] are computed in serial based on (3) and
(4) for 1 ≤ k ≤

√
n− 1, and 2 ≤ j ≤

√
n where G[k

√
n+ 1, k

√
n+ 1] = gk

√
n+1

and P [k
√
n + 1, k

√
n + 1] = pk

√
n+1. This part takes 34

√
n − 19 time steps in

[19]. Accordingly, the first phase in [19] results in 34
√
n− 19 time steps.

G[k
√
n+ 1, k

√
n+ j] = gk

√
n+j ⊕ pk√n+j ·G[k

√
n+ 1, k

√
n+ j − 1] (3)

P [k
√
n+ 1, k

√
n+ j] = pk

√
n+j · P [k

√
n+ 1, k

√
n+ j − 1] (4)

In the second phase, column-level carries are computed as shown in (5) for
1 ≤ k ≤

√
n− 1 in 18

√
n− 18 time steps.

c(k+1)
√
n+1 = G[k

√
n+ 1, (k + 1)

√
n]⊕ ck√n+1 · P [k

√
n+ 1, (k + 1)

√
n] (5)



Table 1. Basic blocks in 2D adder [19] and their depths in terms of unit-cost gates.
The last term (i.e., 3) in total depth represents 2 NOTs and one CNOT gate used to
construct the final output in [19].

Name #steps: gate sequence Circuit

H, T, CNOT (C), SWAP (S) 1

Toffoli (T (a,b,0)) 14: 2 S+ 12 1-qubit H(0)C(b,0)T†(0)S(b,0)C(a,b)T(b)C(0,b)

T†(b)C(a,b)S(b,0)T(b)T(0)C(a,b)H(0)

T(a)T†(b)C(a,b)
Half-adder(a,b,0) 15: 1 T+ 1 C T (a,b,0)T (a,b)
Full-adder(c,a,b,0) 32: 2 T+ 2 C+ 2 S T (a,b,0)T (a,b)S(c,a)T (a,b,0)T (a,b)S(c,a)
g,p(a,b,0) 15: 1 T+ 1 C T (a,b,0)T (a,b)
G,P(P,G,a,p,g,0) 34: 2 T+ 6 S S(G,a)S(P,G)T(a,p,g)S(G,a)S(g,0)T(a,p,g)

S(G,a)S(P,G)S(G,a)
Column carry(P,G,C) 18: 1 T+ 4 S S(P,G)T (C,G,P)S(G,C)S(P,G)S(G,C)
Carry(P,G,a,p,C) 18: 1 T+ 4 S S(P,G)S(p,C)S(a,p)T (a,G,P)S(G,a)S(P,G)
Carry1(p,g,c) 16: 1 T+ 2 S S(g,c)T (p,g,c)S(p,g)
SUM(c,P,a,p) 5 : 1 C+ 4 S S(c,P)S(P,a)T (a,p)S(P,a)S(c,P)
SUM1(c,a,p) 3 : 1 C+ 2 S S(c,a)T (a,p)S(c,a)
SUM2(p,c) 1 : 1 C T (c,p)

phase 1 34
√
n− 19: g,p + (

√
n− 1)G,P

phase 2 18
√
n− 18: (

√
n− 1) Column carry

phase 3 18
√
n + 1: (

√
n− 1) Carry + Carry1 + SUM1

clearing ancillae 70
√
n− 39: phase 1 + phase 2 + phase 3 - SUM1

total depth 140
√
n− 72: phase 1 + phase 2 + phase 3 + clearing ancillae + 3

In phase 3 output carries are calculated sequentially as (6) for 1 ≤ k ≤
√
n−1

and j =
√
n− 1, ..., 1.

ck
√
n+j+1 = G[k

√
n+ 1, k

√
n+ j]⊕ ck√n+1 · P [k

√
n+ 1, k

√
n+ j] (6)

Finally, addition outputs are calculated as shown in (7) for 1 ≤ k ≤
√
n− 1

and 1 ≤ j ≤
√
n. Altogether, operations in phase 3 can be performed in 18

√
n+1

time steps.
sk
√
n+j = ak

√
n+j ⊕ bk√n+j ⊕ ck√n+j (7)

Considering the three subcircuits for phase 1, phase 2, and phase 3 in se-
quence leads to 70

√
n − 36 time steps in [19]. Applying the inverse circuit to

clear ancillae leads to 140
√
n− 72 time steps for the complete adder.

Based on the equations (1)-(7), Table 1 reports circuit depth in different
blocks. In this table, we used the same notation in [19] for circuit blocks — g,p
to compute gi, pi values in (1) and (2); G,P to compute G[i, j] and P [i, j] values
in (3) and (4); Column carry to compute column-level carries in (5); Carry &
Carry1 to compute carries in (6); and SUM, SUM1 & SUM2 to compute final
outputs in (7).

3 The Proposed 2D Adder

In this section, we revise the basic blocks in [19] and introduce additional paral-
lelism in various parts to reduce circuit depth. Basically, the proposed optimiza-
tions are based on (1) new circuit structures for CARRY and SUM basic blocks



(2) reducing communication overhead in Column carry, (3) parallel execution of
expensive Toffoli gates in G,P blocks as well as in Full-adders, and (4) reducing
interaction overhead by adding concurrency to consecutive blocks.

3.1 New Circuits

Working with the same circuit structures in [19] for Half-adder, g,p, and G,P
blocks as reported in Table 1, we define several new structures for the other
blocks.

• Full-adder: The first T and C gates in the Full-adder blocks in [19] can be
executed in parallel with the gates in the Half-adder circuit. This saves one
T and one C for all

√
n− 1 Full-adders.

• Column Carry: Fig. 4 shows the new structure of Column Carry block. In
this circuit, c[k

√
n+ 1] is from the previous column (e.g., c4 in Fig. 2). After

the computation, the new carry, e.g., c7, is moved down, to be used by the
next Column Carry block. The previous carry, e.g., c4 is placed near to the
Carry module. This new structure saves 1 SWAP gate.

• Carry: Fig. 5 shows the new structure for Carry block. Since c[k
√
n+ 1] is

required to compute all carries in different rows, c[k
√
n+ 1] is moved up in

this figure. On the other hand, the generated carry is required to compute
sum values, and hence is moved down. This new circuit uses 5 SWAP gates
(vs. 4 in [19]).

• SUM: Applying the proposed circuit for Carry results in adjacent c[k
√
n+

j + 1] and p[k
√
n + j + 1] values (see Fig. 5). Based on (7) sum outputs

can be computed by a single CNOT gate. This saves 4 SWAP gates in [19].
In order to construct si values on bi qubits, one needs to add one SWAP
gate S(p[k

√
n + 1], c[k

√
n + 1]). However, this SWAP gate can be removed

because of an identical SWAP gate in the Carry circuit. Accordingly, we
define another circuit block Carry1 with excluding the SWAP on c[k

√
n+ 1]

and P [k
√
n + 1][k

√
n + j] (for j = 1) qubits. We do not need to use SUM1

and SUM2 blocks in the proposed 2D adder structure.

3.2 Reducing Communication Overhead

To use adjacent gates in the 2D quantum adder, we use a set of SWAP gates
inside each circuit block. The added SWAP gates are used for communication
between those gates required for the computation. In other words, the added
SWAP gates are not required for the computation, and should be reduced as
much as possible. Independent optimization of different blocks can reduce com-
munication overhead inside each subcircuit, but has no view about the neighbor-
ing subcircuits. In this section, we consider consecutive circuit blocks to reduce
communication overhead further. Note that the optimizations given in this sec-
tion are based on the new circuit blocks given in Section 3.1.
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Fig. 2. The revised block diagram of a 2D 9-bit adder in [19] based
on the blocks used in this paper. The critical path in this circuit is
g,p99KG,P99KColCarry99KColCarry99KCARRY99KCARRY199KSUM. The C−1 block is
the reverse of the circuit shown in the dashed box. This reverse circuit with the NOTs
and CNOTs shown are applied to clear ancillae in [19]. Except for ColCarry (Col-
umn carry), the number of inputs and outputs for other modules are the same as the
ones shown in this figure. In Column carry, the number of inputs/outputs is 3 — i.e.,
the first line and the last two lines are actual inputs and outputs. Note that these three
lines are neighbor in the 2D layout. The qubit placement for this 2D grid and their
values during the computation (up to clearing ancillae) are given in Fig. 3.

• G,P V Carry: Reconsider (3), (4), and (6) and note that the result of
Column carry in (5), i.e., c[k

√
n+ 1], is constructed on the last qubit in the

Carry block (see Fig. 4 and Fig. 5). Fig. 6 shows the blocks in sequence.
To simplify the circuit, note that the last three SWAP gates in G,P can be
moved to right. Next, the resulting circuit can be reconstructed as shown in
Fig. 6(b). Accordingly, three SWAP gates in each G,P block can be saved.
Fig. 7 shows the new circuits for Carry and Carry1. Note that some of G,P
blocks are directly connected to the Carry (or Carry1) blocks without any
interaction with Column carry blocks. For such cases, we can apply the same
mechanism.

• G,P V G,P: Each G,P block constructs two outputs based on (4) and (3)
where G[k

√
n+1, k

√
n+j] depends on G[k

√
n+1, k

√
n+j−1] and P [k

√
n+

1, k
√
n+ j] depends on P [k

√
n+ 1, k

√
n+ j− 1]. Since G[k

√
n+ 1, k

√
n+ j]



0

b3

a3

0

b2

a2

0

b1

a1

-

-

0

0

b6

a6

0

0

b5

a5

0

b4

a4

0

0

b9

a9

0

0

b8

a8

0

b7

a7 - a4 a7

- b4, p4, s4 b7, p7, s7
a1 0, g4, c4 0, g7, c7
b1, s1 a5 a8

0, c2 b5, p5, s5 b8, p8, s8
a2 0, g5, P [4, 5], c4, c5 0, g8, P [7, 8], c7, c8
b2, s2 0, G[4, 5], P [4, 5] 0, G[7, 8], P [7, 8]
0, c3 a6 a9

a3 b6, p6, s6 b9, p9, s9
b3, s3 0, g6, P [4, 6], c4, c6 0, g9, P [7, 9], c7, c9
0, c4 0, G[4, 6], c7 0, G[7, 9], c10

Fig. 3. The qubit placement for the 2D grid in Fig. 2 and their values during the
computation.

c[k
√
n + 1] • × • × × P [k

√
n + 1][(k + 1)

√
n] P [k

√
n + 1][(k + 1)

√
n] • ×

P [k
√
n + 1][(k + 1)

√
n] • × ≡ • × c[k

√
n + 1] G[k

√
n + 1][(k + 1)

√
n] ×××

G[k
√
n + 1][(k + 1)

√
n] ××× c[(k + 1)

√
n + 1] c[k

√
n + 1] • × ×

(a) (b) (c)

Fig. 4. (a) Circuit structure for Column carry based on (5). Note that c[(k−1)
√
n+1]

and P [(k−1)
√
n+1][k

√
n] are not adjacent (see Fig. 2). (b) Circuit in (a) with adjacent

gates. (c) Circuit in (b) with relabelled qubits to show adjacent qubits.

is constructed first, we can use it to construct G[k
√
n + 1, k

√
n + j + 1] in

parallel to construction of P [k
√
n+1, k

√
n+ j−1]. This can save one Toffoli

and one SWAP. Fig. 8 shows the result of this optimization.

4 Depth Analysis

In this section, we analyze the circuit depth of a 2D n-bit quantum adder based
on the circuit structures proposed for each block.

• Phase 1 — Half-adder+Full-adder: We can execute Half-adder and
the first two gates (T +C) in all Full-adders in parallel. This results in
1T +1C+(

√
n− 1)(2S+1C+1T ) time steps.

• Phase 1 — g,p+G,P: Each g,p block includes one Toffoli gate and one
CNOT gate. Except for the first G,P block, the other

√
n− 2 G,P blocks in-

clude 3 SWAPs and 1 Toffoli. The first G,P block includes two Toffoli and two
SWAP gates. Circuit depth can be calculated as (1T +1C)+(2T +2S)+(

√
n−

2)(3S+1T ).

P [k
√
n + 1][k

√
n + j] • ×× • × c[k

√
n + 1]

G[k
√
n + 1][k

√
n + j] × ×× P [k

√
n + 1][k

√
n + j]

a[k
√
n + j + 1] ≡ × • ×× a[k

√
n + j + 1]

p[k
√
n + j + 1] ×× ×× p[k

√
n + j + 1]

c[k
√
n + 1] • × × × c[k

√
n + j + 1]

Fig. 5. Circuit structure for Carry based on (6). Inputs a[k
√
n+j+1] and p[k

√
n+j+1]

are not used in the computation.



• × × • × ×

· · · · · ·
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√
n + 1][k

√
n + j] × × • × × ×

G[k
√
n + 1][k

√
n + j] × × × ××× ×× ≡ × × × ×××

a[k
√
n + j + 1] × • × • × × × • ×× × • × • • ××××

p[k
√
n + j + 1] • • ×× ×× • • × • × ××

g[k
√
n + j + 1] × • × × × × • × × ×

0 × ××× × ×××

(a) (b)

Fig. 6. (a) G,P, Column carry, and Carry blocks in cascade. The three rightmost SWAP
gates in G,P can be merged with gates in the Carry block to construct a new circuit
shown in (b).

P [k
√
n + 1][k

√
n + j] × × c[k

√
n + 1]

G[k
√
n + 1][k

√
n + j] ××× ××× P [k

√
n + 1][k

√
n + j]

a[k
√
n + j + 1] • ×××× • ××× a[k

√
n + j + 1]

p[k
√
n + j + 1] × • × ×× × • ×× p[k

√
n + j + 1]

c[k
√
n + 1] × × × × c[k

√
n + j + 1]

(a) (b)

Fig. 7. New circuit structures for Carry (a) and Carry1 (b) based on the optimization
shown in Fig 7. Note that the first SWAP gate can be executed in parallel with gates
in the previous block (see Fig. 7).

• Phase 2 — Column carry: There are
√
n − 1 Column carry blocks in

cascade. This results in
√
n− 1(1T +3S) time steps.

• Phase 3 — Carry + SUM: There are
√
n − 2 Carry blocks followed by

one Carry1 block and one SUM block. Therefore, circuit depth is (
√
n −

2)(1T +4S)+(3S+1T )+1C.

Table 2 reports circuit depth for each component and the total depth in
the proposed 2D quantum adder. As can be seen in this table, circuit depth is
improved by a factor of 26

35 (i.e., %24).
In [25], a new circuit for Peres with depth=5C+3 has been proposed (Fig.

10(a)). After inserting one CNOT (to have Toffoli) and two SWAP gates to have
adjacent gates, one can use the new circuit with depth=6C+2S+4 in order to
further optimize the proposed 2D adder. Note that in [25], a circuit structure for
Toffoli gate with depth=6C+2 has been proposed too, Fig. 9. However, working
with Peres gate results in a more compact circuit in terms of the number of

× ×
× × × × × ×
× • × • × • × •
• • • •
× × ≡ × × × × ×
× × × × × • × × × • × × ×

× • × • × • ×× • × • ×× •
• • × × ×× • ×× ×× •
× × ×× × ××
× × ×

Fig. 8. Construction of G[k
√
n+1, k

√
n+j+1] can be done in parallel to construction

of P [k
√
n+ 1, k

√
n+ j − 1] in two consecutive G,P blocks. The right circuit shows the

new circuit structure for G,P (except for the first G,P block).



Table 2. Circuit depth for our blocks in 2D adder. Circuit depths for CNOT (C),
SWAP (S), and Toffoli (T ) gates are considered as 1, 1, and 14 as done in [19].

Block Circuit Ours [19]
Half-adder 1T+1C 15 15
Full-adder 2S+1C+1T 17 32
g,p 1T+1C 15 15
G,P (first) 2T+2S 30 34
G,P (others) 3S+1T 17 34
Column carry 1T+3S 17 18
Carry 1T+4S 18 18
Carry1 3S+1T 17 18
SUM 1C 1 5
Phase1-1 1T+1C+(

√
n− 1)(2S+1C+1T ) 17

√
n− 2 32

√
n− 17

Phase1-2 (1T +1C)+(2(T+2S)+(
√
n− 2)(3S+1T ) 17

√
n + 11 34

√
n− 19

Phase2 (
√
n− 1)(1T+3S) 17

√
n− 17 18

√
n− 18

Phase3 (
√
n− 2)(1T+4S)+(3S+1T )+1C 18

√
n− 18 18

√
n + 1

clearing ancillae Phase1-2+Phase2+Phase3-SUM 52
√
n− 24 70

√
n− 39

2D Adder Phase1-2+Phase2+Phase3+clearing ancillae+3 104
√
n− 46 140

√
n− 72

a • a a T † T T † T a

b • b ≡ b T † • • • • b

c c c H • T • T † H c

Fig. 9. Toffoli decomposition with depth 6C+2 [25].

SWAP gates. Following this path results in depth=92
√
n+const for the proposed

2D quantum adder. Table 3 compares circuit depth based on different costs for
Toffoli and SWAP gates.

5 Error Correction

To protect quantum information from errors due to e.g., noise or decoherence,
quantum error correction (QEC) should be used in any large-scale quantum
computation. In the recent years, various models for QEC have been proposed
[21]. A common technique, known as concatenated quantum code, is to encode
a logical qubit into the state of several physical qubits (e.g., 7 in Steane code
and 9 in Bacon-Shor code [21], both for one level of concatenation).

Let assume each unitary operation should be followed by quantum error
correction for proper computation. This results in an aggressive quantum error
correction mechanism. In some circumstances, one may insert error correction
after several operations, instead of each operation. Consider a quantum com-
putation U with NU logical operations which include only FT quantum gates.

a • • a a T • • • a a T • • • • a

b • b ≡ b T T † T T † b b T × T × T T † b

c c c H • T † T • H c c H • × T † × T • H c

(a) (b)

Fig. 10. (a) Peres decompositions with depth 5C+3 [25], (b) Toffoli with adjacent gates
based on Peres decomposition (depth=6C+2S+4).



Table 3. Circuit depth for the proposed adder and the one in [19] considering different
costs for Toffoli and SWAP gates.

T -depth=14,S-depth=1 T -depth=14,S-depth=3 T -depth=12,S-depth=3 T -depth=12,S-depth=1
Ours [19] Ours [19] Ours [19] Ours [19]

104
√
n 140

√
n 144

√
n 176

√
n 132

√
n 160

√
n 92

√
n 124

√
n

Moreover, assume that error correction for each FT gate requires NE physical
instructions. NE includes SWAPs required for communication. Normally, NE

differs for various logical operations; however, we can consider the worst-case
value among all FT gates. Working with concatenated quantum error correction
techniques, the total physical gate count at concatenation level L can be esti-
mated as NL = NL−1 + NL−1 ×NE or NL ≈ NL−1 ×NE . We have N0 = NU ,
and therefore, NL = NU (NE)L. Accordingly, besides the effect of the proposed
approach on circuit depth, one can implement the proposed 2D adder with fewer
gates — the reduction factor is 24

35 .

6 Conclusion

We considered a quantum adder on 2D quantum architectures. Our work is
based on the results reported in [19] with several improvements. In particu-
lar, we optimized the building blocks of the 2D adder with focus on reducing
the communication overhead required in 2D quantum architectures. Having op-
timized consecutive blocks, the proposed adder can execute expensive Toffoli
gates concurrently in several locations. The suggested optimizations improve
depth=140

√
n+ k1 in [19] to 92

√
n+ k2 for constants k1 and k2.
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a1 • • a1 •

C−1

a1

b1 • s1 s1 s1

0
c2 × × 0

a2 • • × • • × a2 • a2

b2 • • s2 s2 s2

0
c3 × × 0

a3 • • × • • × a3 • a3

b3 • • s3 s3 s3

0
c4 • × ×P[4,6] 0

a4 • • a4 • a4

b4 • p4 × × s4 s4

0
g4 × × × ×××c4 • 0

a5 • • × • × • • ××× a5 • a5

b5 • p5 • • × • ×× s5 s5

0
g5 × P[4,5] × × × c4× ×c5 • 0

0 × G[4,5] • × × × ××× 0

a6 • • × • × × • • ×××× a6 • a6

b6 • p6 × × × × • × • × ×× s6 s6

0
g6 × × × P[4,6] • × c4 × ×c6 c6 • 0

0 × G[4,6] ××× c7 • × ×P[7,9] 0

a7 • • a7 • a7

b7 • p7 × × s7 s7

0
g7 × × × ×××c7 • 0

a8 • • × • × • • ××× a8 • a8

b8 • p8 • • × • ×× s8 s8

0
g8 × P[7,8] × × × c7× ×c8 • 0

0 × G[7,8] • × × × ××× 0

a9 • • × • × × • • ×××× a9 • a9

b9 • p9 × × × × • × • × ××c9 s9 s9

0
g9 × × × P[7,9] • × c7× × c9 • 0

0 × G[7,9] ××× c10 0

Fig. 11. A 9-bit adder based on the proposed blocks. Carry, Gi,j , pi, and gi values are shown in this figure. The C−1 block is the reverse
of the circuit shown in the dashed box applied with the NOTs and CNOTs shown to clear ancillae. All gates use adjacent gates in the
2D layout. For qubit locations see the table in Fig. 3.


