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Improving circuit realization of known quantum algorithms by CAD techniques has benefits for quantum
experimentalists. In this paper, the problem of synthesizing a given function on a set of ancillea is addressed.
The proposed approach benefits from extensive sharing of cofactors among cubes that appear on function
outputs. Accordingly, it can be considered as a multi-level logic optimization technique for reversible circuits.
In particular, the suggested approach can efficiently implement any n-input, m-output lookup table (LUT)
by a reversible circuit. This problem has interesting applications in the Shor’s number-factoring algorithm
and in quantum walk on sparse graphs. Simulation results reveal that the proposed cofactor-sharing syn-
thesis algorithm has a significant impact on reducing the size of modular exponentiation circuits for Shor’s
quantum factoring algorithm, oracle circuits in quantum walk on sparse graphs, and the well-known MCNC
benchmarks.
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1. INTRODUCTION
Quantum information processing has captivated atomic and optical physicists as
well as theoretical computer scientists by promising a model of computation that
can improve the complexity class of several challenging problems [Nielsen and
Chuang 2000]. A key example is Shor’s quantum number-factoring algorithm which
factors a semiprime M with complexity O((logM)3) on a quantum computer. The
best-known classical factoring algorithm, the general number field sieve, needs
O(e(logM)1/3(log logM)2/3) time complexity. Other quantum algorithms with superpoly-
nomial speedup on a quantum computer include quantum algorithms for discrete-log,
Pell’s equation, and walk on a binary welded tree [Bacon and van Dam 2010].
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Improving circuit realization of known quantum algorithms — the focus of this work
— is of a particular interest for lab experiments. In 2000, Vandersypen et al. [2000]
implemented Shor’s quantum number-factoring algorithm to factor the number 15. In
March 2012, physicists published the first quantum algorithm that can factor a three-
digit integer, 143 [Xu et al. 2012]. CAD algorithms and tools are required to help with
physical circuit realization even for a few number of qubits and gates. For example,
a previous method in [Schaller and Schützhold 2010] required at least 14 qubits to
factor 143. This exceeds the limitation of current quantum computation technologies.
Hence, Xu et al. [2012] introduced an optimization approach to reduce the number of
total qubits.

In this paper, we propose an automatic synthesis algorithm that uses cofactor-
sharing to synthesize quantum circuits that have applications in, at least, quantum
circuits for number factoring and quantum walk [Childs et al. 2003]. In particular, we
aim to synthesize a given lookup table (LUT) by reversible gates. Following [Markov
and Saeedi 2012], an (n,m)-lookup table takes n read-only inputs and m > log2 n zero-
initialized ancillae (outputs). For each 2n input combination, an (n,m)-LUT produces
a pre-determined m-bit value. Markov and Saeedi [2012] showed LUT synthesis can
improve modular exponentiation circuits for Shor’s algorithm. In this paper, we gener-
alize the idea of LUT synthesis by extensive sharing of cofactors, and use the shared
cofactors to improve the practical implementation of given functions. Among different
applications, we particularly focus on quantum walk on graphs and Shor’s quantum-
number factoring algorithms. In addition, we discuss how cofactor-sharing synthesis
can improve cost of irreversible benchmarks. It is worth noting that the presented algo-
rithm can also be considered as a general synthesis approach given that any n-input,
m-output Boolean function can be implemented by an (n,m)-LUT, providing enough
number of ancillae.

The rest of the paper is organized as follows. In Section 2, basic concepts are intro-
duced. Section 3 highlights a number of applications for LUT synthesis. Related works
are discussed in Section 4. We propose our extensive cofactor-sharing algorithm and
LUT synthesis approach in Section 5. Experimental results are given in Section 6, and
finally Section 7 concludes the paper.

2. BASIC CONCEPT
In this section, we review concepts required to understand the rest of this paper. For
more information on reversible logic synthesis, please refer to the recent survey by
Saeedi and Markov [2013].

2.1. Boolean Logic
The set of n variables of a Boolean function is denoted as x0, x1, . . . , xn−1. For a variable
x, x and x̄ are literals. A Boolean product, cube, is a conjunction (AND) of literals
where x and x̄ do not appear at the same time. A minterm is a cube in which each
of the n variables appear once, in either its complemented or un-complemented form.
A sum-of-product (SOP) Boolean expression is a disjunction (OR) of a set of cubes.
An exclusive-or-sum-of-product (ESOP) representation is an XOR (modulo-2 addition)
of a set of cubes. For a given Boolean function f(x0, . . . , xi, . . . , xn−1), the cofactor of
f with respect to literal xi is f(x0, . . . , 1, . . . , xn−1), and with respect to literal x̄i is
f(x0, . . . , 0, . . . , xn−1). For a finite set A, a one-to-one and onto (bijective) function f :
A→ A is a permutation, which is called a reversible function. To convert an irreversible
specification to a reversible function, input/output must be added.
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2.2. Quantum Computing
Quantum Bit and Register. A quantum bit, qubit, can be treated as a mathematical

object that represents a quantum state with two basic states |0〉 and |1〉. It can also
carry a linear combination |ψ〉 = α|0〉 + β|1〉 of its basic states, called a superposition,
where α and β are complex numbers and |α|2+|β|2=1. Although a qubit can carry any
norm-preserving linear combination of its basic states, when a qubit is measured, its
state collapses into either |0〉 or |1〉with probabilities |α|2 and |β|2, respectively. A quan-
tum register of size n is an ordered collection of n qubits. Apart from the measurements
that are commonly delayed until the end of a computation, all quantum computations
are reversible.

Quantum Gates and Circuit. A matrix U is unitary if UU† = I where U† is the
conjugate transpose of U and I is the identity matrix. An n-qubit quantum gate is a
device which performs a 2n × 2n unitary operation U on n qubits in a specific period of
time. For a gate g with a unitary matrix Ug, its inverse gate g−1 implements the unitary
matrix U−1g . A reversible gate/operation is a 0-1 unitary, and reversible circuits are
those composed with reversible gates. A reversible gate realizes a reversible function.
A multiple-control Toffoli (MCT) gate CnNOT (x1, x2, · · · , xn+1) passes the first n qubits
unchanged. These qubits are referred to as controls. This gate flips the value of (n+1)st
qubit if and only if the control lines are all one (positive controls). Therefore, the action
of the multiple-control Toffoli gate may be defined as follows: xi(out) = xi(i < n +
1), xn+1(out) = x1x2 · · ·xn⊕xn+1. Negative controls may be applied similarly. For n = 0,
n = 1, and n = 2 the gates are called NOT, CNOT, and Toffoli, respectively. The lines
which are added to make an irreversible specification reversible are named ancillae,
which normally start with the state |0〉. The zero-initialized ancillae may be modified
inside a given subcircuit, but should be returned to zero at the end of computation to
be reused.

Cost Model. Quantum cost (QC) is the number of NOT, CNOT, and controlled square-
root-of-NOT gates required for implementing a given reversible function. QC of a cir-
cuit is calculated by a summation over the QCs of its gates. In addition to the QC
model, a single-number cost based on the number of two-qubit operations required to
simulate a given gate was proposed by Maslov and Saeedi [2011]. This model captures
the complexity of physical implementation of a given gate based on the Hamiltonian
describing the underlying quantum physical system. In particular, it estimates the
cost of a CnNOT (and n ≥ 2) as 2n−5 3-qubit Toffoli gates (and 10n−15 2-qubit gates).

3. APPLICATIONS IN QUANTUM COMPUTING
Specific reversible circuits must be motivated by applications. In the following, we in-
troduce several immediate applications of cofactor-sharing synthesis in quantum com-
putation. In these applications, ancillea are used as outputs. In other non-immediate
applications, one should add ancillea to use the cofactor-sharing.

3.1. Quantum Algorithm for Number Factoring
Shor’s quantum number factoring uses the quantum circuit for modular exponen-
tiation bx%M (% is modulo operation) for a randomly selected number b, and a
semiprime M = pq, for primes p and q. Modular exponentiation is performed by
n conditional modular multiplications Cx%M where C and M are coprime. Pre-
cisely, for the binary expansion x = xn2n + xn−12n−1 + · · · + x0 (and xi is 0 or 1),
bx%M = bxn2

n×bxn−12
n−1×· · ·×bx0%M . Hence, one needs to implement multiplication

by b2
n

%M conditioned on xn, multiplication by b2
n−1

%M conditioned on xn−1, . . . , and
multiplication by b%M conditioned on x0, in sequence.
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Markov and Saeedi [2012, Section 7.2] introduced an (n,m)-LUT (for n = 4) to im-
plement the (four) most expensive conditional modular multiplications that appear in
modular exponentiation to reduce the total cost. As an example [Markov and Saeedi
2012, Figure 15] implements conditional modular multiplications by 4, 16, 82, and 25
in modular exponentiation for b = 2, M = 87 = 3 × 29 by a systematic method. The
related outputs of this (4,7)-LUT are 1, 4, 16, 64, 82, 67, 7, 28, 25, 13, 52, 34, 49, 22,
1, and 4 which are obtained by considering different combinations (by multiplication)
of 4, 16, 82, and 25 %87. Except for the four most expensive modular multiplications,
other modular multiplications are implemented directly in [Markov and Saeedi 2012].
In this work, however, we propose an automatic synthesis method that can further
improve modular exponentiation circuits.

3.2. Quantum Walk for Sparse Graphs
In [Chiang et al. 2010, Thereom 1], the authors proposed a polynomial-size circuit for
quantum walk on a sparse graph with 2n nodes along with an adjacency matrix P . A
graph is sparse if each node has at most d transitions (or edges) to other nodes. To pro-
pose the circuit, the authors assumed (1) there is a polynomial-size reversible circuit
returning the list of (at most d) n-bit neighbors of the node x according to P (2) there is
a polynomial-size reversible circuit returning the list of (at most d) t-bit precision tran-
sition probabilities. Our cofactor-sharing synthesis can be used to construct circuits for
(1) and (2).

3.3. Quantum Walk on Binary Welded Tree
As a special case of quantum walk on sparse graphs, one can consider a binary welded
tree. A binary welded tree (BWT) is a graph which consists of two binary trees that
are welded together with a random function between the leaves. Figure 1(a) shows a
sample BWT. In a BWT every node has degree three except the root of each tree (which
has degree two). A BWT has 2(2n+1 − 1) nodes for a binary tree of height n. Therefore,
strings of m > dlog2 2(2n+1 − 1)e bits are required to represent each node uniquely
(minimum m is n + 2). All edges of a node in a BWT are uniquely colored and each
color is denoted by c. The number of colors used in a BWT is at least 3 and at most 4
(by Vizing’s theorem for graph coloring).

In [Childs et al. 2003], an oracle-based quantum walk algorithm on BWT has been
proposed which is exponentially faster, with O(n) oracle queries, on a quantum com-
puter than on a classical computer. The best-known classical algorithm needs O(2n)
oracle queries. For any edge color c, the oracle function vc(a) takes as input the node
label a, and returns the label of a node that is connected to node a with a c color
edge. As an example for the BWT in Figure 1(a) and c=black, we have (Figure 1(b))
vc(7) = 16, vc(8) = 17, vc(9) = 15, vc(11) = 19, vc(12) = 22, vc(13) = 18, vc(14) = 20 (and
vice versa, e.g., vc(16) = 7).1 If there is no connection to a with color c, the oracle re-
turns the unique label invalid. In [Childs et al. 2003], this unique value is all ones.
Outputs should be constructed on a separate register so that input register remains
unchanged for future queries. Note that in a physical implementation, besides the
number of queries to the oracle, the computation performed by the oracle also affects
the runtime. Accordingly, we use cofactor-sharing synthesis to improve the physical
implementation of a given oracle circuit.

1Permutations in BWT include 2-cycles. For a synthesis algorithm that extensively works with cycles see
[Saeedi et al. 2010].
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2-cycles for black (bold) edges:

(7,16), (8,17), (9,15), (11,19),
(12,22), (13,18), (14,20).

(a) (b)

a0 • • • • • • • a0

a1 • • • • • • • a1

a2 • • • • • • • a2

a3 • • • • • • • a3

a4 • • • • • • a4

|0〉 y0

|0〉 y1

|0〉 y2

|0〉 y3

|0〉 y4

(c)

Fig. 1. (a) A sample binary welded tree. (b) Lookup table of the oracle for black edges. A 2-cycle (a, b) is
a permutation which exchanges two elements and keeps all others fixed. (c) An oracle implementation. In
general, one needs l CkNOT gates to implement each minterm where l is the number of bits with value
1 in the binary representation of the minterm. For example, the first gate implements 16 (i.e., “10000” in
binary) for 7 (i.e., “00111” in control lines — two negative and three positive controls). The second gate
implements 7 (i.e., “00111” which needs three target lines) for 16 (i.e., “10000” in control lines). Other gates
can be constructed similarly.

4. RELATED WORK
A trivial approach to synthesize an LUT is to implement each input combination of an
(n,m)-LUT with at most m CnNOT gates. For example, reconsider the BWT in Figure
1(a) where the circuit in Figure 1(c) constructs the oracle. To handle the INVALID label,
initialize outputs to all ones and flip target locations in Figure 1(c). However, large
number of Toffoli gates with many controls are expensive for physical implementation.

ESOP-based approaches [Fazel et al. 2007; Nayeem and Rice 2011] are fast and
are able to handle large sizes of both reversible and irreversible functions. The basic
idea is to write each output as an ESOP representation and implement each term by
a multiple-control Toffoli gate [Fazel et al. 2007]. In recent years, several improved
ESOP-based approaches, e.g., [Nayeem and Rice 2011], have been proposed which use
shared product terms (cubes) to reduce the number of Toffoli gates. However, these
approaches usually lead to expensive multiple-control Toffoli gates with many controls.

Reversible logic synthesis methods [Saeedi and Markov 2013] can also be used to
synthesize a given (n,m)-LUT. To this end, input register should be copied (by m
CNOT gates) into output register so that inputs remain unchanged. However, these
approaches are general and may not exploit LUT structures for cost reduction. Other
approaches are based on Davio decompositions2 which include the method in [Markov
and Saeedi 2012] for (4,m)-LUT synthesis and the method in [Wille and Drechsler
2009]. Method in [Markov and Saeedi 2012] uses cofactors for multi-level optimization
in logic synthesis but it is limited to (4,m)-LUT implementation. By assuming that the
factors have already been computed on dedicated ancillae, [Wille and Drechsler 2009]
implements the Davio decompositions. It leads to numerous ancillae.

2Positive Davio and negative Davio decompositions are defined by f = fxi=0 ⊕ xi.fxi=2 and f = fxi=1 ⊕
x̄i.fxi=2 for fxi=2 = fxi=0 ⊕ fxi=1.
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5. PROPOSED SYNTHESIS ALGORITHM
Multi-level logic synthesis for irreversible functions has a rich history [Brayton et al.
1984]. However, conventional logic-synthesis approaches cannot be immediately used
for cofactor extraction and multi-level circuit realization in reversible circuits. Basi-
cally, in a multi-level implementation of a set of functions, it is allowed to use an
unlimited number of intermediate signals. This is due to the fact that intermediate
signals in classical circuits can be realized with low cost. However, in quantum cir-
cuits intermediate signals should be constructed on qubits3 and the number of qubits
in current quantum technologies is very limited. Therefore, appropriate modification
to the existing approaches is essential.

In this section, we propose a synthesis algorithm which is equipped with techniques
to reduce the number of ancillae required in a multi-level logic optimization. The sec-
tion begins with the description of the input function. Sharing methods based on cubes
as well as cofactors are presented next. A lookahead search is then discussed which
explores various ordering of cofactors to find one that minimizes the synthesis cost.
This method is based on a variant of unate covering problem. Finally, we exploit the
trade-off between cost and ancillae by adding more ancilla lines to decrease the imple-
mentation cost of large cubes (i.e., cubes with large number of control lines).

5.1. Input Specification
A reversible synthesis problem intends to implement a given n-input, m-output
Boolean function by a reversible circuit. We assume that the input function is given in
the ESOP format. That is, yj = c0,j⊕ c1,j⊕· · ·⊕ ckj−1,j , for 0 ≤ j < m, where yj and ck,j
denote an output variable and a cube, respectively, and kj is the number of cubes in yj .
The input function is stored as a list of cubes, called cube list, in which a cube C in
an n-input, m-output Boolean function with input variables xi and output variables yj
(0 ≤ i < n, 0 ≤ j < m) is represented as a row vector [α0, . . . , αn−1, β0, . . . , βm−1] [Bray-
ton et al. 1984, Section 2.3]. In this notation, αi = 0 if xi appears negatively, αi = 1 if
xi appears positively, and αi = 2 if xi does not appear in C. Hence, number of αi 6= 2
(0 ≤ i < n) denotes the number of literals in C. Additionally, βj = 0 if C is not available
in yj , and βj = 1 if C is available in yj . Accordingly, number of βj 6= 1 (0 ≤ j < m)
specifies number of outputs that need C.

Example 5.1. Consider the f2 158 benchmark which is a 4-input, 4-output Boolean
function with the following ESOP representation (generated by the EXORCISM-4
[Mishchenko and Perkowski 2001]). Its cube list is shown in Table I. This benchmark
is used in the next sections to demonstrate the proposed approach.

y0 = x0x
′
1x2x

′
3 ⊕ x′0x2 ⊕ x′0x1x2x3

y1 = x0x
′
1x
′
2 ⊕ x0x′1x′2x3 ⊕ x0x′2x′3 ⊕ x′0x1x2x3 ⊕ x′0x1

y2 = x0x
′
1x
′
2x3 ⊕ x0x′2x′3 ⊕ x0x′1x2x′3

y3 = x0x
′
1x
′
2x3 ⊕ x′0x3 ⊕ x′0x1x2x3

5.2. Cube Sharing
A cube C that contains p ≤ n literals and is required by q ≤ m outputs can be con-
structed by q MCT gates each of which has p controls and a target on one of the out-
puts. The polarity of each control line is matched with the polarity of its corresponding
literal in C. Accordingly, for don’t care literals no control line is added. As an example,

3Recall that reversible functions are unitary transformation. As a result, explicit fanouts and loops/feedback
are prohibited.
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Table I. cube list for f2 158 benchmark. See Example 5.1.

Cube C α0 α1 α2 α3 β0 β1 β2 β3
c0 = x0x′1x

′
2 1 0 0 2 0 1 0 0

c1 = x0x′1x
′
2x3 1 0 0 1 0 1 1 1

c2 = x0x′2x
′
3 1 2 0 0 0 1 1 0

c3 = x0x′1x2x
′
3 1 0 1 0 1 0 1 0

c4 = x′0x2 0 2 1 2 1 0 0 0
c5 = x′0x3 0 2 2 1 0 0 0 1
c6 = x′0x1x2x3 0 1 1 1 1 1 0 1
c7 = x′0x1 0 1 2 2 0 1 0 0

f f f g g f g

c1 c1 ⊕ f c1 c1 ⊕ f c1 c1 ⊕ fg c1 c1 ⊕ fg
|0〉 • f c2 • • c2 ⊕ f |0〉 • f c2 • • c2 ⊕ f

(a) (b) (c) (d)

Fig. 2. Copying a cube by at most two CNOT gates (a) with and (b) without a zero-initialized ancilla.
Similarly, copying a cofactor by at most two CNOT gates (c) with and (d) without a zero-initialized ancilla.

c0 c1 c2 c3 c4 c5 c6 c7

|0〉 • • • • • y0

|0〉 • • y1

|0〉 • • y2

|0〉 y3

Fig. 3. Circuit for f2 158 after applying the cube sharing method. Constructing each cube individually
results in cost of 3 × 5 + 3 × 13 + 8 × 26 = 262. On the other hand, cube sharing reduces the cost to
9× 1 + 3× 5 + 2× 13 + 3× 26 = 128.

cube c2 = [1, 2, 0, 0, 0, 1, 1, 0] can be realized by two MCT gates C3NOT(x0, x
′
2, x
′
3, y1),

C3NOT(x0, x
′
2, x
′
3, y2).

To avoid multiple constructions of the same cube, as done in [Nayeem and Rice 2011],
common cubes among different functions may be shared. This can be performed by
constructing the shared cube once and copying the result by several CNOTs. However,
this cube sharing method requires an appropriate mechanism for copying cubes on
output lines which is described next.

Contents of a cube that is constructed on an output line with any arbitrary Boolean
value can be copied to other outputs by at most two CNOT gates. Consider the circuit
of Figure 2(a) which has two outputs with initial values c1 and |0〉. Assume that f is
a cube (its actual circuit is not shown) and the goal is to construct c1 ⊕ f on the first
qubit. Here, only one CNOT is needed. Now, assume that the value in the second qubit
is any arbitrary Boolean value c2. To remove the effect of c2, we add one extra gate
before constructing the cofactor f , as shown in Figure 2(b).

As an example, applying the cube sharing method on f2 158 benchmark leads to the
circuit shown in Figure 3. Dashed boxes highlight cases where a cube is needed by
more than one output. Different ordering of cubes may change the number of copying
CNOTs.

5.3. Cofactor Sharing
Cube sharing can reduce the number of MCT gates, but it leaves the number of controls
as is. Recent ESOP-based methods for reversible circuits, e.g., [Nayeem and Rice 2011],
restrict circuit optimization to use only cubes of the ESOP representation of the input
function, which can limit their performance. For example, consider y0 = ab and y1 =
abc. Note that each cube appears once. Therefore, no cube can be shared. Figure 4(a)
shows a circuit with one C2NOT and one C3NOT. However, relaxing the constraint
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a • • a a • a

b • • b b • b

c • c c • c

|0〉 y0 |0〉 • y0

|0〉 y1 |0〉 y1

(a) (b)

Fig. 4. Circuits for y0 = ab, y1 = abc, (a) without cofactor sharing, (b) with cofactor sharing.

a • • a a • • a a • • a

b • • b b • • b b • • b

c • c c • c c • • c

d • d d • d d • • d

|0〉 y0 |0〉 y0 |0〉 y0

|0〉 y1 |0〉 y1 |0〉 y1

|0〉 • • |0〉 c1 • • • • c1

(a) (b) (c)

Fig. 5. Circuits for function y0 = abc, y1 = abd. (a) Initial circuit. (b) An equivalent circuit constructed by
reusing ab as a shared cofactor. (c) When no unused zero-initialized output exists. Gates in dashed box are
used to un-compute the cofactor ab.

of sharing available cubes promises a significant cost reduction. As an example, it is
possible to reuse the cofactor ab twice. This can be done by constructing the cofactor ab
on y0, and reusing it to construct abc on y1 (Figure4(b)).

Cofactor ab in the function of Figure 4 was also needed as a cube by an output line.
However, in cases where this is not valid (i.e. cofactor is not required by any of the
outputs), a zero-initialized ancilla can be employed to temporarily construct the co-
factor, and then use it to optimize different cubes. This process should be followed by
un-computing the constructed cofactor to recover the zero-initialized ancilla for future
use. The reason for un-computation is twofold. (1) Without un-computation, each cofac-
tor needs a new ancilla (qubit) and the number of available qubits is very restricted in
current quantum technologies. (2) Constructing a zero state from an unknown quan-
tum state generally needs an exponential number of gates [Plesch and Brukner 2011].

Hence, a shared cofactor can be constructed on a zero-initialized ancilla by an MCT
gate M . To reuse the ancilla, one needs to un-compute the constructed cofactor by
applying M at the end of computation. As an example, consider y0 = abc, y1 = abd.
Figure 5(a) shows the circuit. However, as shown in Figure 5(b), one can temporarily
construct the cofactor ab on a zero-initialized ancilla (the first gate). Afterwards, based
on Figure 2-(c), we can use the cofactor to implement dependent cubes (gates #2 &
#3). The constructed cofactor is un-computed finally. Even an output line with any
arbitrary Boolean value can be used to construct the cofactor by following the circuit
of Figure 2(d). An example is shown in Figure 5(c).

To enable cofactor sharing, a list of cofactors that are shared between at least two
cubes is initially created. For k cubes, the maximal shared cofactors between all cubes
can be found by at most k2 comparisons. Shared cofactors are stored by another tabular
format, called shared cofactor list, which additionally keeps for each shared cofactor
all of its dependent cubes (i.e. cubes that contain the cofactor), the amount of cost
reduction gained by sharing this cofactor, and a Boolean variable which determines
whether the cofactor also appears as a cube.

Table II reports the shared cofactor list of f2 158 benchmark. Cost reduction val-
ues are described in the next section.
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Table II. shared cofactor list for f2 158 benchmark (Example 5.1)

Shared cofactor Dependent cubes Cost reduction value Cube?
s0 = x0x′3 {c2, c3} 11 No
s1 = x′0x3 {c5, c6} 13 Yes
s2 = x0x′1x

′
2 {c0, c1} 21 Yes

s3 = x0x′2 {c0, c1, c2} 19 No
s4 = x′0x2 {c4, c6} 13 Yes
s5 = x0x′1 {c0, c1, c3} 24 No
s6 = x′0x1 {c6, c7} 13 Yes

5.4. Implementing a Shared Cofactor
The cost of implementing a given shared cofactor along with its dependent cubes is
computed by Algorithm 1 in our proposed synthesis method. The circuit that realizes
the shared cofactor and its dependent cubes is obtained by the same algorithm as well.
Among inputs to the algorithm, output status is a bitmap whose ith index is set if the
value of output line i is still zero. Also, scof cost denotes the quantum cost of the MCT
gate that will realize the shared cofactor, scof cnots is the number of CNOTs needed
for copying the shared cofactor on corresponding output lines when the shared cofac-
tor is a cube itself, and scof controlNum indicates the number of control lines in the
shared cofactor. Similarly, cubes cost is the sum of quantum costs of dependent cubes,
cubes cnots denotes the total number of CNOTs needed for copying each dependent
cube, and cube controlNum is the number of control lines in a dependent cube.

Additionally, CountLiterals() is a function that returns the number of literals in
a given product term, which is equivalent to the number of control lines in the re-
spective MCT gate. This number is the input to the FindMCTCost() function which in
turn computes the cost of the MCT gate. Based on the current status of output lines,
FindCopyingCost() calculates the number of CNOT gates needed for copying contents
of a cube on required output lines, and updates the output status accordingly. Fur-
thermore, checkEmptyOutputs() sets Boolean variable emptyOutput to true if a zero-
initialized output line that is not going to be used in this step (i.e., a cube will not be
constructed on it) is available. Boolean variable emptyOutputForSj will also be true if
checkEmptyOutputsOfSj() can find a zero-initialized output line used by sj which will
not be used by other dependent cubes of sj .

Algorithm 1 initially finds the quantum cost of the shared cofactor. The number of
copying CNOTs are also calculated when the shared cofactor is itself a cube. Then,
dependent cubes are constructed based on the cube sharing method. However, each
dependent cube uses the intermediate value of the shared cofactor, and thus an MCT
gate with cube controlNum − scof controlNum + 1 control lines is needed. Copying
CNOT gates for each dependent cube are also added.

If the shared cofactor is not a cube, the cost of un-computing the shared cofactor is
added as well. Moreover, the shared cofactor is constructed on a zero-initialized output
line which will not be used by any other dependent cubes. However, if no such output
can be found, an ancilla line is needed (c.f. condition [1] in Algorithm 1).

On the other hand, a shared cofactor that also appears as a cube is implemented
on a zero-initialized output which is needed by itself, but not by any other dependent
cubes. In case that such output line is not available, shared cofactor is constructed on
the ancilla line (c.f. condition [2] in Algorithm 1). Contents of ancilla are then copied by
CNOT gates to output lines that need the shared cofactor. Accordingly, copying CNOTs
that we added earlier are excluded from the cost.

In Algorithm 1, the order in which dependent cubes are implemented can affect final
cost. For simplicity, Algorithm 1 randomly picks dependent cubes. However, synthesis
cost can be improved by exploring various orderings, and selecting the one that results
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ALGORITHM 1: Shared Cofactor Cost Computation
Input: A shared cofactor, sj , the cube list, and the initial status of output lines, output status.
Output: The cost of implementing sj together with all of its dependent cubes.
scof cnots = 0; cubes cost = 0; cubes cnots = 0;
scof controlNum = CountLiterals(sj);
scof cost = FindMCTCost(scof controlNum);
if ( sj is a cube ) then

emptyOutputForSj = checkEmptyOutputsOfSj(sj , output status);
scof cnots = FindCopyingCost(sj , output status);

else
emptyOutput = checkEmptyOutputs(output status);

end
for each sj ’s dependent cube ci do

if ( ci 6= sj ) then
cube controlNum = CountLiterals(ci);
cubes cost += FindMCTCost(cube controlNum− scof controlNum + 1);
cubes cnots += FindCopyingCost(ci, output status);

end
end
cost = scof cost + scof cnots + cubes cost + cubes cnots;
if ( sj is not a cube ) then

cost += scof cost ; // adding uncomputatopn cost of sj
[1]: if ( !emptyOutput ) then Construct sj on the ancilla line;

else
[2]: if ( !emptyOutputForSj) then

Let nj be the number of output lines that need sj as a cube;
cost += scof cost + nj − scof cnots;
Construct sj on the ancilla line;

end
end
return cost

s5 x′2x3 s5 s1 s1 c2 c4 c7x′2 x2x
′
3 x1x2

|0〉 • • • • • y0

|0〉 • • y1

|0〉 • • y2

|0〉 y3

|0〉 • • • • • |0〉︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
s5 s1 remaining cubes

Fig. 6. Circuit of f2 158 after applying the cofactor-sharing method using s5 → s1 as the sequence of
selected shared cofactors. The cost is 10 ∗ 1 + 7 ∗ 5 + 4 ∗ 13 = 97.

in the minimum cost. This can be achieved by applying an exhaustive or a lookahead
search (Section 5.5) with the penalty of runtime.

Example 5.2. Applying Algorithm 1 on s5 followed by s1 in f2 158 circuit is shown
in Figure 6. For s5, condition [1] becomes valid as all zero-initialized output lines will
be used in this step. The ancilla line is thus used. On the other hand, since all output
lines have a non-zero value, condition [2] will be true for s1. The ancilla line was un-
computed in the preceding step, and hence can be used once again.
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s1 s5 x′2x3 s5 c2 c4 c7

x1x2 x′2 x2x
′
3

|0〉 • • • • y0

|0〉 • • y1

|0〉 • • y2

|0〉 • y3

|0〉 • • • |0〉︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
s1 s5 remaining cubes

Fig. 7. Circuit of f2 158 after applying the cofactor-sharing method using s1 → s5 as the sequence of
selected shared cofactors. The cost is 8 ∗ 1 + 6 ∗ 5 + 4 ∗ 13 = 90.

5.5. Lookahead Search
Assume that we have k cubes, c1, . . . , ck, which produce l shared cofactors, s1, . . . ,
sl. The synthesis problem then intends to find an ordering of shared cofactors such
that the synthesis cost of the circuit is minimized. For this purpose, we can create a
covering matrix where shared cofactors denote columns, cubes represent rows, and a ’1’
is inserted in column j, row i if shared cofactor sj covers (is contained in) cube ci. The
problem looks similar to the unate covering problem (UCP) which is used in two-level
logic minimization to find a subset of columns (prime implicants) such that all rows
(minterms) are covered by at least one column and the cost is minimized [Coudert
1994]. However, it differs from the UCP in the sense that the order in which columns
(shared cofactors) are selected affects the cost. In addition, all rows (cubes) may not be
covered by the selected ordering of shared cofactors, and remaining uncovered cubes
are realized by the cube sharing method.

Example 5.3. Figure 7 depicts the circuit obtained by applying Algorithm 1 on s1
followed by s5. As can be seen, by changing the order of shared cofactors, synthesis cost
is reduced compared to the circuit of Figure 6.

UCP is optimally solved by a branch-and-bound algorithm, where a column C is
initially chosen as the root node according to a cost function. Two subtrees are then
generated, one by including C in the final solution and the other by eliminating it from
the solution set, which are in turn solved recursively. The final minimal solution is the
minimum of the two subtrees. Unfortunately, this approach cannot explore the order of
columns and hence may not lead to the minimal solution in cofactor sharing problem.
As a result, a lookahead search is rather used for this problem.

Prior to begin the lookahead search, columns are sorted based on a cost function
such that those columns that have a higher chance to be included in the final solution
are definitely visited. Index of columns are consequently updated based on the sort
result. The lookahead search with depth d and maximum node degree ∆ then initiates
by creating a root node labeled r. A sample lookahead search tree with d = 4 and ∆ = 2
is illustrated in Figure 8. Afterwards, node r as well as all of its descendant nodes until
depth d − 1 will generate at most ∆ different nodes. Child nodes are chosen such that
every path from r to any node contains distinct node labels. Finally, the cost of all
paths starting from r are calculated (cost of node r is zero), and the first node (without
considering node r) of the minimum cost path is selected to be inserted into the final
solution order. The same process is re-executed for the next selections, until no more
column is left.

For the cofactor sharing problem, after a shared cofactor is selected, its depen-
dent cubes are removed from the cube list (since they have been covered). Then,
other available shared cofactors are checked to see if they still have more than one
dependent cube. Cofactors that cannot satisfy this condition are no longer a valid
shared cofactor, and hence are removed from the shared cofactor list. Updating
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r

1 2

2 3 1 3

3 4 2 4 3 4 1 4

4 5 3 5 4 5 2 5 4 5 3 5 4 5 1 5

Fig. 8. A lookahead search tree with d = 4 and ∆ = 2. Assume that the highlighted path r → 2→ 1→ 3→
5 has the minimum cost among other paths starting from r. Hence, the lookahead search will pick column 2
(the first node after root) for this step.

r

s1 s2 s5

s0 s2 s3 s5 s0 s1 s4 s6 s1 s4 s6

s2 s3 s4 s0 s1 s4 s6 s0 s0 s0

Fig. 9. Lookahead tree for f2 158 circuit. The minimum cost path is highlighted.

shared cofactor list is also valuable in terms of pruning branches of the lookahead
tree and cutting the runtime.

Example 5.4. In f2 158 circuit, selecting s5 which covers cubes c0, c1, and c3 leaves
s0 and s3 with one, and s2 with no uncovered dependent cube. Thus, s0, s3, and s2 are no
longer a valid shared cofactor, and are not explored in the subtree of s5. The lookahead
tree of f2 158 circuit is also illustrated in Figure 9. Here, to save space, the root node
only explores three shared cofactors s1, s2, and s5.

Steps of the lookahead search used in our proposed synthesis method is presented in
Algorithm 2. The algorithm exhaustively traverses a lookahead tree with depth d and
maximum node degree ∆ in depth-first order. Since a depth-first order is used to search
the tree, only one path is traversed at each time and the level of the node that we are
currently processing will be denoted by level. Consequently, array variables are used to
store intermediate results (obtained at different levels) of the current path, which are
introduced next. cost arr and output status arr are arrays of size d+ 1 which represent
the total cost from root node and the status of zero output lines, respectively. Number
of nodes visited at each level as well as the shared cofactor that is selected in the
current level are saved in arrays of size d, visited nodes arr and scof arr, respectively.
Additionally, the cost function which is used to sort shared cofactor list is set to the
amount of cost reduction obtained by sharing each cofactor compared to when only
cube sharing is used.

Furthermore, our proposed cofactor-sharing synthesis method is given in Algorithm
3. As mentioned earlier, output status is responsible to keep track of the status of zero
output lines (line 1). Lines 2-3 construct the required lists. Since cofactor sharing is al-
ways beneficial in terms of cost reduction, only when no valid shared cofactor is avail-
able, the algorithm terminates (line 5). Moreover, line 6 calls Algorithm 2 to select
the next cofactor. Lines 7-8 calculate the implementation cost of the selected shared
cofactor along with its dependent cubes by calling Algorithm 1, and update the total
synthesis cost accordingly. Line 9 removes dependent cubes and invalid shared cofac-
tors from cube list and shared cofactor list, respectively. Remaining cubes that were
not covered by a shared cofactor are constructed at the end using the method of cube
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ALGORITHM 2: Lookahead Search
Input: shared cofactor list, cube list, output status, lookahead depth, d, and maximum node

degree, ∆.
Output: First shared cofactor on the minimum cost path.
level = 1; min cost =∞; cost arr[0] = 0; output status arr[0] = output status;
Sort shared cofactor list based on cost reduction values in decreasing order;
while ( level > 0 ) do

cofactor scof = SelectNextSharedCofactor(shared cofactor list);
if ( no shared cofactor is available OR visited nodes arr[level] > ∆ ) then

// Backtracking
visited nodes arr[level] = 0;
level- -;

else
visited nodes arr[level]++;
scof arr[level] = scof ;
output status arr[level] = output status arr[level − 1];
cost arr[level] = cost arr[level − 1];
cost arr[level] += ImplementSharedCofactor(scof , cube list, outputs status[level]);
if ( level < d ) then

Update cube list and shared cofactor list based on scof ;
level++;

else
r cost = ConstructUncoveredCubes(cube list, outputs status arr[level]);
if ( cost arr[level] + r cost < min cost ) then

min cost = cost arr[level] + r cost;
min scof = scof arr[1];

end
end

end
end
return min scof

ALGORITHM 3: Cofactor-Sharing Synthesis
Input: An ESOP-based n-input, m-output Boolean function, f , as well as the lookahead depth,

d, and maximum node degree, ∆.
Output: A quantum circuit, which generates f using MCT gates, and its corresponding cost.

1: Define outputs status as a bitmap of size equal to m;
2: cube list = ConstructCubeList(f );
3: shared cofactor list = ConstructSharedCofactorList(cube list);
4: total cost = 0;
5: while ( shared cofactor list is not empty ) do
6: cofactor scof = LookaheadSearch(shared cofactor list, cube list, outputs status, d, ∆);
7: s cost = ImplementSharedCofactor(scof , cube list, outputs status);
8: total cost = total cost + s cost;
9: Update cube list and shared cofactor list based on scof ;

10: end
11: r cost = ConstructUncoveredCubes(cube list, outputs status);
12: total cost = total cost + r cost;
13: return total cost

sharing (line 11). The result of cofactor-sharing synthesis algorithm on f2 158 circuit
is shown in Figure 10.
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s2 s4 s0 x2 x′1x2 s0 c5 c7

x3 x1x3

|0〉 • • • y0

|0〉 • • • • • • • y1

|0〉 • • y2

|0〉 y3

|0〉 • • |0〉︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
s2 s4 s0 remaining cubes

Fig. 10. Circuit of f2 158 after applying the cofactor-sharing method using s2 → s4 → s0 as the sequence
of selected shared cofactors. The cost is 10 ∗ 1 + 7 ∗ 5 + 3 ∗ 13 = 84.

abc abc abc g abc
defg def def def

|0〉 y |0〉 y

|0〉 • • |0〉 |0〉 • • |0〉
|0〉 • • |0〉

(a) (b)

Fig. 11. Implementation of y = abc⊕ def ⊕ abcdefg using cofactor-sharing. (a) Cubes could be constructed
by only one shared cofactor. Cost is 1 ∗ 1 + 3 ∗ 13 + 1 ∗ 38 = 78. (b) An extra ancilla line is added so as cube
abcdefg can be constructed by two shared cofactors. Cost becomes 2 ∗ 1 + 5 ∗ 13 = 67.

5.6. Cost and Ancilla Trade-off
When a dependent cube C with pc literals is going to be constructed with a shared
cofactor with ps literals, the number of control lines of the MCT gate that realizes C
will be reduced to pc − ps + 1. This reduction in the number of control lines makes the
cofactor-sharing synthesis beneficial in terms of cost optimization. However, pc−ps + 1
may still be a large number (e.g. if ps << pc), and thus the cost of the resulting MCT
gate would still be high. The problem occurs as we allowed a dependent cube to be
built by just one shared cofactor. This is useful in terms of number of ancillae, since
only one ancilla is required to temporarily store shared cofactors. However, it may be
possible to implement a cube with more than one shared cofactor, which subsequently
requires more ancilla (one ancilla per cofactor), but can further reduce the number of
control lines of the MCT gate.

Example 5.5. Consider the following 7-input, 1-output function y = abc ⊕ def ⊕
abcdefg. shared cofactors are abc and def . In Figure 11(a) at most one ancilla is allowed.
On the other hand, two ancilla lines are used in Figure 11(b) so as cube abcdefg can be
constructed by two shared cofactors, improving the cost by 14%.

Shared cofactors that have one or more literals in common can also be used to con-
struct cubes. For instance, if abc was already constructed on y0, and cd on y1, then
C2NOT(y0, y1, y2) realizes abcd on y2 by using these intermediate variables.

In order to benefit from the cube construction using more than one shared cofactor,
we first execute Algorithm 3 to obtain an ordering of shared cofactors S = (s1, . . . , sl).
The following control parameters are also added to the synthesis tool: (1) θc which is
a threshold value for detecting large cubes, and (2) AncillaBudget which determines
the maximum number of available ancilla lines. We then implement shared cofactors
(s1, . . . , sl) once again, but this by applying proper modifications to the synthesis algo-
rithm which is explained next.

Assume shared cofactor sj ∈ S, 1 ≤ j < l, is going to be implemented. If for any of its
dependent cubes ci, pc−ps +1 > θc then ci is considered as a large cube. The possibility
of constructing ci using more than one cofactor is investigated next by checking future
shared cofactors (sj+1, . . . , sl) to see if they are also a shared cofactor for ci. If these
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a • • a
b • • b
c • • • • c
d • • • • • d
|0〉 • • • • • y0

|0〉 • • • y1

|0〉 • • • • • • • • y2

|0〉 • y3

|0〉 • • • • • • • y4

|0〉 • • y5

|0〉 y6︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
step 1 : cd step 2 :ab′ step 3 :a′b remaining cubes

Fig. 12. The result of applying the proposed synthesis algorithm to synthesize the (4, 7)-LUT in Shor’s
algorithm for M = 65. The ESOP expansion for outputs can be represented as y0 = 0, y1 = ab′c′ ⊕ a′bd,
y2 = ab′⊕a′bc′⊕acd⊕b′cd, y3 = ab′d⊕ab′c′⊕c, y4 = ab′⊕a′bcd′, y5 = ab′d⊕a′bcd′⊕acd⊕b′cd⊕a′bd⊕c′d,
y6 = d′ ⊕ a′bc′ ⊕ a′bcd′ ⊕ acd⊕ b′cd⊕ c′d. Shared cofactors are highlighted with dotted boxes. As shown in
the dashed box, a post-synthesis optimization can further improve the circuit.

conditions are true, and also a free ancilla line is available (i.e. number of ancillae that
currently have a shared cofactor < AncillaBudget), the construction of ci is postponed.
Literals of ci that are common to sj are also set to 2 (don’t care). Furthermore, sj is
stored on an ancilla line. However, when the number of literals in a cube becomes less
than θc, or no more future shared cofactors can cover the cube, or no free ancilla is
left, the postponed cube is constructed. Moreover, to enable ancilla sharing, a shared
cofactor that will not be required by any uncovered cubes is un-computed to recover
the ancilla line to its initial state.

6. EXPERIMENTAL RESULTS
The proposed cofactor-sharing synthesis method was implemented in C++, and all ex-
periments were done on a server machine with Intel E7-8837 processor and 64GB
memory. Moreover, EXORCISM-4 [Mishchenko and Perkowski 2001] was used to ini-
tially generate an ESOP representation for each benchmark. To evaluate, we applied
various experiments on circuits from quantum computing as well as MCNC bench-
marks.

6.1. Quantum Benchmarks
We compared our synthesis results with the systematic method in [Markov and Saeedi
2012, Section 7.2] for LUTs that appear in Shor’s algorithm. These LUTs are the four
costliest modular multiplications for semiprimeM values with 9 bits or less in [Markov
and Saeedi 2012, Table 8]. The single-number cost model [Maslov and Saeedi 2011] is
used in both methods for comparison. Synthesis results are shown in Table III. For
each method a triplet (T , C,cost) is reported, where T and C are the number of C2NOT
(Toffoli) and CNOT gates, respectively. On average, our proposed algorithm reduces
the total cost by 52%. The synthesized circuit for M = 65 is shown in Figure 12. As
shown, a post-synthesis optimization method may further improve the results.

Additionally, since we could not find relevant synthesized results for the binary
welded tree in the literature, we synthesized oracle functions in Figure 1 for black, red,
green, and blue colors and applied the method in [Wille and Drechsler 2009] which is
implemented in [Soeken et al. 2010] for the purpose of comparison. Synthesis results
are reported in Table IV. Quantum cost and the number of ancillae are compared.
As can be seen, our method leads to more compact circuits with only one ancilla as
compared to the method in [Wille and Drechsler 2009].
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Table III. Synthesis results for LUTs that appear in Shor’s algorithm [Markov and Saeedi 2012] for semiprime M values
with 9 bits or less. For each method, the number of CNOT and Toffoli gates and cost are reported as a triplet (T , C,cost).
Our synthesis algorithm improves the results in [Markov and Saeedi 2012, Table 8] (shown as MS-2012) between 39.6%
(M=253, marked with *) and 67.5% (M = 217, boldfaced). On average, the results in [Markov and Saeedi 2012, Table 8]
are improved by 52%. Gray cells include cases where improvements are < 45%. Runtimes are less than one minute in
the proposed method. Both methods use at most one ancilla.

M MS-2012 Ours M MS-2012 Ours M MS-2012 Ours M MS-2012 Ours
33 (49,7,252) (16,30,110) 35 (51,7,262) (20,31,131) 39 (44,4,224) (16,33,113) 51 (27,4,139) (14,12,82)
55 (47,9,244) (18,35,125) 57 (51,6,261) (14,30,100) 65 (41,12,217) (15,21,96) 69 (50,7,257) (20,48,148)
77 (55,6,281) (24,35,155) 85 (36,2,182) (12,19,79) 87 (56,9,289) (20,59,159) 91 (56,6,286) (15,45,120)
93 (50,3,253) (15,32,107) 95 (43,9,224) (15,54,129) 111 (51,7,262) (14,34,104) 115 (45,11,236) (20,41,141)
119 (57,6,291) (15,48,123) 123 (61,6,311) (15,58,133) 133 (50,14,264) (10,38,88) 141 (57,8,293) (19,43,138)
143 (49,10,255) (20,41,141) 155 (62,11,321) (18,52,142) 159 (52,13,273) (18,44,134) 161 (58,11,301) (15,51,126)
177 (48,8,248) (17,56,141) 183 (67,11,346) (19,66,161) 185 (61,7,312) (17,50,135) 187 (70,9,359) (17,72,157)
203 (63,12,327) (19,69,164) 205 (40,3,203) (11,31,86) 209 (60,12,312) (17,61,146) 213 (63,13,328) (20,80,180)
215 (62,13,323) (17,33,118) 217 (39,5,200) (9,20,65) 219 (53,9,274) (14,46,116) 221 (60,9,309) (15,42,117)
235 (56,16,296) (20,55,155) 237 (62,10,320) (20,68,168) 247 (51,11,266) (14,58,128) 253* (47,12,247) (20,49,149)
259 (47,12,247) (14,52,122) 267 (62,7,317) (17,55,140) 287 (63,17,332) (20,61,161) 291 (58,16,306) (15,56,131)
295 (76,17,397) (23,95,210) 299 (56,12,292) (15,72,147) 301 (65,8,333) (22,80,190) 303 (54,5,275) (18,74,164)
305 (59,9,304) (19,66,161) 309 (59,17,312) (19,71,166) 319 (65,13,338) (20,74,174) 323 (74,12,382) (14,73,143)
327 (62,11,321) (15,61,136) 329 (59,13,308) (18,75,165) 335 (54,11,281) (19,67,162) 339 (67,8,343) (18,63,153)
341 (61,5,310) (15,43,118) 355 (75,13,388) (21,74,179) 365 (62,10,320) (14,63,133) 371 (61,13,318) (19,88,183)
377 (70,10,360) (19,73,168) 381 (56,7,287) (21,33,138) 391 (70,12,362) (17,59,144) 393 (61,20,325) (18,76,166)
395 (63,14,329) (17,85,170) 403 (72,9,369) (20,75,175) 407 (52,10,270) (20,58,158) 411 (64,9,329) (19,65,160)
413 (71,11,366) (21,73,178) 415 (58,14,304) (22,57,167) 417 (66,16,346) (17,76,161) 427 (71,11,366) (18,97,187)
437 (61,15,320) (19,83,178) 445 (65,10,335) (22,51,161) 447 (60,14,314) (20,61,161) 451 (68,9,349) (15,80,155)
453 (63,12,327) (20,79,179) 469 (58,16,306) (18,71,161) 471 (82,8,418) (19,72,167) 473 (69,18,363) (18,72,162)
481 (64,13,333) (15,47,122) 485 (74,9,379) (15,68,143) 493 (64,14,334) (19,46,141) 497 (61,15,320) (19,71,166)
501 (62,16,326) (20,75,175) 511 (54,6,276) (14,39,109)

Table IV. Results for the oracles in Figure 1. For BDD-based synthesis [Wille and Drechsler 2009], shown as WD-2009,
we used m CNOTs to initially copy inputs to outputs to keep inputs unchanged.

Color (cost, #ancillae) Color (cost, #ancillae)
WD-2009 Cofactor sharing Imp.(%) WD-2009 Cofactor sharing Imp.(%)

Blue (339,24) (226,1) (33,96) Green (298,23) (274,1) (8,96)
Red (268,21) (256,1) (4,95) Black (213,19) (188,1) (11,95)

6.2. MCNC Benchmarks
To evaluate the proposed method in synthesizing irreversible functions, we used the
MCNC benchmarks from [Wille et al. 2008] and compared our results with methods
in [Nayeem and Rice 2011] and [Lukac et al. 2011]. Since quantum cost is used in
these references to calculate the synthesis cost, we also used the same cost model for
reporting the cost of MCNC benchmarks.

Synthesis results for the MCNC benchmarks where at most one ancilla line is al-
lowed to be used to construct shared cofactors are reported in Table V. Information of
each benchmark circuit is given in columns 1-2 which include the name of the circuit
as well as a quadruple (n,m, k, l), where n, m, k, and l denote the number of inputs,
outputs, cubes, and maximal shared cofactors of each benchmark. Columns 3-5 report
the results of cofactor-sharing method under various lookahead configuration param-
eters. In column 2, each tree node can only generate one child node, and hence just
one path is traversed. As a result, in such configuration (i.e., ∆ = 1), the first node in
the sorted shared cofactr list is returned by Algorithm 2 regardless of the lookahead
depth. This is thus a greedy algorithm which executes very fast. We set d = 4 and ∆ = 5
for column 3, whereas column 4 reports the best configuration that could produce the
lowest synthesis cost in an one hour time limit. Here, G,Q, A, and T represent gate
count, quantum cost, number of ancilla lines, and runtime. We compared our results
with [Nayeem and Rice 2011] which is one the most recent ESOP-based synthesis
methods that does not use any ancillae. On average, our simulations show 39% im-
provement for MCNC benchmarks which reveals the effectiveness of cofactor-sharing
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Table V. Synthesis results for MCNC benchmarks. At most one ancilla is used. d and ∆ indicate the depth and the maximum
node degree of the lookahead tree, respectively. (n,m, k, l) denotes the number of (inputs, outputs, cubes, shared cofactors)
in each benchmark. Moreover, (G,Q,A, T ) is used to represent (gate count, quantum cost, number of ancilla lines, runtime).
Runtimes are in seconds, unless otherwise specified. On average, results of shared-cube approach [Nayeem and Rice 2011],
shown as NR-2011, are improved by 39% (compared to our best results).

Benchmarks Cofactor-sharing synthesis NR-2011 Imp.
d = −, ∆ = 1 d = 4, ∆ = 5 best up to 1 hour (%)

Circuit (n,m, k, l) (G,Q, A, T ) (G,Q, A, T ) (d,∆, G,Q, A) (G,Q, A = 0)
5xp1 (7,10,31,61) (97,544,0,0.00) (97,536,0,0.27) (5,20,96,519,0) (58,786) 34
9symml (9,1,52,571) (78,2820,1,0.04) (80,2526,1,8.39) (4,5,80,2526,1) (52,10943) 77
add6 (12,7,127,401) (217,3864,1,0.01) (224,2941,1,3.20) (6,5,227,2878,1) - -
adr4 (8,5,31,46) (54,660,1,0.00) (58,518,1,0.08) (4,10,57,513,0) - -
alu1 (12,8,16,0) (19,198,0,0.00) (19,198,0,0.00) (-,1,19,198,0) - -
alu4 (14,8,424,16046) (653,29115,1,1.62) (659,26814,1,6m) (5,5,660,26742,1) (454,41127) 35
apex4 (9,19,541,3550) (9075,27397,1,0.43) (9069,26568,1,2m) (4,10,9075,26353,1) (5622,35840) 26
apex5 (117,88,398,554) (639,18555,0,0.09) (647,14458,0,15.81) (4,20,643,11280,0) (601,33830) 67
apla (10,12,30,128) (107,1063,1,0.00) (109,932,1,0.49) (6,10,104,875,1) (72,1683) 48
bw (5,28,22,23) (440,621,1,0.00) (396,581,1,0.05) (6,10,375,561,1) (287,637) 12
C17 (5,2,6,4) (10,54,0,0.00) (10,54,0,0.00) (-,1,10,54,0) - -
C7552 (5,16,16,15) (135,281,1,0.00) (122,247,1,0.01) (4,10,115,236,1) (89,399) 41
clip (9,5,64,340) (166,2156,1,0.02) (163,2118,1,2.61) (5,10,167,2000,1) (78,3824) 48
cm150a (21,1,17,64) (33,625,1,0.00) (33,625,1,0.30) (-,1,33,625,1) - -
cm151a (19,9,23,13) (26,456,1,0.00) (26,281,1,0.00) (3,5,26,281,1) - -
cm152a (11,1,8,12) (16,144,1,0.00) (16,144,1,0.00) (-,1,16,144,1) - -
cm163a (16,13,19,16) (38,334,0,0.00) (36,299,0,0.02) (3,5,36,299,0) - -
cm42a (4,10,11,7) (52,119,0,0.00) (52,119,0,0.00) (-,1,52,119,0) (42,161) 26
cmb (16,4,4,1) (9,451,0,0.00) (9,451,0,0.00) (-,1,9,451,0) - -
cordic (23,2,776,6656) (2324,82975,1,0.37) (2331,64928,1,5.96) (4,10,2337,51572,1) (777,187620) 73
cu (14,11,16,20) (36,363,0,0.00) (35,357,0,0.00) (2,5,35,357,0) (28,781) 54
dc1 (4,7,9,8) (45,113,1,0.00) (46,110,1,0.00) (4,10,42,106,1) (31,127) 17
dc2 (8,7,32,88) (93,737,0,0.00) (95,697,1,0.24) (7,10,96,675,1) (51,1084) 38
decod (5,16,16,15) (135,281,1,0.00) (122,247,1,0.01) (4,10,115,236,1) (89,399) 41
dist (8,5,68,430) (185,2294,1,0.01) (190,2164,1,2.26) (6,10,198,1940,1) (94,3700) 48
dk17 (10,11,21,60) (49,643,0,0.00) (50,598,0,0.16) (5,10,49,589,0) (34,1014) 42
ex1010 (10,10,648,16217) (3549,40093,1,2.29) (3560,39406,1,9m) (5,5,3563,37738,1) (1675,52788) 29
ex5p (8,63,72,215) (1087,2583,1,0.01) (1021,2273,1,2.22) (5,10,969,2208,1) (646,3547) 38
f2 (4,4,8,7) (21 ,97,1,0.00) (20,84,1,0.00) (3,5,20,84,1) (14,112) 25
f51m (14,8,287,5502) (430 ,20001,1,0.28) (440,16669,1,1m) (6,5,443,15838,1) (327,28382) 44
frg1 (28,3,115,975) (133 ,8937,1,0.06) (142,7808,1,9.30) (5,10,144,7630,1) - -
frg2 (143,139,1116,1923) (2679,62870,0,0.85) (2687,60352,1,27.87) (3,20,2687,60178,1) (1389,112008) 46
ham7 (7,7,11,1) (49 ,65,0,0.00) (49,65,0,0.00) (-,1,49,65,0) (37,67) 3
hwb8 (8,8,192,927) (1078,5743,1,0.09) (1079,5777,1,16.03) (6,5,1086,5499,1) (480,8195) 33
in0 (15,11,92,528) (388 ,4706,1,0.02) (400,4274,1,1.31) (5,20,402,4136,1) (245,7949) 48
inc (7,9,27,72) (128 ,622,0,0.00) (122,548,1,0.21) (5,20,124,546,1) (75,892) 39
max46 (9,1,41,466) (67 ,2310,1,0.02) (65,2202,1,4.25) (5,5,67,2144,1) - -
misex1 (8,7,12,15) (55 ,225,0,0.00) (54,220,1,0.01) (4,20,53,211,1) (42,332) 36
misex3 (14,14,507,14749) (1915,31393,1,1.60) (1909,31050,1,6m) (5,5,1913,29314,1) (854,49076) 40
misex3c (14,14,512,15111) (1963,30947,1,1.83) (1963,31793,1,7m) (2,10,1962,30771,1) (822,49720) 38
mlp4 (8,8,60,232) (132 ,1748,1,0.01) (136,1436,1,0.97) (7,10,138,1280,0) (80,2496) 49
mux (21,1,16,64) (32 ,624,1,0.00) (32,624,1,0.29) (-,1,32,624,) - -
pdc (16,40,254,4627) (1335,21635,0,0.19) (1341,18765,0,25.23) (5,10,1347,16722,0) (649,30962) 46
pm1 (4,10,11,5) (71 ,126,0,0.00) (66,117,0,0.00) (3,5,66,117,0) - -
root (8,5,35,170) (105 ,1230,1,0.01) (107,1195,1,0.76) (5,20,107,1092,1) (48,1811) 40
ryy6 (16,1,40,52) (47 ,1857,1,0.00) (51,1456,1,0.26) (6,5,52,1420,1) - -
sao2 (10,4,28,139) (96 ,1645,1,0.00) (97,1439,1,0.30) (7,10,100,1338,1) (41,3767) 64
seq (41,35,246,1768) (3374,25917,0,0.11) (3358,21485,1,4.82) (4,20,3343,18873,1) (1287,33991) 44
sqr6 (6,12,33,60) (80 ,517,1,0.00) (83,447,1,0.17) (5,10,82,442,1) (54,583) 24
sqrt8 (8,4,17,21) (39 ,296,1,0.00) (41,293,1,0.01) (4,10,40,288,0) - -
sym9 (9,1,52,569) (78 ,2626,1,0.03) (78,2536,1,7.53) (4,5,78,2536,1) - -
sym10 (10,1,78,1195) (106 ,4459,1,0.08) (108,4300,1,17.70) (5,10,108,4040,1) - -
t481 (16,1,13,8) (19 ,142,1,0.00) (19,142,1,0.01) (-,1,19,142,1) - -
tial (14,8,428,17060) (632 ,30271,1,1.26) (637,29106,1,4m) (4,10,638,28475,1) - -
urf3 (10,10,752,12662) (3730,40102,1,1.51) (3735,37822,1,6m) (5,5,3739,37663,1) (1501,53157) 29
wim (4,7,10,8) (34 ,97,0,0.00) (33,96,0,0.00) (2,5,33,96,0) (23,139) 31
x2 (10,7,15,23) (41 ,325,0,0.00) (40,304,0,0.03) (4,5,40,304,0) - -
z4ml (7,4,29,36) (62 ,402,1,0.00) (62,402,1,0.10) (5,10,63,397,1) (34,489) 19
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Table VI. Synthesis results for MCNC benchmarks. Extra ancilla lines may be used to construct large cubes.
(n,m, k, l) denotes the number of (inputs, outputs, cubes, shared cofactors) in each benchmark. G,Q and A
are used to represent gate count, quantum cost, and number of ancilla lines. θc indicates the threshold value
of detecting a large cube. On average, while costs of cube-reordering approach [Lukac et al. 2011], shown as
LKPP-2011, are degraded by 13%, ancilla count is improved by 71%.

Benchmarks Cofactor-sharing synthesis LKPP-2011 Imp.
ancilla budget = 5 no ancilla budget (%)

Circuit (n,m, k, l) (θc, G,Q, A) (θc, G,Q, A) (G,Q, A) (Q,A)
5xp1 (7,10,31,61) (1,97,506,1) (1,97,506,1) - -
9symml (9,1,52,571) (4,80,2526,1) (4,80,2526,1) (571,2831,11) (11,91)
add6 (12,7,127,401) (4,227,2878,1) (4,227,2878,1) (2246,11026,11) (74,91)
adr4 (8,5,31,46) (3,57,513,0) (3,57,513,0) (332,1492,11) (66,100)
alu1 (12,8,16,0) (1,19,198,0) (1,19,198,0) (26,102,11) (-94,100)
alu4 (14,8,424,16046) (3,800,24303,5) (3,1006,22086,23) - -
apex4 (9,19,541,3550) (1,9289,25198,5) (2,9559,24270,20) (2388,11912,38) (-104,47)
apex5 (117,88,398,554) (8,661,10839,3) (8,661,10839,3) (4479,22115,118) (51,97)
apla (10,12,30,128) (2,106,841,3) (2,106,841,3) (106,530,10) (-59,70)
bw (5,28,22,23) (2,375,561,1) (2,375,561,1) - -
C17 (5,2,6,4) (1,10,54,0) (1,10,54,0) (6,22,0) (-145,0)
C7552 (5,16,16,15) (2,115,236,1) (2,115,236,1) (56,280,3) (16,67)
clip (9,5,64,340) (3,174,1976,4) (2,184,1962,8) (833,3980,8) (51,0)
cm150a (21,1,17,64) (1,33,625,1) (1,33,625,1) (110,546,20) (-14,95)
cm151a (19,9,23,13) (3,26,281,1) (3,26,281,1) (78,390,18) (28,94)
cm152a (11,1,8,12) (1,16,144,1) (1,16,144,1) (30,150,10) (4,90)
cm163a (16,13,19,16) (1,36,299,0) (1,36,299,0) (56,128,15) (-134,100)
cm42a (4,10,11,7) (1,52,119,0) (1,52,119,0) - -
cmb (16,4,4,1) (1,9,451,0) (1,9,451,0) (71,243,15) (-86,100)
cordic (23,2,776,6656) (5,2718,40088,4) (5,2718,40088,4) - -
cu (14,11,16,20) (4,35,357,0) (4,35,357,0) - -
dc1 (4,7,9,8) (1,42,106,1) (1,42,106,1) - -
dc2 (8,7,32,88) (4,96,675,1) (4,96,675,1) - -
decod (5,16,16,15) (2,115,236,1) (2,115,236,1) - -
dist (8,5,68,430) (2,212,1906,5) (2,216,1882,8) - -
dk17 (10,11,21,60) (1,49,589,0) (1,49,589,0) - -
ex1010 (10,10,648,16217) (1,3767,34643,5) (2,4113,31588,26) - -
ex5p (8,63,72,215) (3,973,2197,2) (3,973,2197,2) - -
f2 (4,4,8,7) (1,20,84,1) (1,20,84,1) - -
f51m (14,8,287,5502) (1,563,14898,5) (3,709,14669,19) - -
frg1 (28,3,115,975) (7,161,7410,5) (1,220,7007,13) (582,2898,27) (-142,52)
frg2 (143,139,1116,1923) (7,3037,55424,5) (7,3046,55532,6) (19361,95469,142) (42,96)
ham7 (7,7,11,1) (1,49,65,0) (1,49,65,0) - -
hwb8 (8,8,192,927) (1,1148,5175,5) (2,1199,4827,18) - -
in0 (15,11,92,528) (8,402,4136,1) (8,402,4136,1) - -
inc (7,9,27,72) (3,124,546,1) (3,124,546,1) - -
max46 (9,1,41,466) (1,68,2131,2) (1,68,2131,2) (419,2095,8) (-2,75)
misex1 (8,7,12,15) (1,54,211,2) (1,54,211,2) (42,170,7) (-24,71)
misex3 (14,14,507,14749) (3,2012,28490,5) (3,2094,27716,15) (8394,40846,13) (32,-15)
misex3c (14,14,512,15111) (4,2128,30327,5) (2,2299,29689,17) - -
mlp4 (8,8,60,232) (4,138,1280,0) (4,138,1280,0) - -
mux (21,1,16,64) (1,32,624,1) (1,32,624,1) (289,1433,20) (56,95)
pdc (16,40,254,4627) (9,1347,16722,0) (9,1347,16722,0) - -
pm1 (4,10,11,5) (1,66,117,0) (1,66,117,0) (40,40,3) (-193,100)
root (8,5,35,170) (1,117,1054,5) (1,118,1054,6) - -
ryy6 (16,1,40,52) (2,69,1363,5) (2,73,1315,6) (281,1405,15) (6,60)
sao2 (10,4,28,139) (3,100,1338,1) (3,100,1338,1) - -
seq (41,35,246,1768) (13,3343,18873,1) (13,3343,18873,1) (11470,56422,40) (67,98)
sqr6 (6,12,33,60) (3,82,442,1) (3,82,442,1) - -
sqrt8 (8,4,17,21) (1,42,263,1) (1,42,263,1) (94,462,7) (43,86)
sym9 (9,1,52,569) (3,78,2536,1) (3,78,2536,1) (649,3133,8) (19,88)
sym10 (10,1,78,1195) (1,117,3928,5) (1,119,3928,6) (3591,17955,9) (78,33)
t481 (16,1,13,8) (1,19,142,1) (1,19,142,1) (2792,13924,15) (99,93)
tial (14,8,428,17060) (1,794,26172,5) (1,1020,24626,21) (5087,25211,14) (2,-50)
urf3 (10,10,752,12662) (2,4115,34574,5) (3,4538,32188,26) - -
wim (4,7,10,8) (1,33,96,0) (1,33,96,0) - -
x2 (10,7,15,23) (1,40,304,0) (1,40,304,0) (41,129,9) (-136,100)
z4ml (7,4,29,36) (2,63,397,1) (2,63,397,1) - -
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in reversible logic synthesis.4 Finally, we provided the cofactor-sharing synthesis with
more ancillae to evaluate its ability in improving the cost of large cubes. Results are
reported in Table VI. In one case (column 3), we restricted the number of ancillae to
5, while in the other case (column 4), there is no limitation on the number of avail-
able ancilla lines. For each synthesis result, we also report the threshold value (shown
as θc) that is used to identify large cubes. We compared our results with [Lukac et al.
2011], a synthesis algorithm based on cube-reordering which extensively uses ancillae.
On average, though synthesis costs are degraded by 13%, ancilla count, which is a very
limited resource in quantum technologies, is improved by 71%.

7. CONCLUSIONS
We addressed the problem of synthesizing a given function on a set of ancillea by
reversible gates. Our algorithm is based on extensive sharing of cofactors to reuse
shared cubes without applying additional reversible gates. In particular, the proposed
approach tries different cofactors at each step with a lookahead strategy. To construct
cofactors on a limited number of qubits, the algorithm uses cofactor construction with
un-computation. Our experiments showed the proposed method can significantly (52%
on average) improve the synthesis cost of a recent method for those LUTs that ap-
pear in Shor’s factoring algorithm. The results of applying the proposed method on
the MCNC benchmarks show a considerable improvement in cost (39% on average) as
compared with a recent ESOP-based method. The proposed approach can be limited to
use a restricted set of ancillea for cost reduction. We also showed that cofactor sharing
can improve oracle of a binary welded tree.
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